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INTRODUCTION

If somcone examines, even cursorily, a treatise or advanced textbook on thicoret-
ical physics, it is apparent that the way mathematics is used is very different from
what is to be found even in the most constrnctive fortnulations of mathematics.
There is for example, 1o close councetion between two such well-known books on
constructive mathematics as that of Troelstra and Van Dalen, [19], and Bishop and
Bridges, [3], on the one hand, and any classical textbook in quantum mechanics,
or quite recent books, for example Ryder, [18], on quantiim field theory.

The ditferences run a good deal deeper than the fact that the books on theoret-
ical physics are not written in the definition-theorem-proof style characteristic of
pure mathematics and exemplified in the books just cited. There are at least four
dilferentiating characteristics that can immediately be discerned on closer exami-
nation. Although a good many propositions are proved in the books on physics,
there are alinost without exception no existential proofs, and cousequently there
is no really serious systematic use of quantifiers. Secondly, there are almost no
systematic negative statements. Almost everything is positive and computational
in character. In fact, the third cliaracteristic is the extreme constructive charac-
ter, mainly computational in terms of argument, that characterizes the theoretical
developient. Finally, as a fourth inportant characteristic there is a free use of in-
finitesimals without even a nod toward justification in terms of foundational work
on nonustandard analysis. These characteristics of books written in the last forty
some years would also be clhiaracteristic of treatises on theoretical physics written
in the last Inmdred years. What we have said about these books is not true ou the
other hand of treatises of a modern sort that specifically are labeled mathematical
phvsics. This is another story and not our focus here.

Even when theorems are mentioned, as for example in Ryder’s excellent quali-
tative discussion of Nocther's fundamental theoremn on the relation between space
and time synnunetries and laws of couservation, the discussion is wholly informal
and constraetive, although the important and central features of Noether’s theo-
rem are preserved. The kind of wathematical approach exemplified by Ryder is
prinary support for the arguinent that the classical discnssions of the foundations
of mathematics, including the constructive ones, are very far removed frou making
contact in any detail with the wathematical practices of physicists. What we have
to say about physicists applies just as well to theoretical chiemists, engineers, and
many social scientists. As a specific frame of reference, however, we shall stick with
theoretical physics.

The natural foundational question that arises about the discrepancy between the
way mathematics is ordinarily done in theoretical physics and the way it is built
up from a foundational standpoint i any of the standard modern views, raises the
question of whether it might be possible to construct quite directly a rigorous foun-
dation that rellects very closely a large part of this standard practice in theoretical
physics. As in other cases of foundational work, we do not want to suggest that
what we do here is satisfactory for all that theoretical plysicists do; our founda-
tion will not hold for everything, and in other respects it is probably too inclusive.
On the othier hand, we think it is possible to give a foundational formulation of
the dilferential and integral calculus and differential equations that correspouds to
much of the mathematical practice in theoretical physics. But this correspondence
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between our foundation and mathernatical practice in physics does not extend to
the style of this paper, which is concerned with providing the mathematical details
that justify the intuitive practice of physicists. The style of such justification is in
the general matliematical spirit of foundational papers, necessaril y concerned with
fine points of little concern to physicists.

To reflect the features mentioned above characteristic of works in theoretical
physics, the foundation approach we develop here has the following features: (i)
the underlying logic is positive: there is no use of negation; we adopt Hilbert’s pos-
itive propositional calculus; (ii) the formulation is a free-variable one with no use
of quantifiers; (iii) we use infinitesimals in an elementary way drawn from nonstan-
dard analysis, but the account here is axiomatically selfcontained and deliberately
elementary in spirit.

We believe that the system formulated here comprises a new constructive ap-
proach to the foundations of mathematics. As Wattenberg, [20], points out there is
a natural affinity between nonstandard analysis and constructivism, particularly in
the extensive use of computational arguments and in the handling of real numbers
that appear equal to zero by use of infinitesimals. Owr system is a patticularly
restricted version of noustandard analysis, however restricted in ways which are
wholly in the direction of constructivism — positive logic and only free variables.
It is important to note that our free-variable constructive methods yield proofs
of approximate equality, rather than exact equality, but an infinitesimal difference
is as good as equality for physical purposes. Indeed, finite numerical approxima-
tions are necessarily characteristic of the solutions of most complex problems in
contemporary physics.

The philosophical spirit of the enterprise is actually closest to the constructive
approach characteristic of geometric constructions, both ancient and modern, which
are naturally free-variable in formulation and which in elementary formulation have
representations over ngnstandard fields, because there is no Archimedean condition
that must be satisfied (for an example, see Moler and Suppes, [12]). The Greek the-
ory of constructions arose from concrete geometric problenis and was probably the
part of Greek geometry closest to applications. Certainly geometric constructions
were central to astronomical and architectural computations for over 2,000 years.
We are motivated in the same general way by the use of mathematics in science,
not a theme of any major importance in traditional philosophies of mathematics,
in spite of somne lip service to the contrary.

Because of the constructive restrictions we have imposed, we have had to state a
very large number of axioms about the elementary properties of the real numbers,
which are ordinarily proved by reductio ad absurdum. All of these elementary ax-
ioms however, have an immediate intuitive content. This constitutes the first group
of axioms which we call the restricted elementary field axioms. The second group
of axioms concern the natural numbers and open induction; again only elementary
results are needed. The third group of axioms are those about infiuitesimals. In ad-
dition, we have at the beginning logical rules of inference and, later as we proceed,
various constructive rules of inference within the framework of the infinitesimal
calculus.

As should be clear from what we have said, in priuciple we assume no previous
theories of any kind, for we start with rules of sentential inference of a restricted
kind. However, the developments move ahead at a fairly rapid pace and we intu-
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itively asstune funiliarity of the reader with the topics we develop. On the other
hand not only is classical logic not used, but the logic used is mneh weaker than
intuitionistic logic, a point we discuss later in more detail.

In [6], we introcuce a systemn for which we give a finitary proof of consistency
using Herbrand’s Theorenr. The present system is a fragiment of the system in (6],
where we restrict the logic to be free-variable and with no negation. The systemn of
[6] is finitistic in character, but not as constructive as the present system. The main
difference is that system |6} uses full first-order logic. On the other hand, the present
system uses only free-variable positive logic, for axioms, riles and proofs. Thus,
we incerease the constructivity by increasing considerably the munber of axioms in
order not to use negation. The systeins are simifar, however, and inany of the prools
in one system can be obtained by obvious modifications of the corresponding proofs
in the other system. In order Lo make this paper as self-contained as possible and
assure that they can be given in a free-variable negationless form, we shall repeat
some of the proofs. Also, many of the proofs in [G] were omitted or ouly sketched,
while here we tried to give the proofs as counplete as possible, without being unduly
pedantic.

The organization of the paper is showiin the Table of Contents at the beginning.
We note that there are two separate developients of the theory of integration, one
in Section 8 and the other in Section 11. Section 14 is concerned with the finitary
cousistency of our systen.

1. LoGicaL AX1oas AND RULES

We use Churdli’s (7, p. 141} version of Hilbert’s positive propositional calculus,
but with axiom schemas replacing sentential axioms. The sentential priorities are
— (if... then), & (ilf), A (and), and Vv (or). (To make the theorems easier to read,
we use in the theorems, but not in the axioms, English words rather thian standard
logical symibols for the connectives.) We use the Greek letters o, 4, 0 and so forth
for formulas, in particutar, for sentential variables. We omit a formal definition of
an inference, which is siuple for fonnubas without quantifiers. The axiomn schemas
and the rule are these: For any formulas 2, ¥ and 0, we assuine

L1 o= (% —y).

L2 (¢— @ —0)=(p—v)—(p=0)
L3. (pAy)—

L4 (pAY)— .

L5 ¢— (v —(eny)).

L6 p—(pVvwy).

L7 ¢—(pVvu).

L8. (p—0)= (¥ = 0) = (¢ V&) = 0)).
L9 (p=y)—(r—3)

L 10. (¢ = ) = (¥ = +2).

L 1L (o = $) = (6 = #) = (7 = v)).

4
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We end with the rule of imodus ponens:

L 12. From ¢ and ¢ — 9 infer 9.

Formulas are built up froin the notation for primitive concepts, numerical vari-
ables, function variables and, as the theory develops, notation for defined concepts
in familiar recursive fashion, which we shall not spell out in detail. The important
restrictions are that there is no primitive notation for negation and there is no use
of existential or universal quantifiers.

We assume the usual logic of identity:

LI 1. v = v, where v is any variable.

LI 2. If ¢ results from @ by replacing one or more occurrences of 1y in ¢ by 19, or
by replacing T in @ by 7y, then the following is an axiom

(AT =T) > ¢

Notice that the usual restriction that ¢ be an open formula is not required, for
all formulas are open.

Like the rules for identity, the substitution rule (LS) of teris for variables need
not have restriction on quantifier capture:

LS. From ¢ we may derive ¢ if : results from ¢ by substituting a fired term 7 for
a variable v in every occurrence i @,

Because of the restriction to free variables, many of the axioms we shall need in
our system are in the form of rules of inference. For instance, when we would need
as an axiom a statement of the form Yap — o, instead we shall introduce the rule:
From ¢ infer 4. Thus, the universal quantifier does not occur.

The deduction theorem is valid in our system, provided no rule, except for modus
ponendo ponens, L 12, is used. That is, we have

Theorem 1.1 (Deduction Theorem). If ¥ can be inferred from ¢ and the set
of formulas ¥, and no rules, cxcept for L 12, are used, then ¢ — 9 can be derived

from L.

The usual proof works here.

We conjecture, but have not chiecked all details, that Axiom Schemas L 6 and
L 7, which formulate the law of addition and the commutative character of inclusive
or, could be replaced by a single axiom schema of commutativity. We believe that
the classical law of addition is not needed. Moreover, we would like to eliminate
if possible because it violates the intuitively desirable Aristotelian canon that no
symbol should occur in the conclusion of an argument that does not appear in one
of the premises.
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2. RESTRICTED AXIOMS FOR A FIELD

We state thirty open formulas as axioms, which with exceptions to be noted are
standard. The nonlogical primitive concepts are addition +, negative operation
—, multiplication -, division /, ordering < and the two constants 0 and 1. Several
axioms would ordinarily have as a hypothesis « # 0. The changes made here are
to avoid negation. Needless to say, the absence of negation increases the number
of axioms considerably, as it is evident by comparing especially the axioms on
order with standard field axioms. Axiom F 11 suggests a way of defining negation:
= e (@ — 0 = 1). We connnent more on this definition later.

Although we use as an axiom the obvious replacement for 0 # 1, ie., the state-
ment 0 < 1 (Axiom F 30), in order to prove that the system is valid in a one-element
model, we would have to change it to the weaker disjunction 0 <1v0=1. This
one-element model is disenssed in Section 14 on consistency.

Fl. z+y=y+zw.

F2 (x+y)+z=a+(y+:2)

F3. x+0=u.

Fd4. z+(—x)=0.

F5 z.y=vy-u.

F6. v (y z)=(xy) =
F7.z2-1=u

F8 « (y+z)=(ry)+(x z)

FO (e<yhy<z)—uxr<z.

F10. r=yVae<yVy<u.

Fll (s <yVae=—y)—(y<ae—0=1)
F12. (z<yVy<z)—- (z=y—0=1)
F13. (r<yVa=y)—=0=1) —y<u
Fl4 z2<y—xct+z<y+=z.

F15 (z<ynAl<z)—ax 2<y- 2.
F16. (t<ynz<0)—oy-z<ux-=z.
F17. U<zAU<y)—=0<ux-y.

F18. U<azAy<0)—xz-y <l
F19. (s <0Ay<0)=0<x y.
F20 0O<z-ynA0<z)—-0<y.
F21. (O<a yAx <)oy <.
F 22 (- y<OAO<x)—y <.
F23. (- y<0Az<0)—=0<y.
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F24 0<az-y-((0<aen 0<y)V(e<0Ay <))
F25. z.y<0—-((U<aeh y<O)V(z<OA 0<y)).
F26 (z<0V0<z)=z-(1/z)=1.
F27 (y<OVO<y)—a/y=:x-(1/y).
F28. (z-y<0V z-y<0)—>1/(z-y)=(1/x) (1/y).
F 29. z/1 = .
F 30. 0 < 1.

We also need to introduce the following function é:

F 31.
(1) 20— 6(x)=1.
(2) <0 = 8(z) = ~1.

We define
Definition 2.1.

(1) 6y(x) = ?L")zi

(2) ba(w) = &1 (=6(=ux)).

Then

1, fx>0,
&(x) = -
() {(), if 2 <0,

and

dylx) = 1, ifx>0,
A= 0, fa<O.

We now list eletientary theoremns that would be expected to follow fromn our
axioms. The first group of theorems requires one definition, that for the binary
operation of subtraction.

Definition 2.2. o —y = x + (~y).
Theorem 2.1. 0+ z = .

Theorem 2.2. (—x)+ z = (.

Theorem 2.3, z —x =0,

Theorem 2.4. 0 -z = —z.

Theorem 2.5. 0 = ~0.

Theorem 2.6. = -0 = z.

Theorem 2.7. Ifc+y=x+z theny = z.
Theorem 2.8. Ife+y==z thena =2z ~y.

Theorem 2.9. [fx =2~y then x4+ y = 2.



Theorem 2.10.
Theorem 2.11.
Theorem 2.12.
Theorem 2.13.
Theorem 2.14.
Theorem 2.15.
Theorem 2.16.
Theorem 2.17.
Theorein 2.18.
Theorem 2.19.
Theorem 2.20.
Theorem 2.21.
Theorem 2.22.
Theorem 2.23.
Theorem 2.24.
Theorem 2.25.
Theorem 2.26.
Theorem 2.27.
(z/y) - (w/u).

Theorem 2.28.
Theorem 2.29.
Theorem 2.30.
Theorem 2.31.
Theorem 2.32.
Theorem 2.33.
Theorem 2.34.
Theorem 2.35.
Theorem 2.36.
Theorem 2.37.
Theorem 2.38.
Theorem 2.39.
Theorem 2.40.

P. SUPPES AND R. CHUAQUI

Ifx+y =0 then x = —y.
Ife=—y thenxz+y=0.
Ife+vy=ux theny=0.
—(—xz) = .

If0 < x then —x < 0.

l.-z=1x.

Ife <0 orO<w then (1/x) = 1.

Ife <0 or0 <z thenxfw=1.

Ify <0 orQ <y then (ffxfy =z thenx =z - y).
(y+z) c=(y =)+ (z x).

w-0=0. )

Ifex <0 or <x then0f/x = 0.
Ifer<OorO<a, andx-y=x-2 theny = z.
Ife<OorU<z, andx -y=1 theny = 1/x.
Ife <0 or0<uw, andx -y =x theny = 1.
Ify <0 or 0 <y then (x/y) -2 = (x-2)/y.
Ify <0 or <y then (x/y) -z = (z/y) -«

i

fy<O0orO <y, andu <0 or ) < u, then (x/y) - (z/u)

Ify<0or0 <y, and x <0 or 0 <, then (x/y) - (y/x) = 1.
Fr<OQorb<a, andx-y="10then y=0.
Ifz=00ry=0thenz y=0.

Ife-y=0 then =0 ory=10.

Ife - y<OorO<ax- -y theny/(c-y)=1/x.

Fe<0orO<a, andy <0 or 0 <y, then (z-y)/(z-y) = z/x.
Ify <0or0 <y, «<0orl<u, andz/y = z/u, thenx-u = z-y.
Ify<Oorl <y, (1.711.(1 x=y-z then o/y = z.

If e <a then 0==1.

0<yiff0<1/y.

y<04fl/y <.

Ify<0or0 <y then (f O < w/y then O < y).

Ify <0 or0 <y then ((f O <a-y then O < x/y).
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We now introduce three standard elementary definitions.

Definition 2.3. t <y~ ac<yVz=y.

We next define the absolute value of a number and prove the standard theorems
that hold in our positive logic.

Definition 2.4.

Theorem 2.41.
Theorem 2.42.
Theorem 2.43.
Theorem 2.44.
Theorem 2.45.
Theorem 2.46.
Theorem 2.47.
Theorem 2.48.
Theorem 2.49.
Theorem 2.50.
Theorem 2.51.
Theorem 2.52.
Theorem 2.53.
Theorem 2.54.
Theorem 2.55.
Theorem 2.56.
Theorem 2.57.
Theorem 2.58.
Theorem 2.59.
Theorem 2.60.

el=y o (e 20—z =y) A (@S0 =~z =y).

If 0 < z then |z| = «.

If 2 <0 then x| = —x.
lzf =]~ .

|z?| = «2.

z < ||

—lel < w.

Iz +yl = |y + |

[z -yl = =] ly|.

Ify <0 0r0 <y then |1/y] = 1/]y]|.

Ify <0 or0 <y then |x/y] = |z|/|y].

Iz +y| < la| + Jyl.

lz] = Jyl < |~ yl.

If le =yl <c then |¢] < c+ yl.

If ly—a| <z then 0 < y.

o =yl < lal + [yl

el =yl < f= =yl

lv—z <le—yl+|w— 2.

—y<zandz <yifflz| <vy.

Iflx=al <c/2 and ly — b < c/2 then |(x +y) — (a + b)] < c.
Ifle —a]l < ¢/2 and ly — b] < ¢/2 then |(x —y) - (a — b)| < c.
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3. AXIOMS FORR NATURAL NUMBERS AND OPEN INDUCTION

We need elementary number theory restricted as in the case of the field of real
numbers to open formulas and the positive sentential rules of derivation. The
axioms require the new primitive predicate N, with N(z) meaning that z is a
natural nunber.

N 1. M(1).

N 2. N(z) = N(z+1).

N 3. Naz)—1<u.

N4 W) AN Az<yN y<z+1)=(e=yVaet+l=y).
N5 Na)AN(yAy<z+1l—y<a

The schema for open induction (N 6) is stated as a rule of derivation, where we
use now the variable n for = and omit A(x) in standard fashion. We also use the
variables 4, 7, k, n, m, v, ¢ and 3 restricted to natural nunibers.

We must distinguish between internal and external forinulas. All the formulas
introduced up to now are internal, but when we introduce the predicate symbol

Inf, we must exclude it from internal formulas. Formulas with Inf or any predicate
defined from it are external

N 6. Let ¢ be an internal formula, where neither N' nor min (to be introduced in
Aziom Schema N 7) occur. Then, from

(1) «(1),
(2) w(n) = p(n +1),
mfer p(n).

Since we do not have negation, we need to introduce the mininmum operator by
an axiom. We suppose that the variables are ordered and always write k for the
first variable. The mininnun operator for internal formulas is introduced by the
axiom schema:

N 7. Let ¢ be an nternal open formula, where neither N nor min oceur and xy,
@, are the distinct free variables in @, except for the first variable. We introduce

)

an n-ary function symbol ming,, with the follourng arvom.

N(@)Ag(x) = N(ming(zy, - .-, @))Amiig (e, ., @) S e Ap(ming(xy, ..., o))
We may ot the variables @y, ..., @y, when they are clear from the context.

Theorem 3.1. If N(z) and N(y) then N{(x + y).

Theorem 3.2. If N(x) and N(y) then N(x - y).

We also need a sort of Archimnedian axiom, that is, for any x, we need to find a
natural number larger than . We introduce a new unary function symbol li (least
integer), such that li(z) is the least natural munber greater or equal to z. The
symbol i may occur in internal formulas.

N 8. N(li(x)) Ali(x) > «.

We also need a maximum operator, introduced by recursion:

10
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Recursive Definition 1. Let 7 be a term where min does not oceur and Tg, ...,
2y are its distinet free variables, except for the first one. We introdiee an 2 | f-ary
function symbol, max,(n,zy,...,z,,) with the axions
(1) max,(L,z1,... ,&m) = 1,
(2) N(n) AT(n+1) < 7(mixe(n, 21, ..., 2m)) = maxe(n+ Lz, ... 00) =
max,(n,zy,...,cm),
(3) N(n) Ar(n+ 1) > r(max(n, 1, ..., 2m)) — maxe(n + 1,1, .. P Ty) =
n+1.
(4) N(n) = N(max-(n,z1,...,Tm).

As an example, let 7(i) be i + z. Then, by (1), max,(l,z) = 1 + z. Since
T(n) =n+z <n+1l+z=7(n+1), we can prove by internal induction, using
(3), that max,(n,x) = n + z. On the other hand, if 7(i) = z/i, then, by (1),
max,(1,z) = 1, and, since z/(n + 1) < x/n, by (2), max,(n,z) = 1, for every n.

We need to prove by induction a lemma about the maximum operator.
Lemma 3.3. Let 7 be a term where min does not occur. Then, from N (i) infer

maxy(v) < v A (@< v — T(max.(v)) > 7(4)).
Proof. Let N(i) and let (i, v) be the formula

max,(v) < v A (i < v — t(max.(v)) > 7(1)),
which we shall prove by opeu internal induction. It is clear that it is an open
internal formula, where neither A" nor min occur. We have that max,(1) = 1.
Hence, i < 1 implies i = 1, since we have A(i). Thus, we obtain (i, 1).

Suppose ¢(i,n). Notice that if i < n + 1, then, since we have N(i), i < n or
i =n+ 1. We have two cases:

Case 1: 7(n+1) < max.(n). Then max,(n+1) = max,(n). Let i.< n+1.
If i = n+1, then 7(1) < 7(max,(n)) = 7(max,(n+1)). On the other hand,
if 2 < n, by the inductive hypothesis, 7(3) € T(max,(n)) = r(max,(n +
).

Case 2: 7(n+1) > max,(n). Thenmax,(n+1) = n+1. Thus, M (max,(n+
1). Let i <n+1. If i = n+1, then 7(i) < 7(max,(n+ 1)). On the other
hand, if < n, then 7(d) < 7(unx, (1)) < 7(n + 1) = T(nax,(n + 1)).

a

Notice that in the last lemma we need the premise A(i) because we do not have
‘ 1
the Deduction Theorem, since we are using the rule of Open Internal Induction. In
g 1

the system [6], we can omit this premise, since we have an open internal induction

Y ] 1
axiom instead of a rule. We now introduce the recursive definition of sum.
Recursive Definition 2. For any term 7 we define

1 .
(1) Xicy7(6) = 7(1),
1 . .
(2) N(n) — 211:1 (i) =Y (i) + T(n+1).
We write 30 7(:) for 3707 7(j 4+ m). With the & or 6 functions, i = 1, 2,

we can express dilferent suns. Ior instance

Definition 3.1. Let ¢ and 7 be terms. Then

11
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(1) 30 i)=Y bilw—ali)r(a),

i 1=
o(1)<x

2 > (i) =Y balw = a(i)T().
i=1 i=1
o(i)<r

We assuine we have similar definitions for > or > instead of < or combinations of
these relations.

The nsual propertics of the st can be proved by internal induetion, In partic-
ular, we have the following propositions:

Proposition 3.4. We have

Lty e <5,
Z )= {0 if o (1) > x,

=1
a(i)<x
(i) +7(n+1) fon+1)<ua,
n+l 1= 1
T(z) _ n(i,)SI
=1 > T(d) fon+1) >
o(i)<z (,:é

Similar statements are true for the other mequalities.
The proof is by an easy induction.
Proposition 3.5.

(1 dor(@y= > T+ > ().

i=1 o(i)<a o(i)2

(2) Letw < y. Then
Sy = Y. T+ Y ()

a(i)2r r<a(i)<y a(1)2y
Other sanilar cqualities are also velid.

Proof. We shall prove (1) by internal induction. Let n = 1. We have

1=1
We have, 0(1) < zVa(l) >« If o(1) <, then
1 1
Z (i) = 7(1) and Z T(i) =0,
i=1 1=1
a(i)<x a(i)>z

aud if a(1) > wx, the equations are veversed, so that the proposition is proved. The
proof of the inductive case is analogous.
The other cases are proved similarly. O

12
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Proposition 3.6. (1) From
J<n—1(j)=0,

infer
Yo =0
i=1
(2) From
LFING LS —T(3) =0,
nfer
D7) =7()
j=1

Proof. The proof of (1) is by an easy induction. The proof of (2) is also by induction
onn: If n=1, then i =1 and

1
D oTl) =T(1) = 7(i).
J=1

Suppose the theorem true for n and let i < n + 1 and J<n+1, 7 # iimplies
7(7) = 0. We have that

n+1 i

Dot =G +r(n+ 1),

i=1 i=1
We lhave two cases. Counsider first i < n. Then, by the inductive hypothesis
"
Zr(j) =7(¢) and T(n+1)=0.
i=1
Thus, we obtain the conclusion. Consider, next, the case i = n + 1. Then, by (1)

"

Y Tli) =0,

J=1
and we also obtain the conclusion. [J
In order to develop Taylor series approximations, which we shall do in Section

12, we need to define by recursion natural munber powers and factorials:
Recursive Definition 3.

(1) «! =z,

(2) N(n) = 2™t = g7
Recursive Definition 4.

(1) 1'=1,
(2) (n+ 1)t =nl(n+1).

13
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While the max and 3= axiows schenias ave each an infinite collection of axiois,
one for eacli terin 7, the power and factorial axioms are particular formulas, where
z is a variable, so that " Lias two variables, £ and n and n! one variable. Thus, we
could have terms with min substituted for = or n. We could also add other terms
defined by open internal induction.

4. AXIOMS FOR INFINITESIMALS

We add the new predicate Inf with the intended interpretation of Inf(x) being ‘z
is an infinitesilal’, that is, iu this case 2 should be interpreted as a number which
satislies Jz| < r, for any positive real munber r. As we mentioned before, Inf is not
internal.

I1. Inf(z)Anf(y) — Inf(z +y).

= ~—

I2. Inf(z) A (luf(=) — 0= 1) = luf(xy).

K~y

I13. (x<0Va>0)Alul(e)— (Inf( L ) —0=1).

&

I4. Inf(e) Ayl < ] — Inf(y).

Is. luf(—l-)/\(luf(—l-)——ot)z1)——»lnf( ).
€ Yy Tty
1 1 1

I16. (Inf(=) = 0=1)A(Inf(~) - 0=1) > (Inf(——) = 0=1).
T Yy c+y

I7. (Inf(y) = 0=1)AInf(x) — |z < |yl
I8. ((Inflx) > 0=1)—>0=1)— Inf(z).
If we take @ — 0 = 1 as =, thie last axiom may be expressed by
= Inf(z) — Inf(x),

which is a special case of the logical law == — ¢, that is classically valid, but
that cannot be proved in our positive logic.

19, Inf(z)Vv (Iuf(z)— 0=1).
This axiom may be expressed using negation by:
Inf(a) v = Il (),

and, thus, it is a special case of the law of excluded middle, whicli is also classically
valid, but not provable in our systen.
We introduce a constant v with the axionm:

I 10. Inf(1/r0) A N(wo)-

We define eo = 1/1g. Then, it is clear that we can prove Inf(eg). Also, since we
liave that vy > 0, we get that ¢y > 0. We introduce =, which means ‘approximately
equal’, as a defined notion:

Definition 4.1. = =y « Inf(J= — y|).

14
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The symbol ~ is not internal.  We also introduce the following exXpressions as
definitions:

1
Definition 4.2. z =~ oc « Inf(;) ANz > 0.

The expression = = oo, which is not internal, can be read ‘z is positive infinite’.
We now can introduce external induction:

N 9 (External Induction). Let ¢ be an open formula, not necessarily internal.
Then:
From

(1) cp(ll ), and
(2) (5 0= 0=1)Agp(n) = pln+1),
mnfer

1
(;zo_»o:l).“p(n).

Definition 4.3. a Sy oy 2 v oo <yVinf(z-—y).
1

Definition 4.4. 2 < oo~ (Iuf(=) - 0=1)vz <0.
x

The expression = < oo, which is not internal, can be read ‘z: is not positive infinite’,
that is, ‘z is nonnegative finite or negative’,

Definition 4.5. z > y o (Inf(z —y) =2 0=1)Az > y..

The expression & > y, which is also not iuternal, can be read ‘z is strictly greater
than y’.

Thus, ‘z is infinite’, is expressed in symbols || = oo, ‘z is finite’, i.e., not infinite,
in symbols |z] < oo, and ‘z is noninfinitesimal’, in symbols || > 0.

The following proposition is a reformulation of some of the axioms, using the
delined notions.

Proposition 4.1.
(1) Inf(m) -z,
2) e~ 0A |yl € 0o — ay = 0.
(3) .L~0—«) je] <« co.
(8 lel & o0 A 0 = s + 5] < o0
5)

m|m>OAl(thSML
() (Jel >»>0—=0=1) =20,
) Jz| > 0vae 0.
(9) Inf(0).
We notice that (9) is proved from I 4 and gy > 0. We also have the following
easy proposition:

Proposition 4.2.

(1) z=y—ax=~y.

2 zmy—y=uzm
rxyhyxz—oar=:.
( YAy

15
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TRy ANx Ry > ap F =ty
&€ 1
u:zy/\|zl>>()—->rz%.
rRzANyxRzANZ §~'¢L§g/——>'ll.zz.
120 —o0=1 or, sanply, 1 > 0.

(9) =0 —=1-x20.
(10) || < oo = |z + 1, lv — 1] K o0
(11) || = 00 — |z + 1], Jr — 1| = 00

We introduce relative approximate equality by definition:

Definition 4.6. x =z (y) < .
Y

@ |

We note that if |y} < oo, then =z (y) nnplies « =~ z

The notion of relative approxinate equality is especially useful when y = 0.
Division of a number by an iufinitesimal, makes the munber much larger. Thus,
w s (y) expresses the [act that @ and z are infinitely close, even when divided
by u. Por iustance, €0 = e, but we don’t have g9 = €2 (eo). On the other hand,
we do have e2 = el (o).

All the parts of the previous propositions that make sense and some new oties
are true with relative approxinmate equality. For instance:

Proposition 4.3. Let u <0 o7« > 0. Then

(z=y—z=y (u).

(2) ey (u)—y=z (u).

Ny (WAy=z (u)y—oac=:z ().

M) sy my (WAm=y (u)—w +m=yt+yr (w)
(5) =y (u)A(z <<()V;>>())—+i?z:—(j- ().

6y e~z (WAy=mz (u)Ax<wo _<; 1y —umz (u)

(N e~z (WAl < yl—w=z (y)

We also need:

Proposition 4.4.
eSyNhe>y—0=1

Proof. Suppose & < y and z > y. Then, by the defiuitions, = < y or Inf(z - y)
and 2z 2 yA(Inf(z —y) = 0=1). If & <y, sihce x 2 y, we obtain z = y, and then
Inf(x —y). Since the other case is Inf(z —y), we liave in any case, Inf(x —y). From
Inf(x —y) - 0=1weaobtain 0=1. [

5. (REOMETRIC SUBDIVISIONS AND RULE FOR DERIVATIVES

We introdice the constant fuction symbol I for the identity function, and, for
each constant tern 7, the constant function symbol Cy, for the constant function
with value 7.

FU 1. (&) ==

FU 2. C,(x) =7, where T 15 ¢ constant term.

16
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We usually write just 7 instead of C,.
We introduce informally, to make the paper more readable, function schemas
f(z), g(z), h(z) for terms. We abbreviate (f + g)(z) for flz}+ g(z), (fg)(z) for

f(z)g(x), i( ) for f(( )) and fog(x) for f{g(x)). We also write ,

(), 9) for fle+y) — f(z).

We write df(z) for df(z,e0). We write dz for d1(x), where I is the identity
function. That is, dx = dI(x) = I(z + €¢) — I(x) = €5. Becanse of the many
traditional controversies about the notation die, we remark thiat here d is an operator
mapping a function f that has as domain rmd range a subset of the extended set
of real numbers to a new function df with the same domain but with the range
a set of infinitesimals. (We have used intuitive set theory, which lies outside our
system as formulated here, to give a description in familiar language.} So in the
notation dz or d1(x), for which dx is an abbreviation, z is a free variable, and we
may replace it by any numerical term. The standard notation dz for differentials
dominated the calculus during the 17th and 18th centuries. Derivatives were made
basic only in the 19th century by Cauchy.

It is very easy to compute dilferentials. For instance, if f(z) = z?, then

df (x,dx) = (@ + d=)? = 2° = 2z dx + da?.
(We write, as is usual, dz? for (di)?.) Thus
df (@, dx) = 2z de  (dx).

We have the following identities for differentials, which can be proved purely
algebraically.

Proposition 5.1.

(1) d(f £ g)(eyy) = df ey y) £ dy(ae, y).
(2) dif - 9)y) = [+ y) dg(a, y) + glx) df (2, y)
f(e)dg(z,y) + g(z + y) df (z,y).

f gle) df(w,y) = f(x) dy(z, y)
(3) d(=)(r,y) = :
g g +y)g(z)

We need to introduce derivatives and integrals at least for all elementary func-
tions. One of the problenis is that we cannot prove that the functions defined as
inverses of other functions (such as the exponential) are defined on all munbers.
The most we can prove is that for any number there is an approximately equal
number where the function is defined. We must, then, complicate the definition
of the derivative to allow for this possibility. In order to have the transcenden-
tal functions defined on the right domains, we use, in Section 12, Taylor series.
Compared to the systemn in [G], in the present context an additional complication
arises, since we cannot use existential quantifiers or negations. Thus, we have to
obtain constructively the necessary approximations. In order to avoid unnecessary
complications, we shall simplify the definition of integrals and obtain the integrals
of some of the transcendental functions after being defined via Taylor series. So we

17
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only need to complicate the definition of derivative, precisely for obtaining Taylor
series.

The domnain of inverse functions is the range of a function (for instance, in the
case of the exponential, its domain is the range of the logarithm). Terms, however,
are defined everywhere. So, a function in our system is determined by two terms,
say T and o, where min does not occur: the argument is a value o(u), for a certain u,
and the value is 7(o(w)). 1f a fimction f is represented by a pair of terms 7, & in this
fashion, and x is the variable for the argument of the function, we sometimes write
flzx) instead of 7(x) and faon for o. It is clear, that in case o(u) is I(w), then the
domain contains all real nunbers. We allow 7 and @ to have other variables besides
2 and w, but « may not occur in 7 and x may not occur in o. The derivative of f
will, then, be associated with the pair of terms which constitute f. If f corresponds
to 7, then the term 7(x), will be denoted just by f(x) and o(y), by faom(y).

The expression = € I, where I is au interval, iay be used as an abbreviation for
the appropriate inequalities. Fov instance, if 1 = [a,b] then = € I means a < @ < b,
and if T = (a,b) then « € I stands for « < @ < b, We shall always assume that
the endpoints of J are « and b. We also use informally the subset, mtersection and
union notation. For instance, |a, b] € ¢, where ¢ is a forinula, is an abbreviation of
the formula = € [a,b] — ¢(x).

The expression o is monotone(x,y) on the mterval I, is au abbreviation of the
formula

(,yelnhe<y—o(z)<a(y)V(inye€lhe<y— a(z) > a(y).

The expression o s o, —Lepschitz(x,y) on the interval I, where or is a term, stands
for the formula

sy € INae =y — |a(x)—aly)] <op(e,b) e -yl

In general, on defining an expression such as Lipschitz, we shall display the
viriables used in the definition. However, when using the notion, we shall omit the
variables, in order to make the paper more readable. 1t is understood that when
several of these expressions ocaw in a theorem, the variables are all distinct.

The delinitious that follow are very technical so that we shall give informal ex-
planations which may not be free-variable. We shall use thic following abbreviation.

Definition 5.1. We say that f ¢s a function(x,y) on the interval I, if the following
conditions are satisfied:

(1) fBl(”‘» l')l, |./‘B'2(u') b)l K oo and I C [fdmn(fﬂl (“‘a b)) fllmn(fB'Z((": b))]

(2) The term faon is monotone(x, y) and Jr-Lipschitz on

[fd«,un(./‘Bl ((L, ]’)7 fdmn(fB‘Z (U', b))]
(3) €,y € [./hum(./-Bl(“a I)), f(lom(fB‘Z(“w h))] A f(lom(.’lf) [~ f([u,“(:l/) — Y

So we see that a function f involves five tens: f itsell, faow, fo, fp1 and
fpa. Also, the assertion of f is a fuction(er,y) on [a,b]" is the assertion of an
open formula with free variables @, g, «, and b, so it can be used as a premise
for a rule. Iu [6], we only needed two terius and a formula, since we could use
existential quantifiers. We shall also use the expressious g, b for functions in the
sense introduced above.
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FIGURE 1. Selector

The function f is, then, defined on the range of fy,,. As an example, that we
shall discuss in more detail in Section 12, we take the exponential. We shall define
the exponential by

exp(e) =y~ y=logz.

The function log = exp,,,, is monotone and log -Lipschitz, where log;(a,b) =
1/a + 1. The function exp is defined only ou the range of log. The functions fB1
and fpy select finite points ay = fyi(a,b) and by = Spa(a,b) where f is delined,
and such that [fyom(a1), faom(b1)] 2 [a,b]. For the case of exp, we may define
eXppy as follows: Let n = li(b/log2). Then expgy(a,b) = 2" It is clear that
log 2™ = nlog2 > b. We can also prove that n is finite, if b is finite. The function
eXpp; can be defined similarly.

We require the function fgom to be Lipschitz continuous so that for every « €
[a, b] and every € one can find y where f is defined (i.e., in the range of fyom) such
that |z —y| < e. We shall use this property in order to define the selector, later on.

Definition 5.2. Let v be an infinite uatural number, du = (b — a)/v and v =
a+ idu. So the u,, for 0 < i < v, form a partition of the interval [a, b], what we
call the geometric subdivision of [a,b] of order v. We always assume that a and b
are {inite and v is inlinite.

Notice that a geometric subdivision is determined by three numbers: the end-
points of the interval, g, b, and the infinite natural number . So when we use the
variable u for a geometric subdivision, we are formally using three variables.

Our concept of geometric subdivision is closely related to ideas that began to be
developed in medieval times as far back as the 14th century by Nicole Oresme and
others. In the 15th century Nicholas of Cusa defined the infinitely small as that
which cannot be made smaller. The early important and influential work was that
of Cavalieri [4] in the first half of the 17th century on the geometry of indivisibles —
or, as we would tend to say, geometry of infinitesimals. His geometric indivisibles
were lines for plane surfaces and planes for solids, and building on his predecessors
like Galileo, his teacher, he developed, in anticipation of the calculus, effective
methods of calculation of areas and volumes. Our terin geometric subdivision is
deliberately chosen to recognize the listorical point that infinitesimals were first
used to solve problems in geometry.
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Definition 5.3. Let f be a function on [a, b} and u the geometric subdivision of
[a, b] of order v & 00. So ug = a and w, = b. We define the selector v for f and u
on [a,b]. (The selector v, which is & term with a natural number variable, is such
that f is defined on v; (i.e, v; = faom(¥), for a certain y) and v; € [q,us + 1,
for 0 < i < v —1.) Assume that fyom is increasing. The construction for faom
decreasing is similar.

Let a; = fsi(a,b), by = fea(a,b) and M = fr(aby). (See Figure 1.) We
first find a geometric subdivision v’ such that faom(vit1) — faom(vj) < du. This
subdivision v’ can be defined by v; = a1+j du/M . If we take vy = li(M(b;—a;)/du)
and d = v, = ¢y + vy du/M, then, by Axiom N 8, thie natural number vy >
M (b; — a1)/du, and, hence

M(b—-a)du

> a —_— = .
dza+ du M by

So that [faom(@1), faom(d)] 2 [a,b] and v' is the geometric subdivision of [aq, d] of
order vy. So vy = ay and v, = d.

For every 4 such that a < u; < b, we shall construct s(1) such that f,k,,,,(v;(i)) €
[y, wig1] and take v; = fd(,m(v;(t)), for) <1 <w—1. Wedeline s(z) = ming, _ /)>u,-
(In Figure 1, we have s(0) = 2, s(1) = 4, s(2) =6, s(3) = 8,'s(4) = 10, and so on.)

Since

. fdom("—’,l/,) = faem(d) 2 Jaom(h1) 2 b 2w,
for 0 <i<w—1,by Axiom N 7, v, = fuam(vg()) 2w and Jaom (V- 1) <ui We
have that
v =y Ly — frlmn(U;U)_-l)
= f(.lc:m(v;(i)) - fdcnn('l’;(i))_l)
< Mvg;y = V-1l
du

<M—
‘AM

=du = ujy; — U
Hence, v; € [ui,ui+1]. Thus, we have achieved what was needed.

However, the min terins should be avoided in the definition of s(7), in order to
be able to use open induction. We redefine s(z) as follows, when fgom is increasing
(for fyom decreasing, the definition is similar):

U\—l
P , , . , )
(1) = E 81 (faom (V) = wi)ba(ui = Jaom(v5-1)).
3=0
We now prove that the two delinitions of s(z) yield the same number. We have
that if, for a fixed i, we put I u;s' the old s(i), i.e, nh, = 1““}14.5;‘40,,..(1:;), then
Uir1 2 faom(Vh) > wi and fiom(vh_;) < ui. Hence, &(faom(vh) — wi) = 1 and
82(ui — faom(vh_y) = 1. On the other hand, we have the following cases:
Case 1: 7 < . Then "’.Ii < vy -1 and, since fgom i$ increasing, fd(,,,,(v.;) <
faom(v),_1) < w; and, hence, bl(fdc,m(w_’,) — ;)= 0.
Case 2: 7 > h. Then 1:}‘1 > v, Since faom Is lcreasing, faom(v)_1) 2

faom{vn) = w; and, hence, dy(u; — fdc,m(v.;_l) = ().
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Thus, by Proposition 3.6

Vl—l

Z 51(fdom(v_;') = ui)by(u; — fdc-m(v_;'—l)j =h= I“inu.-sjdom(v,") = s(1).
Jj=0

Therefore, the selector v can be defined without min.

We now introduce the derivative: For a pair of terms, T(x,z1,...,2,) and
o(¥,¥1,---,Ym), Where the variables are as displayed, and a variable z, we in-
troduce the n + m + 1 operation (70),. If 7 is written as the function f (x), we
write f'(xx) for the term (70 ). (21, ..., ®0, Y1y .., Yy 21, . - Sy Zp).

We can now introduce the definition of the derivative f of f as a rule:

Calculus Rule 1. From
(1) f is @ function on I, |ul, |b} < 0o, and
(2) 5:'1= faom(z1) Az +y = Jaom (1) AInf(y) A (y < OVy > 0)Aw, z+ye ]l —
f(ﬁyy) ~ g(ilf),
Y
infer
z3 € I A3 = faom(z4) — f'(23) = g(z3).

If the premises of the rule are satisfied, we shall say informally that g is a
derivative of f. Notice that if h(xx) =~ g(x) on [ and g is a derivative of fon I, then
so is h, from the transitivity of .

We have two different developments of integrals, a more algebraic developnment
in Section 8, which does not use Recursive Definition N 2 of sums, and another,
based on sums, in Section 11. We postpone the corresponding axioms for those
sections.

6. DIFFERENTIALS AND DERIVATIVES

We introchuce the assertions that a himetion f s ‘ditferentiable’ and ‘contimions’,
using the notion of function of Definition 6.1. This assertions are an open formulas:

Definition 6.1. (1) Wesay that the function f on I is differentiable(y, xy, y,, 3, y2)
at x, if and only if f is a function(wq, y2) on I and
€= faom(T1)AL+y = Jaom(y1) MI(y)A(y <OVy > 0)Ax, z+y €] —
df (x,y)

If'(x)] < o0 A —71 ~ f'(e).

(2) We say that f is differentiable(z,y,xy,y1,22,y2) on the interval I, if and
only if f is a function{zy, y5) on I and

Inf(y)A(y <OVy > 0)Az, z+y € IAT = faomlz1)Ax+y = faom(y1) —

df (x
e < oon LM 5y

(3) Similarly, f is continuwous(z,y,xy, y1,x3,y2) on the interval I if and only if
fis a function(wg, yg) on I and

T, y€lNw= fdmn(-""I) ANy = frlcun(;‘ll) Aoxy— f(;") =~ f(y)
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Thus, these statements can be used as premises or conclusions of rule-like theo-
rems. We indicate all the variables in the statements, which in the case of the last
two are the numerical variables a, b, =, y, 21, y1, ©3 and ys.

The next theorem says that a differentiable function is continuous.

Theorem 6.1. From [ is differentiable on I wnfer f is continuous on I.
Proof Assume t =z, t = faom(t1), z = fd(,m(él). Hence, since f'(t) is finite
flz)—fO)=df(t,z=t) = f'(t) - (z —t) = 0.
a
Theorem 6.2. From

(1) f is a function on the interval I,
(2) f is differentiable on I and
(3) z €I — |f'(x)] < gla,b), where gla,b) s finate,
infer f is (g(a,b) + 1)-Lepschitz contrnuous on I.
Proof. Let z, y € I, = = y. Then
|f(=) = f(y)] ,
—_— ()]
|~y
Thus _
|f{z) = fy)l
lz =yl
Thus, |f(z) = f(¥)] < g(e,b)lz—y|. O
We can prove the following inference rules for derivatives using Propositions 4.3
and 5.1 afid Theorem 6.1.

<|f'(=)]+1 < gla,b) + 1.

Theorem 6.3. From f and g are dfferentiable on I, and faam(21) = gaom (1)
nfer
(1) f 4+ g is differentiable on I and ©3 € I Ny = faom(x3) — (f + g)(x2) =
f'(@2) + g'(x2).
(2) With the additional hypothesis that ©y € I A @y = faom(2) — [f(z1)] K
o0 A |g{zy)| € 0o, we have that f - g is differentiable on I and

z3 € I Aas = fuom(za) = (f - 9)'(w3) = flwa) - ¢'(23) + g(wa) - f'(z3).
(3) Wz:th the additional hypotheses €1 € I Ay = faam(wz) — |f(z1)] K 00 A
l9(z1)| € 00 and x3 € I Aiwg = faam(wg) = 0 K lg(x3)] < o0, infer = 4s

g

differentiable on I, and

' I
Ts € I ANxg = .f(l(nn(-’”G) - ((_l

) (s)

Q

A similar theorem is true for differentiability at .
We can prove the chain rule, which is also an inference rule:

Theorem 6.4 (Chain rule). From g(x) = faom(x1), © = gaom(w2), and f s
differentiable at g(x) and g 15 differentiable at «x, wfer f o g s differentiable at

and (f o g)'(x) = f'(g(x))y (=)
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Proof. Assume the hypotheses of the theorem, and let Inf(y). Then

lg(a
(g('lf, y) ~ gl(w)

*

Le., dg(z,y) = ¢'(z) + €y, where ¢; ~ 0. Hence, since ¢’(z) is fimite, by Theorem
6.1, Inf(dg(z,y)). Therefore, if dg(zx,y) > 0 or dg(x,y) < 0

df(g(x), dg(=,y)) _ .,
(z.) =~ f'(g9(x)).

Thus, in any case, df(g(), dg(z,y)) = ['(g(2))dy(x, y) + eady(x,y) where e ~ 0.
But, by the definition of composition

df o g(z,y) = fl9(z +y)) - f(g()).
On the other hand, g(z + y) = g(x) + dg(zx, y). Hence,
df o g(z,y) = fly(x) + dy(x,y)) - f(g(x)) = df (g(z), dg(z, y)).
From these equations, we get the conclusion of the theorem. [J
Theorem 6.5. From f is differentiable on I, and
t€lAx = Jaom(wq) — 'fl('v)' < 9(a, b)
with |g(a, b)] < 0o infer

Inf(y2) Az, +y2 € T Aty = faam(t3) Ay + ¥ = faom(y3) —
[df (:e2, ¥2)| < (g(a, b) + 1)|ya.

This theorem asserts: Let f be a differentiable function with a finitely bounded
derivative on an interval I. Then f is Lipschitz continuous on I with fL =g, that
is, for a finite M = g(a,b) + 1 such that ife 2 0, and x € I ’

[[ () = f()] £ Mle].
Proof. Let g(a,b) = N, and let y ~ 0, y < 0 or y > 0. Then

[ty = )| e

'————/———— ~ ()
<N
<N+ 1L

The case y = 0 is obvious. [
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7. THEOREMS ON CONTINUOUS FUNCTIONS

In order to make more readable axioms, theorems and definitions, we use, as we
have been doing, t, u, and v, for terms when their main variables refer to natural

numbers: We write u,, instead of u(n).

We will need the notions of geometric subdivisions and selectors defined in Def-
initions 5.2 and 5.3.

We notice that all the theorems of this section are derived rules of inference. We
state them explicitly as rules to mauke this clear.

We have the following proposition:

Proposition 7.1. From f 4s continuous on [a,b], u is the geometric subdivision of
order v of |a,b], and v is the selector for u and f on [a,b], infer

a<T<bAZL= faom(xa) Av =00 — f(z)= f(Ming, >z)-

Proof Let n = min,, >z. We have, b =u, > z. Hence, by Axiom N 7, u,, 2 «, and
0 <n<v. If z=a then, since vg = a, f(x) = f(vo). So assume that = > a; then
wy > a = ug. Also, n =0 — w, = ug, and, hence, n=0—0=1. Then,n-120
is a natural nmber. 4

Suppose that u,_; > x. Then, by Axiom N 7, n < n — 1, and so, 0 = 1. Thus,
Un—1 >z — 0 = 1, and, hence, u,—; < z. Since u,_) = upn, We have that v, =~ z,
and, hence, v,, = u, ~ . Since f is continuous, we obtain the theorem. O

We have the approxiniate Iutenuediate Value Theorem:

Theorem 7.2 (IVT). From f is continuous on [a,b], u is the geometric subdiv-
sion of order v of [a,b], and v 1s the selector for w and f on |a,b], nfer

flug) 0L fluy)Av = o0 — f(vmi"/(uk)zo) ~ 0.

Proof. Let n = miny(, >0 We have f(v,) >0, and thus, by Axiom N 7, f(v,) >0
and 0 < n < v. Suppose that n = 0, and, hence, w,, = a. Then, we have f(vg) <0
and f(vg) > 0, and, thus, f(ve) = 0. Suppose, now, that n > 0. Then n -1 2> 0.
Suppose that f(vp—~1) > 0. Then, by Axiom N 7, n—1 > n, and so 0 = 1. Therefore,
flvn-1) €0 < f(vy). Since [ is continuous and v,,_y = vy, flon-1) = f(uy). Thus,
flun) = 0. O

We say that f(z) is a near mazmmum(y,xy,yy) for f on [q,b] if and only if
T = faom(x1) and

. a <y <hAy = faomlyr) = Jly) S JG).

Theorem 7.3. From f is contmuous on |a,b], w s the geometric subdmwnsion of
order v of [a,b], and v is the selector for w and f on [a,b], infer

aLx<bAr=oo— flx) 5 ./v("'mux/(ok)(u))-

This theoremn says that a maxinnun on a selector of a geoinetric subdivision is a
near maximum of f. There is a similar statement for minima.

Proof. Let n = maX (3 (). Then, flu,) > fla,), for all 0 <4 < v By Proposi-
tion 7.1, f(x) = f(wg), for @ == il >, 50 that (@) = f(u) € f(w). O
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We have the following theorem on local maximna, which is, in fact, an approximate
version of Rolle’s theorem. 1f w is the geometric subdivision of order v of [a, b] and
v is the selector for f and u on {a, b, we write du = u;4; — u; and dv; = Vip1 — U4

Theorem 7.4 (Rolle). From u is the geometric subdivision of order v of [a,b], v
the selector for [ and w on [u,b], faom(T) = gdom(Z) and n = maXys(y, ) (¥), wmfer if
0<n<rmo,
df (v, dvy) = g(vn) dvy,  (doy,)
and
df (oyy —duy, _ ) = g(o,) (=duy,y)  (=doy,_ )

then
glvy) = 0.

Proof. We have dv,,, dv,_; > 0, and v, + dv,, = Upyy and v, — doy_y = v, _;.

Then .
f(z,vn + d‘—"u) - f(v") <0
du, -
and
fley —du,—y) — f(vy,) > 0
—dv,_q -
But

Sflon + duy) ~ S (o)
‘du,

Thus, g{vn,) = 0. O

From Rolle’s theorem we derive an approximate version of the Mean Value The-
orem: ‘

f("’n - ‘l'Un-—l) - f(U").

—(l’U“_l

=~ g(v,) =

Theorem 7.5 (MVT). From b —a > 0, u is the geometric subdivision of order
v of [a,b], v the selector for f and w on [a,b)],, v = oo, f is differentiable on (a,b),
and

<z SbAT = faom(t) = W) = (v, —vo)(f () = f(wo)) = (& —=vo)(f(vy) = f(v0)),

wnfer
flvw) = f(vo) ~ (e, )
oy — 10 ~ ("nmx,,(‘,k)(u) .

Since, by Axiom I 1, any derivative of f is approximately equal to f/, the Mean
Value Theorem is true for any derivative. Although for any derivative, we only have
this approximate form of the Mean Value Theorem, if Sdom is the identity function,
given an interval [q, b], one can always define a derivative g of f such that

T(b) = f(a)

b—a

(*)

It is enough to define

= .(/(umnx,(.,k) (’/))'

I(b) — f(a)

g(z) = f') + (——

— S (i, (1))
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The function g is also a derivative of f, because

f(0) — f(a)

— _ f/(u"mxh(uh)(ll)) ~ (.
For most applications, (*) is suflicient.

Proof. We have h(vg) = h(v,) = 0. Assume, first, that b —a > 0. Let n =
maxp(y,)(»). Then

di(vy, dvy) = (b= a)f'(va) = (£(b) = f(a))dvn  (dun),
and
AV, =dvn—1) = (b= @) f'(vn) = (F(b) = f(@))(=dvn—1) (=dvn-1).
We can apply Rolle’s theoremn to h and obtain
((vy = vo)f'(vn) = (f(v,) = Flv)) = 0.
Since b —a > 0 and v, — vy = b — ¢, we obtain the result. [

Definition 7.1. We say that the lunction f is nearly ncreasing(x, y, €1, y1, w2, y2)
(decreasing(x,y, 1, Y1, T2, y2)) on the interval I if and only if f is a function(z, ya)
on I and

€,y € INe= faom(x1) Ay = faom(mn) A Sy — flx) S (2)f(y).
As corollaries of MVT, we obtain:
Corollary 7.6. From f s contumuous on |a, b}, differentiable on (a,b), and
< <b— ['x) 20,
(f'(x) £0), infer f is nearly mercasing (decreasing) on [a,b].
Proof. Let x, y € |a,b], 0 <y, andd y — @ > 0. Let w be the geometric subdivision
of order vy of [, y], v the sclector for [ and « on |x, y] and
h(t) = (vuy —vo)(f(t) = flvo)) = (t = vo)(f(vig) — f(v0)),

for t = faom{t1). By MVT, Theoremn 7.5

FW) = T () 2 TPy )9 = ) 20,

Thus, we have proved the conclusion for the case y > .
On the other hand, if & = y, since [ is coutinmous, f(x) = f(y), and, hence,
flx) < f(y). Thus, the corollary follows, also in the casc z = y. O

Corollary 7.7. From f is differentiable on the interval I, and y € I Ay =
faom(y1) = f'(y) = 0, infer

€,z € INT = faom{€1) A 2 = faom(2z1) — flz) = f(2).
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Proof. Consider the constant function Cg, such that Co(z) = 0 (Axiom FU 2).
Then, we have that Cg is a derivative of f on 1. Let w be the geometric subdivision
of [a, b] of order 1o, v the selector for f and u on [q,b] and

Mz) = (vo — vo)(f(x) = f(vo)) = (& = vo)(F(vy) = f(v0)).
By MVT, Theorem 7.5 ‘
£(@) = 1(2) = Colvmanneuy, (40)) (s = 2) =
(]

We shall need the next theorem for defining inverse funetions.

Definition 7.2. We say that a function [ is strictly mereasing(ie, y, €1, Y1, 22, y2)
(decreasing(w, y, €1, y1, 2, y2)) on [a,b] if and only if
(1) fis a function(zy,y;) on o, b},
(2) 2, y € [ab], 2 <y, @ = fsom(®2), ¥ = fuom(ya) implies f(z) < f(y)
(f(z) > f(y)), and
(3) =, y € [a, b,z €y, » = faom(ez), vy = Jaom{ye) implies fz) < f(y)
(f(z) > fy)).
Theorem 7.8. From
(1) f is a function on [a,b] with faum the identity function,
(2) —o K a<bk o,
(3) f s differentiable on (a,b),
4) z € a,b] = |f(z)] < o0,
( ) [ is continuous on |a, b), and
(6) z € (a,b) = f'(x) > 0 (= € (a,b) — f'(z) K V),
infer
[ is strictly increasing (strctly decreasing) on [a, b).
With the additional hypothesis

Y1 € [a,0] = (y1 = g(e1) = x1 = f(y1))
infer
T3 R g ANxg = f(ys) Awa = f(ya) Ay, ya € [a,b] — g(iea) = g(z4),

and

. . de s, 2 1
ys = flos) Auws € [, 0] Az = 0Ays + 2= [(21) Az € [a, b] — I(i )z 7w
z 5

The last two conclusions of the theorem say that the inverse of f restricted to
[a,b] in its domain is continuous and differentiable. We cannot prove, however,
that the domain of the inverse of a function whose domain is an interval is also an
interval. By the Intermediate Value Theorem, 7.2, we can only pmve that for every
c in the interval between f(a) and f(b) we can construct an z =~ ¢ such that the
inverse is defined at .
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P.oof. We have to consider two cases. First, let ¢, y € [« b] with ¢ < y. It s clear
thit y —z < co. By the Mean Value Theorem, .5, one can construct z bet.wveen x
and y such that
Jly) = f(z)
y—x
Since 0 € y — o < 00, ve obtain
fly) = f@)y= f'(z)y -=)>0.
Second, assume tha z <y with & = y. Then
S () = f(=) -
s ).
Yy — &T

=~ f'(z »0.

if (y) - £(.) <0, th
[(y) = J(x)
Yy —=.r
ar 1, then, /'(x) S 0. nce we lave f'(@) > 0, by Propos ion 4.4, we obtain 0 = 1.
Ti us, we have f(y) < (x) — 0 = 1. Hence, by Axiom IF 3 and other field axioms,
Fi) > flx)
We now obtain the derivative of the inverse function g. Let y + z = f(u) and
z<0Vz>0 Then gly+z)=u=zx+v=gly) =z ndv <0Vv >0, by the

<)

]

first part of the theorem. Thus, v = 0 and y + 2z = f(x + v). Therefore
z y4+z2—y fle+v)— flx) ,
Z = = = f'(x),
: . f'(x)

ie., since f/(x) >0 (- fl@)K0)

This is equivalent to

]

We define by recursion the nth derivative, using the definition of derivative,
Caleulus Rule 1, and write it f0. Thus, we take f(O(z) = f(z), and assuming f)
to be defined and differentiable, we define f*+19 = f (") Recall that differentiable
means that f’ exists and is finite.

We say that f(*) is an nth order derwatiwe(m, Y, L1, Y1) on I if and only if

1<m<n— Infly) Aly<OVy>0)Az, v+y€ IANT = foom(z1) A

£+ Y= faom(y) — /O (0)] € oo A YD y) = fU () y (),
" Theorem 7.9 (Taylor). From

(1) f is a functior on {a,b),

(2) n <K o0,
(3) @ S Ty S bA £ = f(lnln("':'l) - I.f(:"‘l)l K o,
(4) fOtD) 4s an ot Lth order derwatiwe of [ on{a,b], and FUtD) 4s continuous

on |a,b],

28



INFINITESIMAL ANALYSIS

1ScSdLb(ora<d<e<h) and e = faun(er), d = Saom(dy).

# < b= ple) = J(OHS(e) (=) 1 () (rme)2h o L0 () (o),
3 SbAx3 = foam{wg) = flag) = (F3)+Rnc($3) and

the geometric subdimsion of order v of [c, d] (or of |d, ), v = o0, and
18 the selector for w and [ on |, d] (or |d, c]) -

£
< g 8¢
c‘:’,-l/\l/\l

1
<
IRU,C(d)I ~ (n+ l)'

‘The proof is similar to the one appearing in {14].

If(n+l)('”max”(.,h)[(u))l Id - Cln+l‘

Proof. Let I = [a,b] and ¢ = lf(““)(vm“x”(‘w(,,))l Then e is a quasi-maximum

or quasi-minimum of f(»+1), Suppaose that it is & quasi-inaximum; the proof for a
quasi-minimum is similar. Assume, first, that d > ¢, and define

1 " 1 N
9(z) = (n__*_l)‘!f’(x"“ ) "+ pl) = fla) m e(x — )" — Ry ().

We have that e is a near maxinnun of f*+1 because FOD s continuous. We
have 0 = g(c) = g'(c) = - - = ¢(™)(¢), and

(n—H)(m) =g - f("+l)($) > 0.
Then, by Corollary 7.6, ¢ is nearly increasing, and, hence, ¢("(z ) 2 0 when

x > c. But g(®"D(c) = 0, and, hence, ¢~ () 2 0. By external induction we
prove g*)(z) > 0if k < n. Hem.e, g(d) 2 0, and thus

1 - n+1l
|R,, . )[<—-—:—l.ﬁ(:[.:,——(‘| .
Suppose now that d < c. Tuke :
) — e arf oy 1 - b . 1 o nu+1
II,(.I,) = f(l) — ])(.l,) —_ m( (.l. -~ (') : I(,,_(.(J-) m(‘(l C) .

Then, repeating the same argument with h instead of g, we obtain the result for
d<e 0O

8. ALGEBRAIC DEVELOPMENT OF THE INTEGRAL

We have two alternative developments of the integral. The first, which we call
algebraic, is contained in this section, and the second, in Section 11. In Sections
8-11 we assuine that our functions f have fyun the identity function I, so that we
do not need to mention fyoy,. We could make the exposition more general, but it
is not necessary for our purposes.

We need the following two rules for the indefinite integral. For each term
9(z, 1, ..., z,), we introduce the term ([ g(x)de)(x, xy,...,%,), where the vari-
ables are as displayed.
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INT 1. For each canstant term C, we have the follounng rule: Let I be an interval.

Then from
Inf(myAz,z+yel —=lg(z)| Ko Adf(z,y) =g(z)y (¥)

and g s continuous on | infer

rel— (/ g(:n)d:r:) (z)= f(x)+ C.

We write ([ g(x)da)(r) instead of the more nsual notation [ g(x) dr to stress
the fact that [ g(x)der is a functional term.

We conld let the term € not he constant but also passibly contain variables dif-
ferent from x. However, in this ease we would have to introduce rather complicated
rules of substitution.

INT 2. From f ws contimuous ow the wterval I, infer [ f(x) dx is differentiable on
the interval I and

r €] — (/ fieyda) (x) = flx).

We acdd the following definition of the definite integral:

d -
INT 3. / g = (/g(nr)(l:n)((l) - (/{:/(:n)(l:n)(c)k

With these axioms, we ean develop the transcendental filnetions as in Section
12. 3
We shall prove in Section 14 that the addition of these axioms is a conservative
extension of the system in [6], so that the finitary consistency proof is still valid.

Building on the theory of integration of elementary functions, which began at
least with Lionville and has been developed by Ritt, [17], Risch, [16], Davenport,
[8]. and others we will develop the free-variable theory of integration begun here in
A separate paper.

9. OVERFLOW AND I'NDERTOW
In this section we prove the nonstandard principles of overflow and undertow,

Theorem 9.1 (Undertow). Let ;2 he an internal formula where neither min nor
N occur. Then

(e Ap L) — 2(p)) = ming) € .
The conclusion savs that min_g, is finite. -
Proof. Let m = mingg,. and assmne that & = 0, i.e., that m is infinite. Then,
m = 1 is also infinite. We have, +(v). ane, thns, by Axiom N 7, ¢(m) and m < v,
Hence, m =1 < 1 and, since m=1 = x. gtm~1}. Thus, by Axiom N7, m < m=1,
and, thus, 0 = 1. That is, we have proved that

—_— - =],
m

which is the definition of m € x. O
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In order to make more understandable the following and other statements, we
introduce the maximum of a hyperlinite set:

Definition 9.1. Max,(v) = v — milly(y - pyak<u(¥).

We have:
Proposition 9.2. p(m)Am < v — (p(Maxyy () Am < Maxgiy (v) < v).

Proof. Suppose p(m) and m < v. Then, we have (v~ (v—m)) and v —m < v. By
Axiom N 7, (v —ming,_gyar<, ) and ming, _gyak<y < ¥—m. Thus, p(Max k) (v)
and Max,) 2 m. O

Theorem 9.3 (Overflow). Let ¢ be an anternal formula where neither min nor
N occur. Then

((m<n<Koo— p(n)) Avaoo)— Max (k) (V) = o0.

The conclusion of the rule says that the maximum 75 such that w(p), for all
m < p <7, is infinite.
Proof. Suppose that (m < n < oo = @(n). Let = Maxpry (1), and asste that
po is finite. Then p+ 1 is also finite and g+ 1 > p > m. Thus, we have wlp+ 1)
and p+ 1 < v. Hence, by Proposition 9.2, j¢ > jo + 1, and so 0 = 1. Therefore, by
Axiom I 8, p is infinite. O

We prove by overllow:
Proposition 9.4. From

1
n Koo — x| < —,
n

infer z = 0.

C 1
Proof. By overflow, we have that, = Maxy,j> (2 (0) is infinite. Hence, |z| < ~ =
> y
0. 0O
10. HYPERFINITE SUMS

Most of the theorems of this section, i a somewhat different form, are proved
in [6].

We begin with the theorems on approximately equal infinite sums. The contents
of the rest of this section is influenced by [15]. As earlier, we use u, v, t, for terins
and write u,, for u(n), where n is meant to be a natural number.

In order to simplify the notation, we write a sum of the form

v

D witvp by b oy,

i=1
just as 37 | t,, including the finitely many terms with ordinary addition in the >
term. Strictly speaking, this may not be possible, since the terms v; may contain
min. We shall be careful, however, that the operator min occurs ouly in finitely
many terms of the suni. The theorems of this and the next section, should be
understood with X-terns interpreted in this way.

We need the following leinma:
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Lemma 10.1. [From
(HD1<i<r—uy=\,
(2) 1<isv—=t; >0 and
B l1<isv—-mmuts (L)

infer
v 14
Y wimn O n).
=1 i=]
In particular, we have
v v
Z’lt,‘[,’ = () (Zt,)
i=l i=1
Therefore, from the same hypotheses we can infer
14 v v
Zti Koo — Z v = () and Zui t; = 0.
i=1 =1 i==]

Proof. Let n be finite. Then, since

we have

for 1 < v. Thus

Since Y_i_, ti is positive aud n is finite and arbitrary, by Proposition 9.4

v 14
Swmo O n).
i=1 =1
The last conclusion is clear from the definitions of approximate equality and
relative approximate equality. O

-~

The theorem behind the theoreins for integrals is:

Theorem 10.2. From
(1) 1 €i<v= || <M, where M s funle,
2)1 <i<v—=t; >U0AL =0,
B)1<isv—owtimv (4),
(4) st < oo,

infer

v

14
E u,-!,-zi ;.
i=1

i=1
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Proof. We have

14 174
Zu,- til < Z I'(L,;I t;
=1

i=1
<M it;
=1

so that Z:.;l u; ty or any partial sumn is linite.
We shall prove the approximate equation (note that the meaning of the condition
u; 2> 0 in the swn is given in Delinition 3.1)

v v

*) Sun Y wt
i= =1
u; 20 u; >0

Similarly, it can be shown that

v v
E v = E (R
=1 i=1
ui<0 u; <0

and, since, by Proposition 3.5

v v 14
v = Z v; + Z V4
=1 ui.“_él() ui.-=<10
and
v v v
Zu,- 1; = Z (TR P Z wi Ly,
=1 ui.<=210 u‘..‘=<10

we obtain the conclusion of the theorem.
We now prove the approximate equation (*).
Consider, for m a natural number

v
_;. Uui.
i=1
us21l/m

. . . Vi
Assume that m is a finite natural nunber. For 1 <i < v and u; > 1/m, t—’ = uy.

1
. vy . P
Since u; > 1/m, u; > 0. Then, —— = 1, and so, since w; ¢; is finite

Ui by

1 1
uiti(l — =) <o <wuity(l+ =),
n n

33



P SUPPES AND R, CHUAQUI

if nis finite, 1 <1 < v, and w; 2 1/m. Thus

1 1% Iz l v
(1--) E i by, < E r, < (14 =) E u; ts.
n n’ 4
1=} 11 i=]
u,>1/m w2 1/m u,21/m
Thus .
5w
=1
] w,>1/m 1
1 - = S Y3 .<_ l + )
n mn
Z Wy (,’
1=1
u, 21/ m
and, hence, by Proposition 9.4
[24
2. "™
1=}
w2l m
~ 1
2wl
[EN
u, 2 1/m
v
But Y wt; is finite. Therefore
1=
u 21/
i v
_->_ 0, = § uq tiy
=1 1=
wg2 s w2t/ m
and, thus
v 124
Zm = Z "y = Z wi b ~ 0,
1= 1=
w,>1/m w, 21/ m
is true if m is finite. We liave, then
, |
e S T

1

if m is finite. Hence, by overtlow, Theorem 9.3, we can define an n = oo such that

v 14
E vy R E w; t; -
=1 i=1
w;21/n u, 21/

We have 0 < w; < 1/y implies that «; = 0. Hence, by Lenuna 10.1

v 124
E ut; =0 and E v; ~ 0.
i=1 il
0<u,<1/y U<, <1/
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Thus, we have, by Proposition 3.5

4 v

1

i=] 1= t=
u, 20 uw21/n 0<u; <1/

~ E v,

=1
w21/

1%

~ E wity

i=1
u21/n

v v
= E w;t; + E u;t;
i=] i==]
wi2l/n U<, <1/n
v

Z wi t;

i=1

1wy 20

i

O

We need an abbreviation that will be useful for the introdnction of integrals in
the next section. Let d < « < ¢ < b, v a uatural nunber, du = (b — d)/v and
u; = d+idu, i.e., u is the geometric subdivision of order v of td,b]. We abbreviate

v

ZZ Fld, b, v = Z S(ui) du.

1=
aSui, Uiy <c

We also abbreviate, for any =z, ., = MMy, >, ji, = Mihy, >z =1. Then

e
C
S Sldobyv| = E flu;)du.
a
1=ty
The next theorem gives an approximate form of a version for sums of one of the
fundamental theorems of calculus.

Corollary 10.3. From

(1) f and F are functions defined on the finite nterval [a, b,

(2) w is a geometric subdiwscon of lu, ¢} of order v, with v ~ oo, where ¢ > b

and ¢ — a s finite,
(3) f is finite on [a,b], and
I (i, dug ,
(@) 0<i<y— Wludu) ),
du,-

infer

b
D Jla e vl = F(h) - Fla).
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Proof. 'The proof is obtained from Theorem 10.2 and the fact that by internal
induction one can prove, if jo, < imm < gy, that

rw—1
Z dF (i, du;) = Fun,) = Fluy, ).
1=J1,
Thus
Fb) = Fla) & 1) = Flna)
(U3
) Z J(u;)de
1=,
b
= Z Jla, e, v
()

We also have thie following usetnl lemii, which immplies an approxiiate version
for sws of the sccond form of the Fundamental Theorem, which we give below.
Lemma 10.4. from

M) 1<ty >u~.xand
lcisv—=t>0,
mfer
Lwi— ]
i ,
21.::1 i

Proof. We have, u, = @+ 0; with v; = 0 for 2 = 1, ..., v. Then

v
s w, b
~

~ .

v 14 v v
i=1 i=1 i=1 i=1
By Lennna 100
Z;Id’ [h f,
Sty

Lwr=1

= (.
o
Corollary 10.5. From f s a finste contmuous functen on the interval [z, z + y]

anith y = 0, and uw is @ geometrie subdivesion of ovder v of la,b] with a <z, T+y < b
and b — a finite such that 1’-;‘- =0, mfer

E-;"” fl(l.. ’)7 ’/]
2 Jlabovl

Y

f(x),

and

r+y g £
AT (00 B Sl U2 PR

Y
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Proof. The secoud conclusion is obtained as follows. Let j = ji,. We have that z €
lug, wjer]. By the asswnption defy = 0, it is clear that « < uj K S ujp) < Tty
We then have

L+ £ F o)
Za v Sl o) = Z Sl o) = Z: Jf['u.,'u] + f(u;) du.
We have
Z dug F (uj+ 1) =a) (e +y—up)=y.

i={
U Uy ) <TT Y

Let p =g

Lty

Hence, by Leunua 10.4

> Jw) du, + fu) (e — o)+ f(@) e+ y = up)
J‘,<u,,l:|:_4;(:<‘l'-+~.l/ ' ~ j(;(,)
Y

Now

i: Jlw) da A+ f(u;)(u, vy — )+ fl@) (@ +y = up)
Z_:ﬂJ flu, o] + fluj)du . .x~<u,,1fj_(: <r+y +

Yy Yy
) =) JL) g = )
" Y '

Since dufy = 0 and f is linite
G+ y =)

Slug) (e — uy) ~0 A .

Y y

The first conclusion is obtained similarly. O
L1, DEFINITE INTEGRALS

We now introduce the delinite iutegral. The development in this section is com-
pletely independent of Section 8.

Since we are restricting functions f Lo those with fio,, the identity, the axiom
introduced here is simpler than the one disenssed in [6]. We conld use the sane
axiom as in [6], but, since we do not need it, we use ouly the simpler form.

For each terin 7(x, 2y, ..., x,), where the variables are displayed, we introduce
the n+ 2-ary operation symbol [ 7., which is called the integral of T uith respect to
w. Ifthe term 7z, xq, ..., @) is written f(i), we write /y~ filov [1e(ay, .. oy, 2).
Calculus Rule 2. From e < h < ¢, |o] € o0, ¢ < d, |d| € o0, v, i infinite,

d—a d--a

sen ¥ VR sy
(1) S fla,d, v ~ Sy flacd,

c—bh c—0h

@ Sa Sl vl 4 g flaydovl 550 flacd,v]

e=0b c—b

, and

ifer
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¢ — /(: ! . Z;, f[”w“»"l]

N———— ) — =
e =) c—1b c—0b

(a) eSSl KLovA = , and

L+ lif gt

c—b c=b

(b)

As usual, we assiine that all terins, unless explicitly excepted, do not coutain
min. We now prove that if f is continuous and b — « is f{inite, then the definition of
the integral gives what we need:

Theorem 11.1. From w us the geometric subdivision of |a, €] of order v such that
ﬁ =~ 0, and [ is continwous and finite on [a,b), « <b < c < e laf, [e] K oo and
v = 00, nfer

f;,c ! ~ S5 fla, e, v

(1) e A 0 and
foi+ It LT
(2) = :
c—-1b c—b

Proof. We must prove that if « is the geometric subdivision of [a, €] of order v, v,
oforder jo, v = o0 = g1, € 2 ¢ > b 2 a, and «, b, ¢ and ¢ are linite, then

Zb flaye v} + 35 flase,v] 320 fla, e, v)
(1) < - o =t , and
c—h c—bh
oy 2odleev) 30 flae ]
(2) = )
c—-b c—-h
If ¢ = b = 0, then the result is inunediately obtained from Corollary 10.5. So
assuine that ¢ > b, We must prove

b - " '
(1) Za Teve, v] + Zb Tl v) = Z Fla, ¢, v], and
(2) ZZ Sla, e v) = Z; Ty e p.

Since ¢ = b % 0, we from these results we obtain the premises (1) and (2) of
the integrals Axiom 2. ‘The result (1) is easy to see, so we prove (2): Let t be
the geometric subdivision of |u, €] of order vy, Then dt/du = 0. We also have,
= w;41. Hence, by Corollary 10.5

tjo, —1 = Wi and t,—‘u'“

+1
. S )t
du =
Then, by Theorem 10.2
. o [, .
Z flo,e,vp) = Z Z f(t;)dt } la,e, v = Zf[u, e, v).
b b \J=pu, -1 b

Similarly, we prove

Z ST, eovp) = Z Tla e,
b b
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and, hence

Zj'[tL, €, v~ Zf[u,c,/t],
b b

and thus by Calenlus Rule 2 we obtain (1) and (2) of the theoremn. 3
We can prove the usual theorems on integrals in a approxiiate forin.

Corollary 11.2. From f ws continuous on the finite interval I and a, b, andce I,

a <c<b, mfer
b c 17}
/fz/f+/ 3
(3 a c

This 1s an iminediate corollary of Theorem 11.1 (2). ‘

We now prove in approximnate forn the two Fundamental Theorems of Calculus.
Theorem 11.3 (Fundamental Theorem 1). From
dI*{(x,y)

y

where a and b are finite and b — > 0, and f is continuous on la, b}, infer

-0

J = (b)) — I(a).

WAy >0Vy <) Aw, wq yel— ~ [(x),

«a

Proof. Suppose that ¢ and b are finite and let u be a geometric subdivision of fu, cf
of order vy ~ oo with ¢ > b and ¢ — « finite. Then, by Theorem 11.1 and Theorem
10.3, since b — ¢ is noninfinitesimal

b b
/ f= Zf(u,;)(lu ~ F(b) - Fl(a).

a

Theorem 11.4 (Fundamental Theorem 2). From f s a continuous functron
on the finate anterval [ oand o € 1 mifer

L= 1
Wf(y ) Ay >0Vy <Az, x+yel — et x f(x).

Proof. Assime that y =0, 2, 24 y € [ and y > 0. The case y < 0 is done similarly.
Let u be the geometric subdivision of {a, b O [,z + y] of order v with v ~ co.
Then, by Theorem 11.2
ffﬂl = /,,T ! - Z:+y Sla, b,y
y Y '

and, by Corollary 10.5

Tty p 9
————-—Z"’ 'f/l”" b = f(x).
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We now prove a theorem due to Keisler, [10], which we shall use in one of the
applications.

Theorem 11.5 (Infinite sum theorem). Let W and h be terms. From

() Ifagzs<y<z< b, where a, b are fuute, then Wz, z) = W(z,y) +
Wy, z). (This can be paraphrased as ‘W is additive’.)
(2) Ifz,z+yel, Inf(y), y>0, then

Wiz, z+y) =)y ()
(3) I is a continuous function on [, 0],

infer
b
Wi(a,b) = / h.
Proof. We prove by internal induction on v

b—a

-1
LV(a,b)=ZVV(a+i-b—Eﬁ,u.+(i+1) ).

=0
Take v = vy = oo and let a; = a + i(b — a)/vp and dz = (b—a)/vo = 0. We have
W (ai, a; + de) = h(a;) de  (dx).

Thien, by Theorem 10.2

v—1

W(a,b) &) has)de.

i=0

But, by Theorem 11.1

v—1 b
le((q)c‘kz:z/ h.

i=0

O
12. SERIES AND TRANSCENDENTAL FUNCTIONS

This section is also contained iu a modified form in [6]. We return to the notion
of functions f with arbitrary domainu functions Sfdom-
We first introduce convergence of sequences: u v-converges(pe) to z if and only if

NE<VApTOO U, BT,
and u is v-convergent(pe) if and only il
B VAPROO = Uy R Uy

Similarly, u is convergent(v, pu) il aud only if v = oo implies that u is v—convergent(p).
A series is just a sequence v such that

n
Uy = E Uj.
i=1

Then the series v-converges or converges when it v-converges as a sequence. We also
. n 5 . . . . n-
define, the series 31 u; v converges absolutely if and only if the series Y ., |ul
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v—couverges. We have the {ollowing easy proposition, which in both directions is a
rule:

Proposition 12.1. From the fact that the seres Y| u; v—-converges, infer that
. v o . .
the tads Y . wx; are infinddesemal for oll wnfinite p < v, and vice-versa.-

i=p

From this proposition, we derive the comparison test:

Theorem 12.2 (Comparison test). From v = 00, (n S VAR = 00) = |uy] <
fonl, and 300 |ui] v-converges, infer that S°%_ |u;| also v—converges
nl ’ 1=1 1 " './ ey BRI g g ,7_71 1 v - g 'J"'
Therefore, from the fact thatl the seres E,-.~1”f v-converges absolutely, infer
that it v—-converges.

Proof. We have that if g < v and p = 0, Z::“ |v;} = 0. Then
1 g
0< Z e, | < ZM ~ 0,
=14 2=

for pn < v, oo O
We ulso have:

- 1 . k13
Theorem 12.3 (Nelson, [13]). From v~ oo, 1 € 00 = |u;| K oo, and Yo |ui
v
v—converges, afer 37 |u,| < .
Proof. 377wy < Lis tene if ois aninfinite imanber. Then by undertow, ‘Theorem
9.1, the minimun n st be {inite. B3t

LTRSS

Z [} < (10— [)max(m).
|t

1=1

Hence

i m—1 v

Dbl = D dad 3

=1 ?1—1 LI

is finite. 3

In order to prove the ratio test for convergence, we need some theorems about
natural munbers.
From we prove by external induction:
1%

Proposition 12.4. If v ~ 00 and n € 0o, then — = co.
n

n . . .o TR .
Proof. We must prove that — = 0, il n is linite. This is easily done by external

I/ ht - bl . .
induction. The proof by internal induction requires Buclid’s algoritlin, which can
be proved by internal induction. 0O
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We assume that we have proved by internal induction (which is easily done):
r>0—-(y2xc—y" >z").
We also can give an easy internal inductive proof of the inequality

1
(1+=)>1+~,
n n

for n and v natural numbers.

Proposition 12.5. Ifr > 1 end v = 0, then ¥ = co. Therefore:
Ifr<l and v =00, thenr’ =

Proof Let n = li(1/(r — 1)). Then, by undertow, we show that n < co. We also
haver > 1 + % Thus

1 1%
o> <1+—> > 14 2 = oo.
I n

()
We prove by internal induction, as usual, for v > 0 and ¢ > 0
" . 1
: 1 -t
Z ar = (L——-]:——f
1i=0 !

Then, if v = oo, a is finite, and 0 < r < 1, the series Y ;_, ar' v—converges to

T Then, we can prove the ratio test:

Theorem 12.6 (Ratio test). Ffrom
(1) #f i s finate, u; > 0 s finite, and

Upt1

(2) if p is infinate, jo < v, then
w,,

xr<l,
. 14
nfer 3. ui v-converyes.

Proof. Let p =~ oo, u < v. Then

W]
—_— =)

Uy
1
<r+ - <K L
T
where 7 is a finite number. (We may define n = 1i(1/(1 —r)).)
Let s = 1+ L. Then, we have ’
Up+1 < Sy,

if ;¢ 1s infinite, g < v. Hence, by undertow, Theorem 9.1, the minimum nunber m
such that if m < p < v, then
u}H—l S S’U.p,

is finite. By internal induction we prove

U 4p < 'll.,,,Sp,
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. T . . V- .
for p < wv—mn. Since u,, is linite, the geometric series Zp-.(’;l wp P converges. Then,

=1

14
p=0 Umsp converges, and so 370wy converges. 0

by the comparison test, 3
From thie ratio test we can prove:
Proposition 12.7. [fs € | and v =~ oo, then vs¥ = ().
Proof. By the ratio test, the series 300 ns™ v-converges. The result is then ob-
tained from Proposition 12.1. O
We need a few theorems about series of functions, in our case of terms with a
variable, say .
Theorem 12.8. From

(1) w € I, where I ws a finute nterval, implies that the series Yo wi(x) v-
converyes, v = 00, und
(2) 1 <4< vamplies () s contmuons on 1,

fer that o < v implies that Ef;l w, (20} s continuwous on I.

Proof. Let w, y € 1, w = y. We prove by external induction, if » is fiuite

" - - 1

Zui(:l:) - Z u,(y)| < Z fu (x) =, (y)] < o

1={} 3 =) 7=
By overflow, Theorem 9.3, an infinite 4 < » can be coustructed such that if ge is
mfinite and g <y

" It
1
Wiy — gl < — = ().
D) = 3 wilw)| < -

1= 1=

[f ) =v > j, we are done. Assine that 4 < jo < . Then

" f 1y 1 0 n
— T
L w; () — Zui(y) < L 1w (@) — Z“"('{/) -+ Z wi(x) — Z ui{y)
i=0 1=0 p=1) p==1) t=n+1 i=n+1
1 T} i F7
< Z u, () — Z wly)| + Z wi()| + Z ui(y)
1:=() 1==l) r=n+1 i=n+1
2 ().

O

We assume that the definite integral has been exténded o lower limit o, and
upper limit b, both finite, with « > b, as it is usually done:

Definition 12.1.

(1) / f=u,
o _b

(2) a <bA|al, b € x — / f == f.
b

u

We necd a theorem about power series:
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Theorein 12.9. Let I = (—r,r), where r s firute. From the serics Z::;l TES
v—-converges absolutely on I, v = oo, infer
(1) The serees 3o ane' ™ and 37 (a/(1 + 1))x**! v-converge: absolutely
on any || K r.
(2) The series 3.\, a;* 15 differentiable and

n ! "
E az' | (r) = Z @iz,
1=1

i=1

ifn<vandlz| <.
n

a n
(3) /0 Zu.‘x‘ = Z - $1$i+l, fn<vand o] K r.

i=1 i=1
Proof. We first prove (1). Let jo & oo and let |o] € ¢ € r. (For || < r, we can
always construct such a ¢ as ¢ = |z} + &, where n = li(1/(r — |z|)); by undertow,
Theorem 9.1, we show that n is finite.) Then, by Proposition 12.7, ulz/c|* ~ 0.
Thus, since 1/z is finite

7[“_1 €t

gl = g

(o

» 1
= a,ct < la,
| | <l

Since the series 30| a;c* v—converges, by the comparison test we obtain (1). For
the other series in (1), the proof is similar.

Next, we prove (2). Let f.(x) = Y| a;z*. We claim that the series
. I(rty) 2 (e +y) -
ln €Ty = 'tl - = 'l"'_‘—y
dfu(e,y) ;u ” ‘;u "

v—converges if |o| « 7 and y is infinitesimal. Let g~ oco. We have

-1
(@ y)* — :,,-u! - s < 9 > N
ty——————— ! =, | T+ . U+, ]
! y nt J§=1: J+1 Yy

-1
- po—1 1 =i
= la, | juct Ly < . )—,——x“ Tyl
i/ /]§=1 7 TT1 y

lanlpulel? =1 + Japlillel + ly)

IA

The series 3", Jas|ifx] 1 and 320 | Ja,fi(le|+]u])*~! converge, since |x|, |z} +|y] <
r, so we obtain the claim.
We then prove by external induction, if nis finite
113

i: u ((r +l‘.‘/)i — ') - Zu.li:n""

i=1 Y 1=1

for y infinitesimal. By overtlow, Theorem 9.3, if n < 5y = o0

n "

ai(ce b y)t =t e
PRSI et

i=1 i=1
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Let pe S v. Uy 2 i, we are done. Suppase that e > 1. Then

!,

Zu (e + y) —LU“ < z’:u;(:l:l _Z"“

i=] L =1 i=1
1
a, (e :/) -t .
E E ;e
eyt l i=ytl
= (.

We finally prove (3). By the previous theoremn, we know that the series i airt
is continuous, so that the integral is well defined. Let r 3> ¢ > |u| be obtained as
above and let p <wv. Thenif ~c <t <c

A b I
E wt'l < E Jail'l < E lalet = E,,,.
i=m+] i=wmi+ ] r=mi+)

Let f(e) = 2:‘ lu.‘.':f"'. Thus

"

"Em S ’(') - Z“l < llm

=]

If 7 is tinite, we prove by external induction, integrating

a m
. ", 1
—EMUS/O f- E m:l:” < Ena.
=1

Then, if m is finite

7"

¢ 4 i+l 2 1
- @€ < |k, —
/(:f Zi-i—lr "'L|+m

By overflow, Fheorem 9.3, for an = ~x, 5 < g, which can be constructed

y 1
- ol E, -
,/ / T l‘ < 1B+ ]

FREN

Hence
But , -
I
«; .
",—l.'l,'l+1 ~ “,
i+1
y+1

because, by (1), the series is v—convergent. 0
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We can now define the main transcendental functions. We may use cither the al-
gebraic (Section 8) or the sum (Section 11) treatinent of integrals. for this purpose.
We first introduce the natural logarithin by the following axiom:

I
1
lo;.{:z::/ - dt.
2 L

We consider log as a function, take log,, () = 1{x), the identity function.  In
the usual way, we can obtain the main propertics of the logarithm for finite z in
approxiinate forin, in particular, log z™ =~ nlog:r, for ¢ and n finite.

By Theorem 114, if oo > @ > 0, then log' () = 1/x. Then, if we tuke any
interval [a, b}, with 0 €« < b K o0, log’ is bounded on the interval by 1/a, which
is finite. Thus, by Theorem 6.2, log is log; ~Lipschitz continuous on [a,b], where
log (a,b) = 1/a+ 1. Also, 1/z > 0, ifx > 0. Thus, by Theorem 7.8, log is
strictly increasing on noninfinitesimal finite numbers. Therefore, log can be fyom
for a function f. We now calculate logg, and logg,. Let a < b, finite, be given.
We have, from the definition of log, that log2 > 0. Let

l()gu2((’_, 1)) — Zli(b/ log 2)+1 )

Then b
loglog g, (a, b) = h(log2) +1llog2 2> Ton 2 log2 =b.

On the other hand, et

10231(0, I)) — 2—(!'\(—0/ log 2)+1).
We have

—{ -

i(—— o2 > = -
(h(log '2) +Dlog2 2 log 2 log 2 @
so that
loglogp, (a,b) = —(li(—=) + 1) log2 < a.
fog

We then define an “almost” exponential function:
nexp(e) = y o = = logy,

with aexpy,, = log. Using Theorein 7.8, we get that aexp is differentiable on the
finite numbers and we can calculate its derivative, aexp’(x) = aexp(z), for finite z.
Thus aexp is increasing.

In a similar way, we define the arctan:

I l
arctane = ——dt.
“Jo 1+ 2

As above, we consider arctan as a function, with arctangen () = I{(x). We take m =
4arctanl. As for the logarithm, by Theorem 11.4, il |#] <« oo, then arctan’(z) =
1/(1 + z?). Thus, in any finite interval [q,b], arctan is arctang-Lipschitz on |[a, b},

with
1

arctang(a,b) = TT A = o £ 820l o5 ,
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Le.
s, if |a| < |b]
o2 - ?
arctatig (a, b) = 1 {I «
T otherwise.
-+ b

For the definition of arclanggy and avctangy we may use, for instance, the formula

x4y
arclaine -+ arctan y 2 arctan —
-y

so that, for any finite n, we obtain a forula of the form
narctaare = arctan f(n, ).
where f(n, ) is a rational fuuction of «. The fction f s defined recursively by

f(lLa)=ua
. N /'(n,,r)
I B B Ly
SUREY b f{m, )
We proceed similarly as for the fog i define aretan g, (q, h) = f(li(h/ arctan 2), 2)
and fpi{a,b) = =f{li{=a/ arctin 2), 2).
Thus, arctan can be Lacnn- Thus, we define the inverse, the alinost tangent:

g = alalr — 2= actany.

We extend this fmuction periodically by takimg atan(e +nr) = atan x. The dorain
function is atan,,, = arcta.

The definitions of the inverse functions {admost exponential and tangent) are
Justificd by Theorem 7.8. We minst use te sine theoreur for obtaining the deriva-
tives. Witk the definitions introduced here, the proofs of the approximate form of
the algebraic properties of these fnctions are the nsual ones,

We cannol prove, however, that the inverse huetions, 1o the almost exponet-
tial and tangent, lave the vight domains, e, all finite ianbers for the alimost
exponential aud the finite munbers different from (2n+ 1)7 /2, Tor the alinost ta-
gent. The most one can do, for the ahnost exponential for instance, is to prove that
for any finite number w, there is a y = in its domain (see remark after Theorem
7.8), whicli is probably sullicient for most theoretical physics. In order to obtain
functions defined everywhere, we use Taylor series approximations.

As an example, we take the series for aexp. We observe that, by the ratio test,
if & is finite, the series

" -
d =
i=0 Z!
converges. Since log1 = 0, we have that il = 0, 2 € dom aexp, aexp(a) = 1. We
then prove, by external indsiction, that il & = n 4 1 and y = n, where nis a lnite
natural munber and =, 4 € dow aexp, then aexp(ax) ~ aexp(y) aexp(l), and aexp(x)
is finite. By Taylor’s Theorem 7.9, if 1 is finite

nH

o — 1 aexp(lep) et 1
aexp(a) — L T < .__(.,"_}_IM)'__ 1 ~.
i==0

By overflow, Theorem 9.3, the same is troe if 1+ < vy for acertain infinite v,
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Let ;e =~ oo and let m — 1 = li(k > 2|x]). Then m is finite and, by Axiom N 8,
m > 2|z|. Hence |z|/n < 1/2, for n 2 m. We have

e rlm |y . m 9..|m
N o A B D W . i

! m m+1lm+2 p T ml2e-m T ml 2w

Therefore, we have proved that if p is infinite, p < v

1 i

z
aexp(z) = E -
=0 1
Since the series Y ' 1:,— is convergent, we have that this is true if g is infinite.
We now define tlie expouential function:

Vo i

x
expr=¢e* = E —.
1!

i=0

Let z be finite. Let [a, b] be a finite interval such that z € (a,b) and let u be the
geometric subdivision of {«,b] of order vg and v the selector for « and log on [a,b].
Let n = ming, >;. Theny = v, = logv,,. Thus, y =« and y is in the domain of
aexp. Hence, by Theorem 12.8

Yo i
e’ = E =

¢ 1!

i=U

By the definition of aexp

Q2

v 1/‘-
> R aexp(y).

1=0

aexp(y) = z =y =logz.

Hence, if €* = zj, then y =~ @ and acxp(y) = 2. Let aexp(y) = v, = z. Then
s~z and y = logz = logz;. Thus, 2 = logz;. On the other hand, if z = log 2
and y = logz;, then by the Taylor approximation of aexp, 2 = aexp(y) = €*.
Hence, we have proved, if x is finite

" xmzymrrlogz.

In the case of the trigonometric functions, it seems simpler to define first an
almost sine an almost cosine by thie fornulas:
2atan

asineg = ————5—+
1 4 atan

1 - atan?
) 1 4 atan? =
with their domains the same as the domain of the atan. We then use Taylor series

to give a definition of sin and cos on all finite munbers. The procedure is similar
to that described above for the exponential function.

acos L =

o ecly VIR
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=Y

FIGURE 2. Catenary
13. EXAMPLES OF DERIVATIONS OF DIFFERENTIAL EQUATIONS AND INTEGRALS

To substantiate the claim that the foundatious we have developed are adequate

for much of the mathematics used in theoretical Physics, we consider briefly in this
section two aspects of ordinary ditferential equations and integrals: their derivation
and their solution. This application to differential cquiattions and integrals is possible
and just as easy in system [6]. We could have include this section almost verbatim
in |6].
Derivations. Physicists aud engineers ordinarily nse differentials without apology
or explanation in a direct fashion in deriving o differentiad cquation from physical
assumptions. Alinost without exception no Lmiting arguiments are used, as would
be required to make the derivations vigorous without use of infinitesimals.

On the othier hand, by using iufinitesinials the derivations can be both rigorous
and confori to Jongstanding patterns of inference nsed in science. Moreover, un-
abashed use of differentinls which will often eliminate any need for derivatives, is
usually algebraically simpler. Derivatives are ratios and to carry out complicated
manipulations with ratios can be awkward, as is well exemplified in ancient Greek
geoetry. .

We do not offer here a general theory of derivations, but illustrate the points
Just made by redoing in modified form the derivation of a few differential equations
and integrals.

13.1. Equation of the catenary. The catenary is the curve of a uniforim cable
on rope suspended at two ends, witl ends possibly at different elevations.
Let
A =point (x,y) -
B =poiut (« + dv,y + dy)
T =tension of the cable at point A
ds =infinitesimal length of curve ADB
wds =weight of AB
0 =angle of the tangent at A,
We shall use the following couvention: when saying that a variable v is a function
of anothier variable z, we shall assuine that y = fl«), and dy = df(z, dz), for
de =~ 0, de > 0 or de < 0. We also assume, for any g, dg(y) = dg(y,dy) =
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dg(f(x), df(z,dx)) = g(f{x + dz)) = g(f(x)). In the case of this example, we
assume that variables (in particular, y, T, s, and 8) are functions of wx.
We also assume the relation

1) dy = tanfde  (dr).

The cable is in horizontal equilibrium, so that
(2) T cos = (T + dT') cos(0 + d0)
s0

(T cosf) =1,
i.e.
(3) H = T cos = constant = horizontal tension.

The cable is in vertical equilibrinim, so the vertical forces must balance

(4) Tsiné + wds = (T + dT)sin(0 + d6).
Dividing (4) by (2) and rearranging, we get
wds
tdl’l(o + d()) - ttlllg —m
_wds
7]
by (3). But the left-hand side is just dtan 0, so we have
(5) dtanf = w;{ls
By (1)
(6) dy? ~ tan? 0 de?  (da?).

Also ds = /da? + dy? (dx), so
ds ~V/de? + tan? 0 da?  (dx)

~V 1+ tan?0de  (dr)
dtanf = l;—} V1+tan?0de  (dx),

Substituting in (5)

- dtand ~ —d (dz).

1+ tancéd H
The last approximate equation is true if @, @ + dr are positive. By the usual rules

of integration, we obtain that
iot—1 L w
sinh™* tanf = -I—{-:z + Ch,

i.e.
tand de = sinh(%x +Cy)de  (dz),
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and so, by (6) ‘
dy = Sillll(%;l: + ) dae (da)

Applying the rules for integration again, we obtain
I w
y= —cosli(=suw+ Cy) 1 Oy
4 w ( Vi i) ‘

13.2. Poisson process. As a sccond example of derivation of a dilferential equa-
tion, we take the Poisson process. Let X, t € (0,00) be a nounegative integer-
vihed random variable. Intuitively we think of Xy as acounting random variable,
s0 that the value of Xy is the munber of connting events that have oceurred in
the interval (¢, (]. Examples would be the nmnber of teleplhione calls or number of
decaying atoms {as mieasured by a Geiger counter or similar device).

We assime that X, = 0, and that the process is one of independent increments
and satisfies stationarity, but in deriving the basie differential equation of the pro-
cess we shadl not use these assinptions explicitly. The basic assumptions we do
use are these. I de > 0, dt = 0, then

(1) Pr(Xe,we = n)Xg =0~ 1) = Adt
and
(2) PUXtgue > n+ LN = n]) = A, dt <~ ((U)z,

where A, is an nnknown finite positive coeflicient, and v is a linite positive nun-
ber. The explicit use of infinitesitnals avoids the limiting arguments and perinits
the derivation to have an algebraic formn, of the sort much used in physics and
engineering, but now withont any apology for lack of rigor,
Most of the rest of the derivation is elementary probability but in an infinitesinal
setting. Let B, (1) = Pr(X, = n). We lirst deal with the case n = 0.
Pr(Xeppe = 0] = Pr[Xy = 0] = Pv([ Xy e > O X = 0]) Pr{X, = 0]
= PN 0 = PN N 0) PN, = ]
- l)l'([.'\.{ Cdt > l] I [.\’[ =z “I) l’l'[/\'t = “I
= PriNe = O)(1 = Ndt = A di)
Thus
Dot 4 dty = Polt)(1 = Xdt = Ay dt),
and so, by (2)
0t b dt) = Folty(1 = Aty < Mo dt <~ di?.
Dividing by dt
[0 b dty = Po(t)(1 = Adi)]
dt

< ydl =),
This is equivalent to

(3) Folt 4 dt) = Py(t)(1 = Ndt)  (dt),
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Suppose, now, that df > 0 and £ > o and 0 > 00 By the Lheorem on total
probability

Pr(Xepar = 1) = 3 Pr(Xppar = 2lXe = 1) Pr(Ne = )

1=0

= [)[(J\".*.(l‘ = 7ll1\’g = ”.) l’l‘(.’\’g = 7'.) - Adt l)l'(l\—t =1 - l)
nu-2
+ 3 Adt Pr(X, =)
i=0 .
n—-2
=(1— Adt — Z Md) Pr(Xe=n) 4+ AdtPr( X, =n—1)
i=0
02
+ ) AdePr(N, = 1)
1=0
Thus, we have
-2 n- 2
(4) Dt dt) = (1= Adt = Y NdO() 4 el -y () Do Adtl().
i=0 =0
Substituting ¢ by £ — dt in the above derivation, we get
n—:2 w2
(5) Pa(t) = (1= Adt— > Adt)Po(t —dt) + MLy oy (6 = dl) + }: At (L = dt)
i=0 i=0

The following are immediate consequence of the assuiptions.
(6) Aoidt < y(dt)?
for2<i1<n

(7) 0 ()<

wliere 7 is ant arbitrary tern.

(8) Do(te) =0, il 2 Land Ih(te) -~ 1.

We liave, by (4), il dt >0
w-2
Pt +dt) = Pult) 4 AP (0) = 15 (0) 4+ 30 Ndt (13(1) = 13,(1)).
e

By (7) and (8)
n=12
SN = Pu(0)] S (n = 2)ydt
=0

and the right side is an infinitesimal. Hence, we have proved for dt > 0

(9). Po(t A+ dt) = Fou(t) -+ AP o1 () = D)) dt - (dt)
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We also have, from (5), if dt'> 0
Fa(t) = Pa(t —dt) + Adt(Py_(t = dt) ~ Py (t - dt))

-2
+ Y Ndt(Pit = dt) = Pa(t = dt)),
. i=0

that is

P (t — dt) = Py(t) = (A(Pa=y(t — dt) — Pa(t —dt)) dt

n—2
+ D A(Pi(t = dt) — Py (t — dt) dt).
i=0
As above, by (7) and (8)
n—2
D NPt = dt) = Pu(t = dt))| € (n—2)y s,
1=0

where the right side is an inlinitesimal. So

Pa(t —dt) = Pu(t) = A(Pn-1(t —dt) — Pa(t —dt))dt (dt).
Let dt < 0. Changing dt by —dt in the formula above, we get
(10). FPo(t +dt) = P (t) 4 AMPuoy(t+ dt) — Pu(t +dt))dt  (dt)

We shall use, from now on, (9) and (10) instead of (4) and (5). Conditions (9)
and (10) give immediately the continuity, because, by (7),

A(Pacy(t+dt) — Po(t +dt)) dt < Adt

and
’\(Pﬂ—l(t) - Pn(t)) dt .<_ Adt.

So for any dt > 0 or dt <0
P.(t+dt) = P.(t).

Thus, from (10) for dt < 0
(11). Pu(t+dt) = P (t) + MPu-i(t) = Pult))dt  (dt)

Therefore, we just need (11) if dt < 0 or dt > 0.
By the definition of differentials, we have

dP,(t) = P,(t + dt) = P,(t).
Thus, from (10), if dt >0 or dt <0 .
AP (t) = A(Posy(t) = P (8)) dt (dt).

This is the differential equation in our form. For the given initial conditions may
be shown to have the solution

Pr(X, = n) = P, () m e~ 32"

n!
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13.3. Flux in a blood vessel. This is an example of o derivation of o delinite
integral. Posclle’s law for a Luninar Hhiid is
N AT I
o(r) = 4’,,‘(“ -r°),

where J¢ s the radins of the blood vessel, L, ibs lensth, P the ditlerence in pressure,
1 the viscosity of the blood, aud »(r), the velocity of the blood at distance » of
the center of the vessel. We set I = P/(dyL) and the formula becomes v(r) =
K(R? — #2). The problem is to caleulate the fhix of blood (volmme per nit time)
in the blood vessel. Lot Q(r, &) be the fux of blood in the vessel from adistanee »
of the center to a distance s of the center. Then, we want to caleulate Q(0, 1), It
is clear that we may assuine that Q is additive, that is

Q(ry 8) = Q(r, 1) 1 Q1 5),
for 0 <7 <t <s <R Thus, Condition (1) of the Infinite Sum Theorem 11.5 is
satisfied.

Let A(r, s) be the avea of the surface of the blood from distance 7 to s of the
center. I we take an infinitesimal increment dey then A(ry 1 -] dr) is approximately
the area of the annulus between r and » + dr, i.c. ‘

Alryr - dr) = w(r + dry? = vt (dr)

= 2 de | wdert (dr).

Since wdr? =0 (dr), we get
(1) Al r + i) = 2ardr (dr).
We Lave that v is decreasing on v, "Thius, on the interval [r, 7 + dr] the maximmnm
velocity is v(r) and the mininnuu is w(r 4 dr). The infinitesimal thix Q(r, r - dr)
satislies then
(2) w(r - dr) A(r, e - de) S QU | dr) o)A (1 dre).
rom the formmda for o, we get
v(r+dr)=v(r) = K(Q2rdr | di?,
and so
w(r -+ dr) A (e - dr) 2 e(e)A(r e Hdr) (dr).
Thus, by the itfinitesimal axiomns, (2) and (3)
. Qv+ dr) = o(r)A(r,r +dr)  (dr).
1lence, by (1)
Q(r,r -+ dr) = 2mrv(r)dr  (dr).
Since 2mru(r) is continuous on [0, 2], by the Infinite Sum Theorem 11.5

R
Q(0, 1t) z/ 2rre(r).
U
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Fraure 3.0 Dillraction phenomena

Iutegrating, we get
o ~

Al Rl

(0, It) = .
aty}

13.4. Fresnel integrals for diffraction phenomena. Dillvaction effects ob-
tained when the source of light or the ohserving sereen are at a finite distance
from the diffracting aperuure such as a sht are called Iresnel diffraction after the
great 19th century Frencly physicist. Now the wive front from a point source at
a finite distance is spherical, but in the case of a slit S whose length is very large
compared Lo its widtly, the envelope of the secondary waves is cylindrie, and the slijt
is the axis of the cylinder. Figure 3 shows the relative geometry of a cross-section
perpendicular to the long dimmension of the slit. We derive the Fresnel integrals in
this setup.

Let the point £ be as show in the figure, and let f(17) be the amplitnde of the
diffraction wave at P for time t. Cousider first the line SP intersecting the wave
front at s = 0. At a poiut s on the wave front wywy, the amplitude is rsin(2xt/T),
where r is the unknown constant amplitnde and 7' is the period of the wave.

The contribution at P from q infinitesimal element ds of the wave front at s = ()
is then

t /
(1) dfp(O0, 1) = rdssin 2r (j— - -{) = {ds)

where A is the wave length of the monochromatic wave. Now for an infinitesimal
element ds at a distaice s above s = 0 measiured along the wave front we have

{ l tbh-
(2) dfp(s,t) = rdssin 27 <—1— - (X) = rdssin 2w <-1— - —)%) (ds).

Expanding the sine tern, we oot
(3)
X . t h A t [} ) Y
dfp(s,t) = rsin2n (T - X) (:()s27r;’415 - reos2m (T - X)) :«'11127.';’(13 (ds).
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To ohtain the contribition of the wave front from 0 to s on Lhe wavelront we

ill(.l‘gl'ill.()l
t =~ in2m —-t ——b /S( Q-—‘I ‘71€
= rs 08 (l.S

t S
1) —rcos 2’ (-l— - -/{) /0 sil Z—,\”-')ds

To first approximation, for simall angles reflecting siall ~,

3 a2
(5) | y=d-10b 5

Now let

G . ah\
8§ == ————
(6) ¥ 20 -1- b) !

and so

/ abA
(7) (lb =~ m (lU.

rom (5) and (G), we have:

, 2m 2m a--b abN o, wu?
(8) 2T N T2ab 2(u + b) )

Substituting (7) and (8) into (4) we get

b t 1 v ? t v ?
fr(ty=r E(::—)_m [sin‘hr (1— - -i) /0 oS %(h: — cos2m (T - i) /0 sin n;r (lv}

The integrals
11 'ffl“) i ) Tf'l’2
cos ——dv  and sin ——dv
0 2 0 2

are known as the Fresuel integrals, aud play an important role in a range of diffrae-
tion problems.

Solutions. We cannot formulate or prove in our framework quite genceral existence
theoremns for ordinary differential equations, but most of the general solutions of
the well-known equations of classical physics cur be handied in the style foniliar
it physics and engineering. Most of the sohutions Lo such equations given in hand-
books like those of [1] or [21] can be reached by our methods because of the highly
constructive nature of the solutions. -
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14 CONSISTENCY

The system of axiomns of this paper are all true in the system of [G], and, thus,
the present system is also finitarily cousistent. Thus, we have

Theorem 14.1. The system of aroms, rules of mference (L 1-12, LI 1-2, LS,
F 1-31, N 1-§, FU 1-2, I 1-10, INT 1-2, Recursive Definitions 1-4, Calculus Rules
1, 2), and all defimations s finitarily consistent.

Proof. Most of the axioms arve ensy to verify as axioms or theorems of the system
in [6]. The only two that need a little more work are INT 1 and INT 2, for the
indefinite integral. For those rules, we pick a point ¢ in the interval I and put

/ Sl de = / r

Then INT 1 and 2 become theorems.
The finitary proof of consistency in [6] uses finite fraginents of the field of rational
numbers, which are similar to fragiments of a nonarchimedian field. [

If we cliange Axiom I 30 to 0 < } and omit Axiom I° 13, one can obtain an
absolute proof of consistency, i.e., the proof that there is a formula of the systemns
that cannot be derived fromt the axioms. Most of the theorems of this paper are
_ true in the reduced systen.

For the proof we use the one-element mocel with 0 = 1. In this model the
primitive concepts are given the following interpretation:

(1) the relation < is the empty relation,
(2) 04+0=0-0=0/0 =0 =0,
(3) AM(0) holds,
(4) any function variable f or coustant or tenn is interpreted by the function
{(0,0},
) miing =40, for any forimuda o,
6) li(r) = 0, for any term 7,
) max,(v) =0, for auy term 7 and any v,
) Inf(0) holds,
(0) €y = (), vy = U,
(10) f'(x) is the sune as f(x),
(11) [ f(x)dr is the same as f(x)
(12) [ff =0, for any function f and any «, b.
The various definitions and conditional definitions are also easily shown to be satis-
fied in this one-element model following the given interpretations for the primitive
concepts. Given this model as specified, it is seen at orce that the formula 0 < 1 is
not satisfied in the model, and therefore cannot be derived from the axioms, which
proves the absolite consistency of the system.
As we mentioned in Section 2 negation can be defined in our system by the
formula
e (= 0=1).

With negation so defined, we can derive the taw of reductio ad absurdum:

(f = ¥) = (p = ~9) — ¢,
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which, when added to Thilhert's positive propositional ealados constitntes o fornn-
Lation of the minimal propositional eatendus ol olinogoroy [EH] el Jolaneson 4]
Also, as Clineeh poiuts out [7, p. 142], the decision problem for this minimal calen-
Jus has o positive solution, which can be easily shown as an extension of classical
results of Centzen ned Wajsherg,

The derivation in ot system of the law of reduction ad abswrduwm is as follows:

(1) @— P'remise

(2) =Y Preise

(3) = (p—o0=1) Dol of nepation

(1) rennse

(H) ¥ Prennse

6y yw—-0=1 I, 4 M D

(7) 0=l 4,0 ML

(8) = 0 =1 1,7

(9) -y Dol of negation
(l()) (;,7‘ — "“l") — 0 2,00}
(1) (i ) = (o = =) = =) 1, 10 G

1L is obvious that the form of negation embodied i tie winmal propositional
calendus is much weaker than intuitionistic negation.

All axioms are also trie in nonstanedard inodels of anadysis, as b is casy Lo see.
Tliis, we hiave telative consistency with analysis (sce, forimstanee, (1o}, 12, Chapter

1}, or |5, Appenddix Al).
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Undecidability and Beyond
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Abstract

We discuss the structure of the recursively enumerable sets under three
reducibilities: Turing, truth-table and weak truth-table. Weak truth-table
reducibility requires that the questions asked of the oracle be effectively
bounded. Truth-table reducibility also demands such a bound on the the
length of the computations. We survey what is known about the alge-
braic structure and the complexity of the decision procedure for each of
the associated degree structures. Each of these structures is an upper
semilattice with least and greatest element. Typical algebraic questions
include the existence of infima, distributivity, embeddings of partial or-
derings or lattices and extension of embedding problems such as density.
We explain how the algebraic information is used to decide fragments of
the theories and then to prove their undecidability (and more). Finally,
we discuss some results and open problems concerning automorphisms,
definability and the complexity of the decision problems for these degree
structures.

In this paper we will discuss the structure of the recursively enumerable
sets, those that can be effectively enumerated, under various reducibilities. The
primary reducibility is that of Turing:

B <7 A = There is Turing machine ¢ which, when equipped with an oracle
for A, can compute (the characteristic function of) B, 4 = B.

(We refer the reader to Rogers [1967] or Odifreddi [1989)] for basic information
on recursion theory and any unexplained notation.)

This reducibility is the most general effective one and allows for computa-
tions potentially unbounded in both the amount of information they require

*This paper was given at both the Annual meeting of the ASL (Duke, 1992) in honor of
Joseph Shoenfield and the LASML (Bahia Blanca, 1992). The research was partially supported
by NSF Grants DMS-891279 and DMS-9204308 and ARO through MSI, Cornell University
DAAL-03-91-C-0027.
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of the oracle and the number of steps they take to converge. Indeed, for vari-
ous machines, oracles and inputs, ®4(z) may not converge at all. We wish to
consider two other reducibilities that restrict access to the oracle by imposing
recursive a priori bounds on the questions that can be asked, i.e. we specify
a recursive function f and require that the computation of B(z) from A via
Turing machine ® use only information about the initial segment of A of length
f(z). If this is the only restriction put on the reduction of A to B, the resulting
reducibility is called weak truth table, wtt, reducibility: B <u1t A.

Here too, there is no a priori bound on the length of the computation and
some computations ®4(z) may still diverge. 1f, in addition, we recursively
bound the length of the computations (and give some default output such as
0 if the computation has not converged within the specified time bound), or
equivalently require that ®A(z) converge for every .1 and z, then we get the
more familiar notion of truth table reducibility:

B <4 A = There is a recursive function h which for, every z, specifies a
truth table h(z) based on elements of size at most f(z) such that z € B iff A
satisfies the truth table given by h(z).

(Bounding the length of the computations in this way obviously implies
that they always converge. For the other direction of the equivalence (due to
Nerode) look at the tree of all possible computations for any set oracle. If the
computations with input z halt along every path (i.e. for every oracle) then, by
Kénig’s Lemma, the whole tree is finite. Thus we can recursively find a bound
on the length of all possible computations on inpi:* « for any oracle.)

Each of these reducibilities, r, induces, in th: usual way, an equivalence
relation on sets with equivalence classes given by deg . (4) = {B|A <, B & B <,
A}, the class of sets equicomputable (with respect (o r-reducibility) with A. The
induced partial ordering <, on the equivalence classes defines the associated
degree structure R,. These three partial orderings, Ry, Ry and Ry, share
several basic algebraic properties:

1. All of the structures are upper semi-lattices with least element 0 (the
degree of the recursive sets) and greatest element 1, the degree of the halting
problem, i.e. of the complete r.e. set

K = {(z, )| the z*" Turing machine, ®., halts on input y}.

2. Every countable partial ordering can be embedded in each structure and
so the three structures have the same decidable 3-Theory. (That is, there is an
effective procedure for determining which sentences in the language with just
ordering which consist of an initial string of existential qualifiers followed by a
quantifier free matrix are true in the structure: Any sentence in the language
of partial orderings of the form 3r,3z5...32,¥(zy, 22, ..., n) with ¥ quantifier
free is true in R, iff it is consistent with the theory of partial orderings, i.e.
there is a partial ordering of size at most n in which it is true. The truth of this
last assertion can clearly be determined effectively.)
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The three degree orderings, however, are very different once one goes up
even slightly in the complexity of the questions one is considering to either the
V3-Theories of the structures (sentences with one alternation of quantifiers, i.e.
of the form Yu1..Vym3z,y..32,¥(2y, ..., 25, 41, ...y¥m)) or even to the extension
of embedding problem (when, given two partial orderings X C Y, is it always
possible to find, for every embedding f of X into R, an extension g of f which
maps all of Y into R,). The archetypic example of such questions is whether
the structures are dense. In the first format, this is the question of the truth of
the sentence VzVydz(z < y m z < z < y)- In the second format, the question
is if, for every embedding of the partial order X with two elements z < y,
there is an extension to the partial order Y with three elements z <z<y.
The investigation of these sorts of problems has been a source a much of our
knowledge about the structures R,. .

Sacks [1964] answered this archetypic problem for Ry by proving that it is
dense. This prompted Shoenfield [1965] to conjecture that Rr might be dense
even as an usl with 0 and 1 (or as one might prefer to say now, saturated with
respect to finite sets of quantifier free formulas consistent with the theory of an
usl with least and greatest elements 0 and 1). As with Cantor’s theorem for
dense linear orderings, this conjecture would have implied, by the usual back
and forth argument, that Ry is a model of a theory of usl’s which has, up to
isomorphism, only one countable model. On general model theoretic grounds,
its theory, like that of dense linear orderings, would then be decidable.

The first counterexample to Shoenfield’s conjecture was the existence of
minimal pairs proven by Lachlan [1966] and Yates [1966]: There exist nonzero
r.e. T-degrees a and b such that there the only r.e. degree below both of them
18 0. (Thus the formula ¥(z) = (r<a&kz<b& z # 0), although consistent
with the theory has no realization in R7.) The constructions of Lachlan and
Yates began, in terms of both structural analysis and technology of proofs, the
long road to the proof of the undecidability of Ry :

Theorem (Harrington & Shelah [1982]): Ry is undecidable, i.e. there is no
recursive procedure for determining the truth of sentences (in the language with
<r) in Rr.

Proof Plan: Given a A§ (or, equivalently, recursive in K ) partial ordering
P = ({pi|i € w}, <), one constructs r.e. degrees a, a;, b, ¢ and d such that

1. {a;} is the set of maximal degrees x <7 a such that ¢ £r bvx.

2.pi<pia<r a;vd.

Note that any sentence true in some partial ordering is true in a A one by
an analysis of the standard Henkin completeness proof. Thus this construction
provides an interpretation of the theory of partial orderings in that of Ry. The
undecidability of the theory of partial orderings then gives the undecidability of
Rr. In fact, it suffices to code all finite partial orderings into a structure to show
that its theory is undecidable. The proof of this fact relies on the hereditary
undecidability of the theory of partial orderings. (A general exposition of these
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procedures for proving undecidability can be found in Ambos-Spies, Nies and
Shore [1992]).

The situation for Ry, is quit different. Indeed, Degtev 1973} and Marchen-
kov [1975] proved that there is a minimalr.e. tt-degree. The proof they provide,
however, is quite indirect and does not lend itself to the construction of other
initial segments of Ry;. A direct construction of such a degree was found by

Fejer and Shore [1989]. This construction was then extended to prove the un-
decidability of Ry :

Theorem (Haught & Shore {1990)): For every n € w, there are r. e. 1t degrees
a and b such that, in Ry, [a,b] (= {x]a < x < b}) 1s isomorphic to the lattice
of all equivalence relations on a set of n elements. Indeed, a and b can be
constructed so that {0} U [a,b] is an mitwal segment of Ry (or even of all the
ti-degrees).

Corollary (Haught & Shore [1990]): R, s undecidable.

At first glance, this approach to the undecidability of Ry, seems somewhat
ad hoc or forced. Why not prove that every finite lattice {(or at least some
reasonable collection of them) is isomorphic to an initial segment of Ry and
so get the undecidability of its theory. This after all was the route to the
undecidability of the theory of the r-degrees of all sets for many reducibilities
including Turing, tt and wtt. (See Lachlan [1968] for the distributive lattices and
Lerman [1971] for all finite ones and Nerode and Shore [1980] for transferring
the results to reducibilities other than Turing.) As it turns out, this is not
possible. Various restrictions on the initial segnients of Ry have been found
by Harrington and Haught [1993] including the {rllowing: Every finite initial
segment of Ry has a least nonzero element.

Now R lies between Ry and Ry, in many ways that defeat both types of
attempts at proving undecidability. Like Ry, Ry is dense and has minimal
pairs (the same proofs work), but Ry 1s much more homogeneous than Rr:

1. In R7 some degrees are branching (i.e. they are the infimum of two other
degrees) but not all; in Ry all degrees are branching. (See Lachlan [1966],
Yates [1966] and Ladner and Sasso [1975].)

2. In Ry some degrees b can be split over all lower degrees (i.e. for every
¢ < b there are by and by such that ¢ < bg,b; < b and bgVvb; = b) but not
all; in Ry every degree b splits over every ¢ < b. (See Sacks (1963], Lachlan
[1975] and Ladner and Sasso [1975).)

The most striking algebraic difference between the structures is that Ry is
distributive (as an usl): ‘

If agVaj > b, then (3b; < a;)(boVb; = b).

(See Lachlan [1972] and Stob [1983].) (To see that this corresponds to the
notion of distributivity in a lattice, suppose we actually had a lattice structure

64



and consider ¢ = (aoVa;)Ab. Distributivity would say that ¢ = (agAb)V(a; Ab).
Thus the required degrees would be by = (ao Ab) and by = (a; A 6).) On the
other hand, both basic nondistributi,ve lattices are embeddable (as lattices) in
Rr (Lachlan [1972)).

As Shoenfield pointed out to me in 1984, the proofs of undecidability of
Rr can not work for Ry The type of constructions used in the proofs for
R inherently produce unbounded Turing reductions. The problem is that
they are tree arguments at the level of 0’ which directly build the required
reductions in complicated ways. Moreover, as Stob [1983] also remarks, the
codings themselves are inherently nondistributive. (In a dense, distributive usl
there is no maximal z < a such that ¢ £z Vb, ie. for every z < a, and every b
and c withe < aVbbutc £ Vb, there is aysuchthat z <y <eandcg yve:
By hypothesis, zVb<aVvb=aVvbve; by density, dd(z Vb < d < aV b); by
distributivity, (3y < a)(y Vb = d); finally, as ¢ < d and ¢ £ d, we may take
YV z to be the required counterexample to maximality.)

There are really two problems: '

1. Find an “easier” proof that Ry is undecidable.

2. Prove that R, is undecidable.

Two years ago two answers to the first problem were found. Both had the same
basic plan as the Harrington & Shelah proof: Find a definition ®(z,d) from
parameters @ such that, for enough partial orderings P, there are degrees a and
d such that ({x v d|®(x,a)}, <r) =P : ‘

Slaman & Woodin [1994]: ®(x,a,b,c) = z is minimal < a such that ¢ <r
x V b; “enough” = all AJ.

Ambos-Spies & Shore [1993): ®(x, a, b) = z is maximal such that there is a
b with bAx = a; “enough” = all finite.

The second construction supplies a particularly simple proof that uses only
the branching and nonbranching degree constructions (as in Soare [1987, IX])
in a standard 0" priority argument. However, in the setting of the wtt-degrees,
the nontriviality of either of these definable sets also violates distributivity.

More recently, a quite different approach to the undecidability of R, has
been found:

Theorem (Ambos-Spies, Nies & Shore (1992]): Ry is undecidable.

Proof Plan: 1. (Ambos-Spies & Soare [1989]): There exists a uniformly r.e.
sequence of sets A; such that, in both Ry and Ry, their degrees a; are pairwise
minimal pairs but no one of them bounds a minimal pair.

2. The ideals Z of r.e. wtt-degrees with a uniformly r.e. (or equivalently a
£9) sequence of representatives are precisely those with exact pairs x and y,
e Z = {z|z <yux & z <yu v}

3. By an algebraic argument, the distributivity of R, now guarantees that
the set of degrees 4 = {a;} given in (1) is independent (no element is below
the join of any finite number of other elements of the set) and definable from
the exact pair for the ideal it generates. It then follows that the class of subsets
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of A which generate ideals determined by exact pairs is isotnorphic to £3 the
lattice of all £ subsets of the natural numbers A

({C CAI3x,yvVz(z € C @z<x&z >y}, C) = (&3,Q).

4. (Herrmann [1983] and [1984]): &, the lattice of all r.e. (X?) subsets of
A" and indeed, for each n, £, the lattice of all £ subsets of N, is hereditarily
undecidable. Thus any structure in which we can interpret £" with parameters
is undecidable. Of course, the above steps show that we can interpret £3 in
Rt using as parameters the exact pair defining the ideal generated by A.

We must admit, however, that the proofs of the results used here from
Ambos-Spies & Soare [1989] and Iferrmann {1983] and [1984] are quite difficult
and so we can hardly claim to have an elementary proof of the undecidability
of Ryi:. In addition, this proof does not work for R4 and so we still have no
uniform proof for the two structures.

We must now explain the word “beyond” of our title. We have in mind
several aspects of the theories of the degree structures that we are discussing.
First, what more can we about the complexity of the theories than that they
are undecidable. As recursion theorists we are not satisfied simply with the
assertion that they are not recursive. We want to know the precise degree of
the theory of each structure; to characterize their “true theories”. For both
the r.e. Turing and truth-table degrees the theories of their structures are as
complicated as possible. Of course, both are definable in first order arithmetic
and so are reducible to the true theory of A, the natural numbers with addition
and multiplication. The degree of this theory is that of §“) = {{z,n)|n € 9},
the recursive join of all finite iterations of the halting problem. This is also
the degree of each of these theories. Indeed they are 1-1 equivalent. (This is
equivalent to the existence of a recursive permutation of A that takes one set
of sentences to the other.)

Theorem (Harrington & Slaman; Slaman & Woodin [1994]):
Th(Rr) =1-1 Th(N,+,2,0,1) =, 0.

Theorem (Nies & Shore {1993}):

Th(Ru) =11 Th(N,+,.r,0, 1) =121 o),

Proof Plan: In addition to coding models of arithmetic, we must definably

pick out some (codes for) standard models. The proofs for R use the previous
codings and pick out some standard models as ones whose natural numbers are
embeddable in all other models. It uses among other ideas the definability of
prompt simplicity (a property of enumerations of r.e. sets) in degree theoretic
terms (Ambos-Spies et al. [1984]). The proof for Ry extends the previous
embedding results to include certain recursive lattices of equivalence relations
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that are used to code nicely generated models of arithmetic. The standard ones
are then picked out as the ones all of whose proper initial segments which are
defined by exact pairs have greatest elements. It need a new exact pair theorem
for Ryy: If I'is a Y9 ideal in R,, and every member of [ is strictly below K in
Turing degree, then T has an exact pair in Ry,. '

Along these lines, we mention two, perhaps related. open questions:

Question: Th(Ry) = Th(N, +,2,0,1)=;_; 0lw)?
Question: Th(€) =,_, Th(N, +,z,0, 1)=,_, 0w)?

Another measure of the complexity of a theory is the number of I-types
consistent with it. The results of Ambos-Spies and Soare [1989] show that
Ry many l-types are realized in R and Ry while those of Haught and Shore
[1990] give the same result for R::. The proof of undecidability of Ry in Ambos-
Spies and Shore [1993] also shows that its theory has as many 1-types as possible,
2v,

Question: Are there continuum many l-types over the theories of R, and

Ruw?

Finally, we come to our last topic beyond undecidability, the related issues
of definability and automorphisms. There are one or two examples of classes
of r.e. degrees with natural nonorder theoretic definitions which are definable
from the ordering on degrees:

Theorem (Ambos-Spies, Jockusch, Shore & Soare (1984]): The promptly
simple r.e. Turing degrees are the noncappable ones (i. e. those degrees a such
that there is no b witha A b = 0)

Theorem (Downey & Shore (1993]): The low; r. e. ti-degrees (i. e. those a
such that a” = 0”) are precisely those with minimal covers (i.e. those a such
that there is a b < a with no ¢ between a and b). '

There are some hopes for defining the low, r. e. T-degrees as well as Slaman
and Shore [1990], [1993] have definably separated the low, from the high degrees
in Rp.

Question: [s any degree other than 0 and 0’ definable in any of these struc-
tures? Are any of the jump classes definable in Rr?

The last issue we want to address is the problem of the existence of automor-
phisms. A purely algebraic argument based on distribytivity supplies us with
isomorphic intervals in Ryi:. (Suppose aAb = ¢. The map taking x € [c, a]
tox Vb € [b,aVb]is an isomorphism. It is onto by a direct application of
distributivity. To see that it is one-one, suppose that x <y but xVb =y vb.
Asy < xVb, there is a d < b such that dVx = y. Note, however, that
asd <y, d<a Thusd< a,b and so d < ¢. As this would imply that
dV x = x, we have the desired contradiction.) Similarly, the initial segment
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results for R, supply isomorphic intervals. Otherwise, almost nothing is known
about the possible existence of automorphisms for any of the structures. This
leaves us with the obvious questions:

Question: Are there any nontrivial automorphisms of Ry, R of Rye? Indeed,
are there any nontrivial isomorphic initial segments of R or Ruu?

There is, however, a quite remarkable result connecting this problem with
that for the Turing degrees of all sets:

Theorem (Slaman & Woodin [1994] see also Slaman [1991]): If Ry 1s rigid,
i.e. has no nontrivial automorphisms, then so 1s Dr the structure of all the
Turing degrees.

The most intriguing suggestion is Harrington’s far reaching proposal that
R might be interdefinable (or biinterpretable) with (the standard model of)
arithmetic, that is not only can we define the standard mode) of arithmetic in
Ry but we can define a map taking each r.e. degree a to (a code for) an index e
for a representative W, € a in the model. Now Simpson [1977] and Shore [1982]
provide such outright (parameterless) interpretations of second order arithmetic
in D4 and Dr respectively that are correct on a cone (i.e. on the set of degrees
above a fixed degree z). Slaman & Woodin prove the above result on rigidity
by constructing such an interpretation which is correct for all of D fromr.e.
parameters.(See Slaman [1991], where Slaman and Woodin conjecture that this
proposal is true, for a discussion of this notion in various degree structures and
many applications.) In particular, a proof of the interdefinability of first order
arithmetic and Ry would show that every r.e. Turing degree is definable in R,
that R, Dr and many other degree structures arc rigid and indeed that Dr is
interdefinable with second order arithmetic. We are thus lead to our final open
problem, or perhaps better, program:

OPEN PROBLEM (PROGRAM): Work towards proving the interdefin-
ability of Ry (R4 and Ry) and first order arithmetic!
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Abstract

We describe here some aspects of the research in model theory,
which has been carried out by the Helsinki Logic Group during the last
few years. Our exposition combines uncountable models, Ehrenfeucht-
Fraissé-games and infinitary logic. It turns out that in the theory of
uncountable structures and uncountable infinitary logic, there is an
analogue to some aspects of the interplay between L., and countable
structures. The most interesting results in this theory are however
perhaps those related to stability theory and algebra, in which a dras-
tic difference to the countable situation can be seen. There is an
excellent overview of the work of the Helsinki Group by Viininen,
see [17]. The work discussed here is due to (in alphabetical order)
Heikki Heikkild, Taneli Huuskonen, Tapani Hyttinen, Alan Mekler,
Juha Oikkonen, Saharon Shelah, Heikki Tuuri and Jouko Viininen.

1 Background

Infinitary logic gives an elegant and well-understood way of approximating
the relation of being isomorphic among countable structures. Let .4 and B

*Research partially supported by Acédemy of Finland grant 1011040.
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be two countable structures. They are isomorphic, if and only if they are
partially isomorphic, A ~ B, i.e., there is a set I of partial isomorphisms

between substructures of A and B which can be extended within I “back
and forth”. The latter relation is by Aarp’s theorem equivalent to that the
two structures are elementarily equivalent in the infinitary logic L.,

A=, B

(See [2] and [9].) The set of sentences of L., can be filtered according to
a notion of quantifier rank which assigns an ordinal to every formula. Thus
in connection to every ordinal «, we have a relation

which holds exactly when the structures A and B satisfy the same sentences
of quantifier rank < «. This means that the countable structures A and B
are isomorphic, if and only if A =2 , B holds for all a. There is a refined
version of Karp's theorem, according to which A =%, B holds, if and only if
A and B are a-partially isomorphic in a certain sense, 4 ~* B. (See [2].)

Infinitary logic gives also invariants for countable structures. If A is
a countable structure (over a countable language) then by Scott’s theorem,
there is a countable ordinal a which satisfies for every structure B that A =2,
B implies that the two structures are isomorphic. The smallest such o is
called the Scott height of A. Moreover, the structure A has a Scott sentence
o(A) in L, ., which is such that for every countable B, B = o(.A) implies
A~B.

After recalling these well-known properties of countable structures we
shall discuss the question whether this picture can be carried over for un-
countable structures.

2 Ehrenfeucht-Fraissé-games

We consider here only structures of cardinality < w; for the sake of con-
creteness. Let A and B be two structures. The Ehrenfeucht-Fraissé-game
EF(A,B) of length w; is defined as follows. In it there are two players ¥ and
3 which make the following kind of moves in w; rounds. On round 0, player ¥V
first picks an element zo from one of the structures (A or B). Then 3 replies
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with another element y, from the other structure (B or A). Similarly, on
round v player player V first picks an element z, from one of the structures
and then 3 replies with an element y, from the other.

When all the w; rounds have been played, the players have produced
an wy-sequence (a,),<., of elements of A and an w;-sequence (by)i<w, of
elements of B: here q, is that one of z, and y, which is an element of A4 and
b, that one which is and element of B. Player 3 wins if a, — b, induces
a partial isomorphism between the two structures. Otherwise V wins. The
notion of a winning strategy is defined in the obvious way.

The game EF(A.B) determines whether 4 and B are 1somorphic or not
and it is determined, i.e., one of the two players has a winning strategy.
Indeed. if A ~ B, then 3 can win by playing according to any fixed isomor-
phism. If A % B, then V can enumerate the union AU B of the domains of
the structures and player 3 cannot win, since otherwise the moves of 3 would
induce an isomorphism.

Notice that we relied here very heavily on the assumption that the cardi-
nalities of A and B are at most w;. If we consider models of higher cardinality,
then the situation becomes more complicated, as the following result due to
Mekler, Shelah and Vaananen from [12] shows.

Theorem 1 1. There are models A and B of cardinality ws for which the
Ehrenfeucht-Fraissé-game EF(A,B) of length w, is not determined.

2. It is consistent relative to the consistency of a measurable cardinal that
the game EF(A,B) of length w, is determined for all models A and B

of cardinality < w,.

3. It is consistent relative to the consistency of ZFC that the game EF (A, B)
of length w; is not determined for some models of cardinality < w,.

Since the full game EF(A, B) of length wy is not very interesting in study-
ing structures of cardinality < w;, we shall consider suitable shorter games.
They lead us to some very interesting questions.

Given a countable ordinal a, we denote by EF,(A, B) the truncated ver-
sion of EF(A, B) in which the players go through only a rounds and produce
a-sequences (a,),<q and (b,),<q of the two structures.

If for example, 4 = (BQ,<) and B = (BR, <), then player 3 has a
winning strategy in EF,(A, B), but V has a winning strategy in EF, (A, B).
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This suggests the idea that we might measure the similarity of two structures
A and B by the length of those versions of the Ehrenfeucht-Fraissé-game in
which player 3 has a winning strategy.

In case @ = w we obtain the usual Ehrenfeucht-Fraissé-game much dis-
cussed in the literature. Especially. plaver 3 has a winning strategy in

EF,(A.B). if and onlv if A :\/ B. The truncated versions EF,(A.B) of

EF,(A.B). when put together characterize elementary equivalence in L,
(or more generally in the portion of L., containing only sentences of finite
quantifier rank). To capture also infinite quantifier ranks, we need richer
approximations of EFF,(A.B). We give here a general definition which is
interesting also for the full game FF(A.B) of length wy.

Let T be a tree with only countable branches. Such trees will be called
bounded below. The apprormation EFr(A.B) is like EF(A,B) with the
addition that at the beginning of each round a. player V has to play an
element f, € T in such a way that f, < 1y < ... <1, < ... If this 1s
not possible. then the game ends and the winner is decided by inspecting
the sequences (a,),c and (b,),<.. Notice that every play of EFr(A.B) is
countable.

We say that A and B are T-equivalent and write A ~1 B.if player 3 has
a winning strategy in £ Fr(A.B).

In case T = a consists of a single a-branch. the game EFr(A.B) is
essentiallv the truncated game EF.,(A.B) defincd above. If T = B, is the
tree of descending sequences of the ordinal o (ordered according to the initial
segment relation). then EFr(A.B) is a game theoretic version of Karp’s
characterization of elementary equivalence in L., up to quantifier rank a.
in the sense that A ~* B holds if and only if A and B are T-equivalent.

v
Especially. two countable structures A and B are isomorphic. if and only if
thev are B,-equivalent for all ordinals a.

A similar result due to Hyvttinen [3] holds also for EF(A,B) and all
bounded trees of cardinality < w;.
Theorem 2 Assume the C'H . Two structures A and B (of cardinality < wi)
are isomorphic. if and only if they arc T-equivalent for all bounded trees T

of cardinality < wy.

. 1] . . . .
This means that we have here a theory of approximations of isomorphism
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among structures of cardinality < w,. We shall see below that every one of
the relations ~ is strictlv weaker than ~.

3 Infinitary logic

The approximations of the Ehrenfeucht-Fraissé-game are closely connected
to infinitary logic. Indeed. the logic L., has an extension M., in which
the sentences are labelled trees (T, l,) where T, is the syntar tree of ¢ and
[, assigns to each node 1 € T, a label [s(1) where

. 14(t) is A or V if ¢ has more than one immediate SUCCessor;
2. 14(t) is or the form Vz or 3z if ¢ has exactly one immediate successor;

3. 14(t) is an atomic formula or the negation of an atomic formula, if ¢ is
maximal.

This means that ¢ looks locally like a sentence of L,,. We require moreover
that every bounded chain (linearly ordered subset) in T4 has a unique supre-
mum and that every branch (maximal chain) of T, 1s countable. If moreover,
every node t € T, has < » immediate successors. then we say that ¢ belongs
to the fragment M,,,.

The satisfaction relation A = & is defined in terms of an obvious se-
mantical game with players V and 3. This game 1s rather similar to the
Ehrenfeucht-Fraissé-game and it is not hard to show that the Ehrenfeucht-
Fraissé-game can be interpreted as a semantical game for a suitable sentence.
Indeed, given a structure A4 and a bounded tree T, we can construct a sen-
tence or(A) of M, which satisfies

B = o7(A), if and ounly if A~ B

for all structures B. The logics M, and M., ., have several other interesting
properties, too. -

1. The inclusions L, C My., and L, C M, hold.

2. The logics M, and M,,., are closed under A, V, Vz and 3z, but by
a recent result of Taneli Huuskonen, there is a sentence of M,,., which
has no negation in Mo, - '
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3. The relation A ~7 B holds, if and only if A and B satisfy the same
sentences ¢ € M., with ¢gr(¢) < T. (Here qr(o) is the subset of T
consisting of those elements whose label is of the form Vo or Jz. The
sign < refers to the existence of an order preserving function qr(¢) —

T.)

4. If we assume (' H . then a form of the Craig interpolation theorem holds

for Mu,.,. (See [5]. [13] and also [16] and [15].)

After this short excursion in infinitary logic we shall go back to our main
theme.

4 From Scott heights to nonstructure

Recall that every countable structure A has a Scott height o and that for all
countable B,

A ~p_ B implies A ~ B.

For uncountable structures the situation is much more complicated.
We call a bounded tree T a universal equivalence tree for a structure A,
if for all B (of cardinality < wy),

A ~7 B implies A ~ B.

Our aim is to discuss below some nonstructure theorems which tell us that a
class K of structures contains a structure A which has no universal equiva-
lence tree. The reader can find other aspects of the problem of generalizing
Scott heights to uncountable structures in [8] and [17].

What do we really know, if there is a structure A with no universal
equivalence tree in a class K7 How is this connected to the nonstructure
part of Shelah’s Classification Theory? The following remarks show that
such a result tells us in several ways that in such & case, there cannot be a
nice system of complete invariants, which seems to be the main aim of the
nonstructure theorems of Shelah, too.

1. In this case EFr(A,.) cannot, for any bounded tree T, carry enough
information to fix A up to isomorphism. Recall that when put to-
gether, these games characterize the notion of being isomorphic among
structures of cardinality < wy.
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2. No sentence ¢ of M,,,, can serve as a complete invariant for A (in the
sense that B |= ¢ is equivalent to A ~ B).

3. There is no notion of a complete invariant for K which satisfies a certain
reasonable set theoretic definability condition. Indeed, Heikki Heikkila
shows in his forthcoming dissertation [3] that K cannot for instance
have a complete notion of an invariant which is A, relative to the
predicate " is the set of all countable sequences of elements of y”.
(Notice that being isomorphic is £y. So A, relative to some predicates
is the widest level of definability which is of interest here.)

The starting point to the nonstructure theorems described below is the
following result due to Hyttinen and Tuuri [7].

Theorem 3 Assume the CH. There is a linear ordering 1 of cardinality w,
and for every bounded tree T of cardinality < w, there is a linear ordering
nr of cardinality < w;, where ‘

. n>~pnr

[$S)

. n contains an uncountable descending scquence; and
3. nr contains no uncountable descending sequences (especially, 7 #%nr).

Notice that if T has a branch of length w + w. then T-equivalence implies
=oow, » lementary equivalence in L, - So the above theorem gives extremely
similar nonisomorphic linear orderings. An earlier but weaker result about
similar nonisomorphic linear orderings is proved in [14].

When this result is used to construct Ehrenfeucht-Mostowski models as
in Shelah’s work on nonstructure theory, we have the following more general
and very strong result which should be compared with those of Shelah. In-
deed, Shelah shows that there are too many nonisomorphic models whereas
the following theorem tells that there is one single model which is too com-
plicated. This result due to [7] refers to the terminology of Stability Theory
which the reader can find either in 7] or in a standard text on Stability like

1.

Theorem 4 Assume the CH. Let ¥ be a first order theory and assume that
Y is unstable or has the OTOP. Then £ has a model of cardinality w, which

has no universal equivalence tree of cardinality w,.
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A similar result is proved in [7] also for superstable theories with DOP,
but in this case one has to consider larger structures.

Next we shall discuss the case of theories which have neither of the proper-
ties OTOP and DOP. Such theories are said to have the properties NOTOP
ad NDOP. A bound for nonstructure behavior is given by the following re-

sult of Shelah.
Theorem 5 If ¥ is superstable and has NOTOP and NDOP. then
A=, B inpliecs A~ B |

holds for all models of ¥ of cardinality < wy. FEspecially, when C'H holds,

every model of © has universal equivalence tree of cardinality < w,.

But if the theory ¥ is only assumed to be stable. then a strong nonstruc-
ture property is possible. as the following result from [10] shows.

Theorem 6 Assume the CH. There is a theory £ which is stable and has
NOTOP and NDOP. but which has a model of cardinality w, with no uni-

versal equivalence tree of cardinality < wy.

This theorem is proved by considering suitahle abelian p-groups. Let first

H be the direct sum
EB H,

v<wi

of a sequence of countable p-groups of ascending Ulm-lengths. We consider
the following kind of Hahn powers. Let 5 be a linear ordering and let H”
be the group consisting of all those functions & : p — H where the carrier
{t € n : z(t) # 0} has for some a < w, the form {t, : v < «} where
to > t; > .... The groups used to prove Theorem 6 are the torsion subgroups
(i(H.7n) of the groups H". They are p-groups and they have the following
properties. }

Lemma 7 1. For every bounded tree T of cardinality w, there is another
bounded tree T' also of cardinality w, where n ~p 0 implies G(H,n) ~r
G(H.9).

2. If eractly one of the orderings n and # contains an uncountable de-
scending sequence, then G(H,n) # G(H.0).
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3. Ifn > n+n. then the theory of G(H.y) is stable and has the propertiés
NPTOP and NDOP. Here 1+ consists of two adjacent copies of 7.

The crucial part is here 2.: 1. and 3. hold also for H” and H? and all
abelian groups H. Theorem 6 now follows from Theorem 3 and Lemma 7,
since we can replace in the assertion of Theorem 3 the orderings n and 7 by
n ¢ BQ and nr 2 BQ. Here 2 BQ means BQ copies put one after the other
according to the ordering of BQ.

The nonstructure theorems described above depend very heavily on the
CH as the following result of Shelah from [6] shows.

Theorem 8 [t is consistent with Z FC that eve ry linear ordering of cardinal-
ity wy has a universal equivalence tree of the form T+ 1 where T is (bounded
and) of cardinality < w,.

Here T'+ 1 means the tree which is obtained from T when a new element
is added at the end of every branch of T.

There are also some slightly weaker nonstructure theorems which can be
expressed in terms of the Ehrenfeucht-Fraissé-game. We say that a tree T is
a universal nonequivalence tree for A, if for all B. the condition

Y has no winning strategy in E Fr(A, B)

implies A ~ B. So every universal nonequivalence tree for A is also a uni-
versal nonequivalence tree for A. Hence a structure which has no universal
equivalence trees has no universal nonequivlance trees. An interesting ex-
ample of a nonstructure theorem stated in terms of universal nonequivalence
trees is the following one from Mekler and Shelah [11]. There a canary tree is
a bounded tree of cardinality 2“* which gets uncountable branches whenever
some stationary sets are killed in forcing which adds no new reals.

Theorem 9 The free abelin group of cardinality w_has a universal nonequiv-
alence tree if and only if there is a canary tree.

Also [7] contains some results about universal nonequivalence trees.
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Summary

As shown in an earlier paper, Grothendieck's functor K yields an interpretation of AF C*-algebras as
Lindenbaum algebras of the many-valued sentential calculus of Lukasiewicz. In particular, in this paper
we show that subhomogeneous AF C*-algebras with Hausdorff spcctrum correspond to the finite-valued
calculus, and that homogeneous AF C*-algebras correspond to Post calculus. Fell's notion of one-
dimensional projection field is shown to be equivalent to the notion of greatest singular element in
lattice-group theory. The K group of every liminary AF C*-algebra A with Hausdorff spectrum is
conveniently visualized as the /-group of rational-valued continuous functions over Prim(A) generated by
the relative dimension functions of projections.

Preliminaries

We assume the reader to be familiar with Elliott's classification of AF C*-algebras
[8], [7], and with the categorical equivalence I" between lattice-ordered abelian groups
(for short, I-groups) with strong unit, and MV algebras [14]. We refer to [4] for
background on MV algebras, to [1] for [-groups, and to [6] for C *.algebras. For
each n = 2,3,.., welet I, denote the algebra {0, 1/(n-1), 2/(n-1), ..., (n-
2)/(n-1), 1} with distinguished constants 0 and 1, and operations x* =1 - x,
x®y =min (1, x+y), xey = (x*®y*)* = max (0, x +y —1). Algebras in the
variety generated by I, are called MV,, algebras [12]. Boolean algebras are the same
as MV algebras. An MV algebra B is said to be of finite order iff for some n, B
happens to be an MV, algebra. MV,, algebras stand to the g-valued sentential calculus of
Lukasiewicz as boolean algebras stand to the classical sentential calculus.

Let X be a boolean space, i.e., a totally disconnected compact Hausdorff space.
Then by C(X, I,) we denote the MV, algebra of all continuous functions from X into
I , the latter being equipped with the discrete topology. In the light of Epstein's
representation theorem [10, Theorem 16], we say that an MV algebra B isa Post MV
algebra of order n iff B isisomorphic to some MV algebra C(X, I,,).
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Following [2], by an AF C*-algebra we mean the norm closure of the union of
ari ascending sequence of finite dimensional C*-algebras, all with the same unit. The
results of [14, § 3] yield a one-one correspondence between (all isomorphism classes of)
AF C*-algebras whose Grothendieck group is lattice-ordered, and (all isomorphism
classes of) countable MV algebras. For any such AF C*-algebra A, the corresponding
MYV algebra B is given by B = I'(Ky(A), [A]), where [A] is the image of the A-

module A in Ky(A). Some instances of the correspondence are given in the following

table:

COUNTABLE MYV ALGEBRA

ITS AF C* CORRESPONDENT

Lukasiewicz chain 7,41

finite

boolean

totally ordered

MV;

subalgebra of Q M [0,1]

dyadic rationals in the unit interval
all rationals in [0,1]

generated by p €[0,1]1\Q
real algebraic numbers in [0,1]
Chang algebra C

of finite order

Post algebra of order n+1
finite product of Post algebras

M, (C), the n x n complex matrices

finite dimensional

commutative

with Murray, von Neumann comparability
3subhomogeneous with Hausdorff spectrum

Glimm's UHF algebra
CAR algebra of the Fermi gas
Glimm's universal UHF algebra

Effros-Shen algebra F),

Blackadar algebra B

Behncke-Leptin algebra Ag
subhomogeneous with Hausdorff spectrum
homogeneous of order n

continuous trace

Our aim is to establish the correspondences given in the last three lines of the above table.

Recall that a C*-algebra A is subhomogeneous iff there is an integer n such that
dimrn <n for all irreducible representations © of A.

1. THEOREM. Themap A — I(Ky(A), [A)) is a one-one correspondence berween
subhomogeneous AF C*-algebras with Hausdorff primitive spectrum, and countable
MV algebras of finite order.

PROOF. (—) Let n be aninteger such that for each J € Prim(A) the quotient A/J

is isomorphic to Mp,(C), for some m <n. Since Ko preserves exact sequences, and
primitive ideals in A correspond to prime ideals in the dimension group G = Ky(A), it
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follows that each prime quotient of G is isomorphic to the additive group of integers
with the natural order. This, together with the assumed Hausdorff property of Prim(A)
suffices to show that G is an /-group, by [9, Theorem 1]. An application of the functor
I' in the light of [14, §3] yields a countable MYV algebra B = IKy(A4), [A]) . Since
A 1is liminary, the preservation properties of Ko and I” ensure thatin B prime ideals
coincide with maximal ideals. It follows that the intersection of all maximal ideals of B
is {0}, whence by [16, 3.1], B can be represented as an MV algebra of continuous
real-valued functions over the compact Hausdorff space X = Prim(A) = Prim(B) =
Prim(Ko(A)). Accordingly, each prime ideal J of B is in canonical one-one
correspondence with a point x; € X, and the quotient map B — B/J amounts to
evaluating each fe B at x; . From the assumed subhomogeneity of A it follows that
each prime quotient B/J is isomorphic to 1,441 = {0, 1/m, ..., (n~1)/m, 1} for some
m < n. Since any such /,,4+ is a subalgebra of I,1,1, we obtain that B isa subalgebra
of a product of copies of /1.1, one copy for each point x €X. By definition, B is
an MV, algebra.

(<) Suppose B is a countable MV, algebra. By [12,2.4,2.17,p.89], in B all
prime ideals are maximal, and for each prime'ideal J the quotient B/J is isomorphic
to I, for some m suchthat m-1 divides n-1. By [14, 3.12], a unique AF C*-
algebra A with lattice-ordered Ko correspondsto B via Kpand I The preservation
properties of these two functors ensure that each primitive quotient A/J is isomorphic to
some M,(C), where r divides n—1. Therefore, A is subhomogeneous. We also
have canonical homeomorphisms Prim(A) = Prim(B) = Prim(Ko(A)). This latter space
is Hausdorff by [1, 10.2.2], since also in K¢(A) prime /-ideals coincide with maximal
l-ideals. QED.

Recall [6], [11] thata C*-algebra A is homogeneous of order n iff every irreducible
representation of A is of the same dimension n. -

2. THEOREM. For each n =1,2,.., the map A — I'(Ko(A), [A)) is a one-one
correspondence between homogeneous AF C*-algebras of order n, and countable
Post MV algebras of order n+1.

PROOF. (—) Suppose A is a homogeneous AF C*-algebra of order n. Since by
assumption A is unital, by [13, 4.2], Prim(A) is a compact Hausdorff space, whence
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by [3, p.76), it is a boolean space. By Theorem 1 above, A corresponds via I' and
Ko to a unique countable MV algebra B of finite order. Following [14, 4.13-16],
let L denote the MV algebra of all [0,1}-valued McNaughton functions over the Hilbert
cube [0,1]%. L is the free MV algebra over denumerably many free generators. Thus B
is a quotient of L, and since in B the intersection of all maximal ideals is {0}, by [16,
3.1] there exists a boolean subspace X of the Hilbert cube such that B is the MV
algebra of restrictions to X of the McNaughton functions of L. Each prime ideal J of
B canonically corresponds to a point x; € X, and the quotient map B — B/J is the
evaluation map at x; . From the assumed homogeneity of A we have that for each
prime ideal J of B, B/J is isomorphic to /4. Therefore, B is an MV algebra of
continuous I, 1-valued functions over the boolean space X < [0,1]® . To complete
the proof we must settle the following

Claim. Each continuous function h:X — I4 actually belongs to B .

For each point x; = x = (xg, X1,...) € X, every coordinate x; must be a rational
number—for otherwise the quotient B // would be infinite. So let us write x; = a; /b;,
a;,bi € Z, a;20, b; >0, ged(a;, b;)=1. Let d be least common multiple of the
denominators {b;|i € w}. Then d must be equal to n. Indeed, the quotient B /J is
isomorphic to the finite MV algebra {k/d|k=0,1,...d}. It follows that for each k
=0, 1,.,n and xe X there is a McNaughton function fe L suchthat f(x) =
k/n. By continuity, f equals k/n in an open neighbourhood N < X of x,
and we can safely assume N to be a clopen subspace of X. Turning to our function 4,
for each xeX there is a McNaughton function fye L suchthat fy =h ina
clopen neighbourhood Ny < X of x. By compactness, there are points xy, ..., X;
in X suchthat Ny, U ...UNy covers X. Wecan safely assume the Ny;'s to
be pairwise disjoint. By a routine compactness argument, together with [15, 3.3],
foreach i =1,..t thereis a McNaughton function g;e L which is equal to 1
over Ny, andequalto O over X\Ny. Thus, 4 “coincides with the function
(fy A8V ..V (fy, Ag) overallof X, and he B.

(<) If B = C(X,I,4+1) is a countable Post MV algebra, then B is an MV,
algebra, and by [12, 2.4] each prime ideal J of B is maximal, and uniquely
corresponds to a point x; € X. The quotient map B —B/J is the evaluation map at
x; ,and B/J isisomorphic to Ip+1. In the unique AF C*-algebra A corresponding to
B, as given by [14, 3.12], all primitive quotients will be isomorphic to M, (C).
QED.
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Remark. From the above proof one has that an MV algebra B is a Post MV algebra
of order n iff all prime quotients of B have the same cardinality n.

3. COROLLARY. The map A — INK((A), [A]) is a one-one correspondence between

continuous trace AF C*-algebras, and finite products of countable Post MV algebras
of finite order.

PROOF. From Theorem 2, using standard arguments [6, 10.8.8, 10.5.4] and the fact
that Prim(A) is boolean [3, p.76], [6,4.5.3]. QED.

(Possibly nonunital) continuous trace AF C*-aigebras play an interesting role among all
separable continuous trace C*-algebras [17]. Turning to our (unital) continuous trace AF
C*-algebras, a routine argument shows that any such C*-algebra has—in Fell's
terminology, [11, p.259]—a one-dimensional projection field, i.e., an element p such
that & (p) is a one-dimensional projection for every irreducible representation © of A.
We are interested in the image of p under K. Recali {1, 11.2.7] that an element s in
an [-group G iscalled singular iff s >0 and whenever s =u+w with u,w 20, then
uaw = 0. An element g inan MV algebra B iscalled supersingular iff for each
prime ideal J of B, theimage q/J of g under the quotient map is an atom of the
totally ordered MV algebra B/J. Itis easy to see that B has at most one supersingular
element.

4. LEMMA. Forevery MV algebra B the following are equivalent:
(1) For some k, B = Pyx...x Py, where each P; is a Post MV algebra of finite order;

-

(i1) B has a supersingular element q.

PROOF. (i)—(ii) Write each P; as C(X;, I,,;), with pairwise disjoint boolean spaces
Xi. Let q: U; X; — Q be the function constantly equal to 1/(n;~1) on each X;.
Since B is an MV algebra of finite order, for each prime ideal J, letting x; be its
corresponding point in \U; X; , we have B/J = I,;, where i is the only integer

such that x; € X; . Then q/J is an atom of B/J.
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(ii))>(@) Observe that in B prime ideals coincide with maximal ideals. It follows
that the intersection of all maximal ideals of B is {0). By [16, 3.1] there is a cardinal
K, and a compact Hausdorff subspace X of the cube [0,1]%, such that B is the MV
algebra of restrictions to X of the McNaughton functions in the free MV algebra Ly
over K-many free generators. Each prime ideal / of B now corresponds to a point x;
€ X, and the quotient map B/J is evaluation atx; . Since g/J is an atom of the MV
algebra B/J < [0,1], it follows from (4, 3.12] that there is an integer n; >0 such
that g// = 1/n;, and B/J = 1,,J+1. Thus each function ge B is continuous and

rational-valued over X. Let G be the abelian /-group with strong unit corresponding to
B viaT, asin [14, §3]. Then G is the /-group of rational-valued continuous functions
over X generated by B, with the constant function | as the strong unit. The
preservation properties of I ensure that in G prime /-ideals (i.e., those /-ideals J of
G suchthat G/J is totally ordered, [1, 2.4.1]) are maximal. By [1, 14.1.2], G
is hyperarchimedean.

Claim 1. Foreach fe G, range(f) is finite.

It is sufficient to show that each rational a/b € range(f) is an isolated point in range(f).
For otherwise, suppose without loss of generality that for every & > 0 the interval [a/b,
a/b + €] contains infinitely many points of range(f). Let he G be the function h =
(bf-a)v0. Then for each N > O infinitely many points of range(h) are in [01],
contradicting the hyperarchimedean property of G, [1, 14.1.2].

Applying our claim to the supersingular element g€ B < G, we have that ¢
partitions X into finitely many clopen subspaces X = X; U ... U X}, where X; =
g 1(1/ny).

Claim 2. B = [I; C(X;, Inq41).

We have only to show that [II; C(X;, In;41) is contained in B. Each function g € [I;
C(Xj, In;+1) partitions X into finitely many clopen sets Yi,...Y;, in such a way that
g isconstantoneach Y;. We can safely assume that for each Y; thereis anindex i
such that ¥; < X;. It follows that over each Y;, g is a multiple of ¢, say, g =
njq. Arguing as in the proof of Theorem 2 above, and again using [16, 3.3], for each
Y; there exists a [0,1]-valued McNaughton function 8 € L suchthat g; = lon
Y, and g =0 on X\ Yj . Therefore, over all of X we have g = Zj (njq A
gj), whence ge {reG|0<r<1}=B. QED.
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5. LEMMA. Let B be an MV algebra with a (necessarily unique) supersingular
element q. Let (G,u) be the abelian I-group with strong unit u corresponding to B
via I', say without loss of generality B ={geG|0<g<u}. Then q is the greatest
singular element of G.

PROOF. By Lemma 4, there is a compact Hausdorff space X < [0,1]¢ such that B
is the MYV algebra of restrictions to X of the McNaughton functions of the free MV
algebra Ly over x free generators. Each function fe B is rational-valued and
continuous. G is the /-group of continuous rational-valued functions on X generated
by B, with the constant function 1 as the strong unit u. Each ge G has a finite range.
The supersingular element geB ¢ G partitions ¥ into finitely many clopen
subspaces X =X; U .. UXy, and there are positive integers ny,...,n; such that X;
=q-1(1/n;). Foreach ge G and xeX thereis an integer n such that g(x) =
nqg(x). Itis now easy to see that ¢ is singularin G. To see that g is the greatest
singular element in G, suppose s€G to be singular, and s(x) > ¢(x) for some
x e X. Since s is continuous and range(s) is finite, there is clopen neighbourhood N
€ X of x such thatboth s and q are constant on N . Without loss of generality, N ¢
X; for some i. As in the proof of Lemma 4, there is « McNaughton function fe Ly
suchthat f =1 onN, and f =0 on X\N. The function t =5 A 2f is still
singular in G, by [1,11.2.9], and ¢t >¢q inN. Therefore for some integer n > 2
we can write t =nq A 2f =(q A2f) + ((n-1)q A 2f), contradicting the singularity of 1.
QED.

6. LEMMA (Elliott). Letr A be a C*-algebra with boolean primitive spectrum. Then
~ two projections p and q are equivalent if they are equivalent in each primitive quotient.

PROOF. By continuity of the norm, a partial isometry connécting p and ¢ at some J €
Prim(A) can be lifted to a neighbourhood, which we may safely suppose to be clopen.
By compactness of the set S ¢ Prim(A) where the projections are nonzero, a finite
number of such neighbourhoods M,...,N; covers S, and we may assume N; N N;
to be empty whenever i#j. Adding up the partial isometries, we obtain that p- and ¢
are equivalent. QED.
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7. LEMMA. Let A be a liminary AF C*-algebra with Hausdorff spectrum. For each
projection p € A let the relative dimension function dp: Prim(A) — Q be defined by
dy(J) = (dimrange © (p)) / (dim &), where Tt is an irreducible representation of A
such that ker(m)=J. We then have:

(i) Two projections p and q of A have the same image in Ko(A) iff dp = d,.
(i) (Ko(A), [A]) is the I-group of rational-valued functions over Prim(A) generated
by the relative dimension functions of projections of A, with the constant function 1
as the strong unit.

(iii) For eachprojection p € A, dp is a continuous function having a finite range.

PROOF. (i) By [3,p.76], Prim(A) is a boolean space. By Lemma 6, two projections
p and g are equivalent if they are equivalent in each primitive quotient, i.e,, if dp (J) =
dq (J) foreach J € Prim(A). The converse is trivial.

(i) By [9, Theorem 1], Ko(A) is an [-group, and by [14, §3] the MV algebra B
= IKo(A), [A]) 1is well defined. By [8] together with (i) above, B is the MV algebra
of relative dimension functions of projections in A, with natural pointwise operations.
Again by [14, § 3], we have that (Ko(A), [A]) is the /-group of rational-valued
functions on Prim(A) generated by B, with the constant function 1 as the strong
unit.

(iti) Since in B prime ideals are maximal, identifying Prim(A) with a boolean
subspace X of the Hilbert cube, by (ii) and [16, 3.1] we can represent B as an MV
algebra of continuous rational-valued (McNaughton) functions over X. Since Ko(A)
is hyperarchimedean [1,14.1.2], and each function f of Kg(A) is rational-valued, the
same argument of Claim 1 in Lemma 4 above shows that the range of f is finite. QED.

Remark. Liminary AF C*-algebras with Hausdorff spectrum are further investigated in
[5]. Here the authors consider the analogue of Kaplansky* problem for these algebras,
and prove that the Murray von Neumann order of projections alone is sufficient to
uniquely recover the C*-algebraic structure.

8. THEOREM. Let A be a continuous trace AF C*-algebra, and suppose p is a
projection in A. Then p is mapped by Ky into the greatest singular element of Ko(A)
iff p is a one-dimensional projection field.

90



PROOF. Suppose p is a one-dimensional projection field. Using Corollary 3 we can
write I{Ko(A), [A]) = B =Py x ... X P;, where each P; is a Post MV algebra of
finite order. For each primitive ideal J in A, and each representation = such that
ker(n) =J, we have that Ko(AW) = Ko(n(A)) = Z, and =w(p) = p/J is
mapped by Ko into the only atom of K(A/J). Thus p corresponds to the
supersingular element ¢ of B = (geKo(A) | 0<g <[A]}. By Lemma5, gq is the
greatest singular element in Ko(A). By Lemma 7 (i), a projection re A has the
same image as p in Ko(A) iff d, =d,, iff r is a one-dimensional projection
field. QED.
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- ABSTRACT. The concept of a lambda abstraction algebra (LAA) has recently been
defined. It is designed to algebraize the untyped lambda calculus in the same way
cylindric and polyadic algebras algebraize the first-order predicate logic. Like cylin-
dric and polyadic algebras, LAA’s can be defined by true identities and thus form a
variety in the sense of universal algebra. They provide a distinctly algebraic alter-
native to the highly combinatorial lambda calculus. The paper is largely expository.
We attempt to motivate the theory in terms of the relevant notions of lambda cal-
culus and cylindric algebras. As an example of the technical part of the theory we
give a complete proof of one of the main representation results: that every locally
finite lambda abstraction algebra is isomorphic to a functional lambda abstraction
algebra.

Introduction. Lambda abstraction algebras are intended to provide a full alge-
braization of the untyped lambda calculus in much the same way cylindric and
polyadic algebras algebraize the first-order predicate logic. Like cylindric and
polyadic algebras they form a variety in the sense of universal algebra and thus
provide a distinctly algebraic alternative to the highly combinatorial methods of
the lambda calculus.

The untyped lambda calculus is a formalization of an intensional as opposed to
an extensional theory of functions, that is, a theory of functions viewed as “rules”
rather than “sets of ordered pairs”. Its basic feature is the lack of distinction that is
made between functions and the elements of the domains on which the functions act.
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Thus a function can, in theory, take other functions, including itself, as legitimate
arguments. There are two primitive notions: application, the operation of applying
a function to an argument, and lambda (functional) abstraction, the process of
forming a function from the “rule” that defines it.

As one would expect there are no simple models of the untyped lambda calculus,
but one can imagine idealized models that are “constructed” in the following way:
Start with any set S (possibly empty), and successively form the sets Tp = S,
T, =85 T, = (S’USS)SUSS, Ty = (TWUTy)T1YT2 . lterate the construction until
a “fixpoint” is reached, giving a set V satisfying the “domain equation” vV =v.
We know of course that if V'V is interpreted as the set of all functions from V' to itself
in the usual set-theoretical sense, then the above iterative process can never reach
a fixpoint since no set can satisfy the domain equation. By restricting the functions
we consider to certain admissible ones, and interpreting V'V accordingly, domains
satisfying the domain equation, or a somewhat weaker form of it the guarantees
that there is in some sense enough admissible functions, have have been found.!
Such domains are the “natural” models of the untyped lambda calculus. They are
called environment models in the literature of the lambda calculus ([10]). They are
closely related to the syntactical lambda models of [1]. They can be characterized
by means of an injective partial mapping A: vV 2. v whose domain is the set of
admissible functions. A may be thought of as the process of encoding admissible
functions as elements of V. With functions encoded this way, application can be
viewed as a binary operation on V. Let V be the domain V enriched by the
application operation and the encoding mapping. We will denote the application
operation by -V and the encoding mapping by AV

Intuitively, each admissible function in V'V has two forms, an intensional one
and an eztensional one. In its intensional form it s represented by a term t(z)
of the lambda calculus with a free variable z. (The exact nature of terms will be
spelled out later.) For each v € V, let t [v] be the value t(z) takes in V when z is
interpreted as v. Then its extensional form is the function (tV [v] : v € V) € vy,
which is encoded as the element AV ((tv [v] : v € V)) of V. 1t is represented by the
term Az.t(z). Note that t(z) and Az.t(z) both represent the same function, but
in environment models only the extensional form corresponds to an actual element
of the universe of the model; this is an essential difference between the models of
lambda calculus and lambda abstraction algebras, as we shall see.

The two forms of the function are connected by the operation of application.
Intuitively, the value t¥ [v] of the function at a particular argument v is obtained
by applying its extensional form to v; symbolically, (t¥ [v] : v € V)(v) = tV [v].
Expressed in the environment model this becomes

AY ((tv [v] :veV)) Vv =Y o).

1The first such model was constructed by Scott [15].
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In the lambda calculus itself this relationship is represented by the fundamental
axiom of (3-conversion:

(B) (Az.t)s =t[s/z], for all terms ¢, s and variable z such that
: s is free for z in t.

Terms of the lambda calculus are constructed as follows: There is an infinite
set of variables called A-variables. Every A-variable is a term; if ¢ and s are terms,
so are t - s and Az(t) for each variable z. By convention we write ts for ¢ - s and
Az.t for Az(t). An occurrence of a variable z in a term is bound if it lies within
the scope of a lambda abstraction Az; otherwise it is free. s is free for z in t if no
free occurrence of z in t lies within the scope of a lambda abstraction with respect
to a variable that occurs free in s. t[s/z] is the result of substituting s for all free
occurrences of z in ¢.

The other axioms of the lambda calculus are as follows: t,s,7,u are terms and
z, y variables.

(@) Az.t = Ay.tly/z], for every y that does not occur free in t;
o [ — ¢
el =5 = 5 =1
o l=s85,8=71r = {=r;
e l=rs=u == ts=ru;
ot =5 == Az.t = Az.s.

(a)-conversion says that bound variables can be replaced in a term under the
appropriate condition. A lambda theory is any set of equations that is closed under
a and 3 conversion and the five congruence rules.

The following completeness theory is a basic result of lambda calculus; see {10].

Every lambda theory consists of precisely the equations valid in some
environment model.

The axioms are all in the form of equations, but the lambda calculus is not a
true equational theory since in 3-conversion, for instance, the term-variables ¢t and
s cannot be substituted for freely, without restriction. The situation is similar to
that in the standard formalism of first-order logic. In both cases the source of the
problem is the way substitution is handled. By dealing with substitution at the level
of the object language rather than the metalanguage, i.e., by abstracting it, two
different but closely related pure equational formalizations of first-order predicate
calculus have been developed giving rise to the theories of polyadic Boolean algebras
and cylindric algebras. This abstraction of substitution is a characteristic feature
of first-order algebraic logic. In polyadic Boolean algebras abstract substitution
1s primitive, but in cylindric algebras it is a defined notion. For any first-order
formula ¢(z) and any individual variables z and y such that y is free for z in ¢,

(1) Te(z=y & ¢(z)) < ply/a]
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is a logically valid formula. The key idea of cylindric algebras is the use of this
equivalence as the basis of a definition of abstract substitution. Another impor-
tant feature of cylindric algebras is the suppression of individual variables. More
accurately, the variables wg,z1,...,%x,..., & < w, of the standard formulation of
first-order logic are transformed into the indices 0,1,...,k%,... of a Cartesian-like
coordinate system. In their place are the diagor.al elements, an infinite system of
constant symbols (i.e., nullary operations) dya, for all K, A < w. dy» corresponds to
the atomic equality formula z, = z. The actual variables of the object language
of cylindric algebras correspond to the variables of the metalanguage of first-order
logic that range over formulas. The other primitive notions are the unary opera-
tions of cylindrification c.. k < w, corresponding existential quantifications 3z,
and the standard Boolean operations +, -, and — that correspond respectively to
disjunction, conjunction, and logical negation. When transformed into the lan-
guage of cylindric algebras the logical equivalence (1) becomes the definition of the
abstract substitution operation S§ (|8, Part 1, Def. 1.5.1]):

SK¥x o clden - ), if vk 7 A

The axioms of cylindric algebras are similar in form, but of course involve only prim-
itive operations. They express the basic properties of the propositional connectives.
quantification, and equality predicate in algebraic form. Since substitution plays an
important role in the metatheory of first-order logic, a key function of the axioms
is to express the fundamental properties of the substitution operator S¥. The most
significant feature of the axioms is that they are true identities in the sense that
they continue to hold when arbitrary terms are substituted for the variables. Thus
the theory of cylindric algebras gives a pure equational theory of first-order logic.
and cylindric algebras form a variety in the universal-algebraic sense.

The way in which lambda abstraction theory avises from the lambda calculus
closely parallels the way cylindric algebras are obtained from first-order logic. Again
the key is the abstraction of substitution. Butl 3-conversion plays the role of (1).
A-variables are transformed into members of an abstract index set I rather than of
an ordinal. In this regard we follow the lead of polyadic Boolean algebras instead
of cylindric algebras. I can be of arbitrary, possibly finite, cardinality. Lambda
abstraction algebras contain an individual constant for each A-variable. For sim-
plicity, we identify these constants with elements of the index set I. This has the
added advantage of making the language of lambda abstraction algebras conform
more closely to the language of lambda calculus.

Lambda abstraction algebras. lLet [ be a nonempty set. The similarity type
of lambda abstraction theory over [ is < (M : &£ € ), {z € I)> where -
is a binary operation symbol. As is a unary operation symbol for every z € I,
and z is a constant (i.c.. nullary operation) symbol for every r € I. Note that
Az is to be viewed as an indivisible complex symbol: allernatively, (Az : = € I)
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can be viewed as a system of unary operations index by elements of 1. Similarly,
{(z : z € I) can be viewed a system of constants indexed by I. The elements of I
are to be thought of as the variables of lambda calculus and we will refer to them
as A-variables. However in their algebraic transformation they no longer play the
role of variables in the usual sense. The actual variables of lambda abstraction
theory will be referred to as context variables and denoted by the greek letters ¢,
v, and p, possibly with subscripts. Context variables correspond to variables of the
metalanguage of lambda calculus that range over terms. The terms of the language
of lambda abstraction theory are called A-terms. Every A-variable 2 and context
variable £ is a A-term; if ¢ and s are A-terms, then so are t - s and Az(t). Thus,
formally, terms of lambda abstraction theory differ from those of lambda calculus
only to the extent that they may contain context variables. An.occurrence of a
A-variable z in a A-term is bound if it falls within the scope of the operation symbol
Az; otherwise it is free. (The “z” in the operation symbol “Az” does not count as
an occurrence of z.) The free variables of a A-term are the A-variables that have
at least one free occurrence. A A-term without any context variables is said to be
pure. A A-term without free variables is said to be closed.

Because of their similarity to the terms of the lambda calculus we use the stan-
dard notational conventions of the latter. The application operation symbol “.” is
normally omitted, and the application of ¢t-s of two terms is written as juxtaposition
ts. When parentheses are omitted, association to the left is assumed. For example,
(((ts)(ru))v) will be written ts(ru) The left parenthesis delimiting the scope of a
A-abstraction is replaced with a period and the right parenthesis is omitted. For ex-
ample, Az (ts(ru)v) 1s written Az.ts(ru)v. Successive A-abstractions AzAylz ... are
written Azyz.... Hereis an example of a term that makes use of all of these conven-
tions: Azy- - zn.ty -ty is shorthand for Az [Azyl. . Az, [(t; “t9)tml...]]] We
occasionally revert to universal-algebraic notational ronventions when the context
seems to warranted it.

We now give the formal definition of lambda abstraction algebras. Readers
unfamiliar with the notation of the lambda calculus may want to go directly to the
reformulation of the axioms in terms the substitution operator that is given later.

Definition. By a lambda abstraction algebra of dimension I we mean an algebraic
structure of the form

A= (A 2 (0t ieel), (@ iz en)

satisfying the following quasi-identities for all z,y,z € I (subject to the indicated
conditions) and all &, u,v € A.

(B1) (\z.z)t =¢;

(B2) Qzy)é =y, ifz+#y;
(B3) (Az.b)z = ¢;

(Bs) (Azz.)p = Az .§;
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(85) () = Oz E)v ()
(Bs) (Ay.p)z =p— (Azy&lp = ry.(Mzb)p, fz#y,z#y;
(@) Dy.&)z=¢— Az =ry.(Az.€)y, fz#y.

I is called the dimension set of A. - is called application and Az® -abstraction
with respect to z.

Axioms (81)-(B6) constitute a definition of the abstract substitution that corre-
sponds roughly to the axiomatic definition of metalinguistic substitution that can
be found in [2]. This will become much more apparent below. (a) is a direct alge-
braic translation of (a)-conversion. The five congruence axioms of lambda calculus
are not represented since by tradition they are implicit in every algebraic theory.

The class of lambda abstraction algebras of dimension I is denoted by LAA; and
the class of all lambda abstraction algebras of any dimension by LAA. We also use
LAA; as shorthand for the phrase “lambda abstraction algebra of dimension I”,
and similarly for LAA. A LAA; is infinite dimensional if I is infinite.

In the sequel A will be an arbitrary LAA[, unless otherwise noted. The dimension
set I is also arbitrary; in particular it can be finite. We assume however that it
contains at least three variables, since many of the results we obtain in this section
require this.

We often omit the superscript A on A )\mA, and z% when we are sure we can
do so without confusion. This will also apply to defined notions introduced below,
such as A4,

We note here a useful immediate consequence of the axioms: in any LAA A the
functions A\z” are always one-one, i.e.,

Ax.a=MXz.b iff a=0b, forallabeA.

For if Az.a = Az.b, then by (83), a = (Az.a)z = (Az.b)z = b.

A LAA with only one element is said to be trivial az® is onto (i.e., its range is
all of A) only if A is trivial. In particular, if A is nontrivial, then z? cannot be in
the range of Az®. For if Az.b = z for some b € A, then for every a € A we have by

(B1) and (Bs),
a = (Az.z)a = (Azz.bla = Az.b = z.

It follows that every nontrivial LAA is infinite.

Substitution and dimension. When transformed into the equational language
of lambda abstraction theory, (3)-conversion becomes the definition of abstract
substitution. It takes the following form: For any set S, let S*™ be the set of all
finite sequences of elements of S.
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Definition. Let A be a LAA;.
(i) 8§(a) = (Az.a)b, forallz € I and a,b € A.
(ii) S¥(a) = Spy (. (Sir(a))...), foralla € A4, ¢ = 2z, -z, € I*. and
b=0b;---b,€ A™.

S is called the (abstract) substitution operator.

Definition. Let A be an LAA;. Let a € 4 and z € I. a is said to be algebraically
dependent on z (over A) if (Az.a)z # a for some z € I; otherwise a is algebraically
independent of x (over A). The set of all z € I such that a is algebraically de-
pendent on z over A is called the dimension set of a and is denoted by A#ag;
thus

Alg = {1:61:(/\x.a)z#aforsomezel}. )

a is finite (infinite) dimensional if Aa is finite (infinite).

It is convenient to treat algebraic dependency as a symmetric relation and speak
of “z being algebraically dependent on (independent of) a”. We shall see in Lem. 3
below that z ¢ Aa iff (Az.a)z = a for some z € I\ {z}. Thus the axioms for
lambda abstraction algebras can be reformulated in the following way:

(B1) SE(z) = ¢;

(B2) SE(y) =y, ifz#y;

(B3) SZ(€) =¢;

(Ba) S;(Az.€) = Az .£;

(Bs) ST(Ew) = SZ(&)SZ(w);

(Be) y ¢ Ap = Si(Ay.£) = My.S2(¢), ifz /£y,
(a) y¢ Af = Xz.& = /\yS;(f)

Note that the two occurrences of z in (83) have different meanings, something
that is hidden by our streamlined notation. This becomes apparent when we inter-
pret (B3) in an actual LAA; and explicitly relativize all the operations:

(sA )ia (a) = ((,\m)“\ .a)a:A ~a, forallac Aandz e J.

We will avoid notation like *(S4 )%a " because it is so cumbersome. We leave it to
context to determine the particular algebra in which S is being applied.

If z and y are distinct A-variables, then z® # y® in any nontrivial LAA A. To
see this choose any a € A such that a # y®. Then by (82) and (83), S%(zA) =a #
yA = S2(yA). Sozh £y

The admissible functions of an environment model of the lambda calculus that
have an intensional form, i.e., that can be represented by terms, must all be of finite
rank since a term can have only a finite number of variables. There may be admis-
sible functions that cannot be represented in this way and that in fact are of infinite
rank. In terms of lambda abstraction theory this means that functional LAA’s exist
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with elements of infinite dimension. The fact that each term contains only a finite
number of variables from an infinite reservoir of variables is a critical property of
the lambda calculus; the situation in first-order logic is similar. One would expect
then that the algebraic analogue of this property would have a significant effect on
the structure of a LAA, and this is indeed the case.

Definition. Let A be a LAA;. A is locally finite if it is of infinite dimension (i.e.,
I is infinite) and every a € A is of finite dimension (i.e., |Aa| < w).

LAA’s, even locally finite ones, are no easier to construct than models of the
lambda calculus. Indeed, we shall see below that the most natural LAA’s all arise
directly from environment models.

We will show in the next proposition that in the presence of the other axioms,
(Bs) and (Be) are equivalent to identities.

Lemma 1. Axioms (84) and (B5) imply SYS{(a) = Sgg(b)(a) for all z € I and
a,b,c€ A.

Proof.

S¥S¥(a) = S¥((Ay.a)b)
= S¥(Ay.a)SY(b), by (Bs)
= (Ay.a)S¥(b), by (Ba)
= Sg.g(b)(a). g

Proposition 2. In the presence of (82), (B4), and (Bs), the quasi-identities (3s)
and (a) are logically equivalent to the following idecutities, respectively,

(B8) S§u((Ay£) = Ay-S5y(,) (&), ifz#y,27y.

(&) Ae.SY(E) = Ay.SESY(E), ifz £y,
Thus LAA| is a variety for every dimension set I.
Proof. Clearly (8§) implies (86). For the opposite implication, substitute SY(u) for
p in (Bs) and observe that the antecedent of the resulting quasi-identity, SYS¥(u) =

S¥(u), is a consequence of the Lem. 1 and (B2). The equivalence of (e) and (a') is
established in the same way. [

The following lemma shows that an element a depends on z if Sj(a) # b for
some b of A, and, if a depends on z, then S¥(a) # z forall z € I \ {z}.

100



Lemma 3. Let A € LAA;, andleta € A andz € . The following are equivalent.
(i) S7(a) = a for some z € I\ {z}:
(ii) S(a)=aforall : = [.je. x ¢ Aa;

(iii) SF(a)=a forallbec 4.

Proof. It clearly suffices to prove that (i) implies (iii). Assume S¥(a) - a for some
z € I\ {z}. Then

Spla) - 57S7(a)
: b'gl:(z)(a), by Lem. 1

= 57 (a), by (B2)
a. by assumption. O

Proposition 4. Let A € LAA;, u.be A, andz € |.

(i) A(ab) C Aa U Ab.
(i) ()\1: a) = Aa\ {r}.
(iii) A(SF )) (Aa\ {z})U Ab.
iv) Az C {z}, with equahtv holding if A is nontrivial.

(

Proof. (i) follows immediately from (3s).

For the inclusion A(Az.a) C Aa \ {z} of (ii) use (B4) and (Bg). To get the
opposite inclusion, suppose y ¢ A(Azr.a) and y / z. Then for any A-variable
z # z,y, we have S¥(Az.a) = Az.a. But by (4y) and (Bs), S¥(Az.a) = Az.S¥(a).
Hence Az.5Y(a) = Az.a, which implies $¥(a) = a since Az is one-one. Thusy ¢ Aa.

(ii) is a direct consequence of (i) and (ii). Finally. the inclusion of (iv) follows
from (B83) and the equality from (3;). O

In the following lemma we give some basic properties of substitution that will
be used repeatedly in the sequel.

Lemma 5. Forall z,y,z € | and a.b,c € A we have:
() = ¢ Ac = SUSF(a) - S, S¥(a);
(if) y ¢ Ab = SgS;(a) = S¢SE(a);
(iii) z ¢ Ac,y ¢ Ab = S¥Si(a) = SESY(a), ifa #vy;
(iv) z ¢ AaUAb = Si(a) = SESZ(a).

Proof. (i) If z = y the equation reduces to Lem. 1. Assume z #y.
S¥S(a) = S¥((Az.ab)
= SY(Az.a)SY(b), by (84)
= (/\w.Sg(_a))Sﬁ_’(b), by (86) since x ¢ Ac and = # y
= S5y (S¥(a)).
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(ii) By part (i) and (81) we have SYS%(a) = Sgg(y)Sg(a) = SYSE(a).

(iii) SYSi(a) = sg,c,(b)sg(a), by (i) since z ¢ Ac
= Sy S8¥(a), since y ¢ Ab.
(iv) SZS%(a) = SiSi(a), by (ii) since z ¢ Ab

= S} (a), since z ¢ AaU Ab D ASy(a). U

Simultaneous substitution. We abstract the process of simultaneously substi-
tuting a finite sequence ¢1,...,in of terms for the variables z,,...,z, in a term s.
Such a substitution can be simulated by a sequence of single substitutions provided
the free occurrences of the z; in s are first replaced by new variables that do not
conflict with the free variables of ty,...,t,. This is the basis of our abstraction.
Implicit is the assumption that a reservoir of new :ariables is always available.
Consequently simultaneous substitution can only be abstracted under some kind of
dimension-restricting assumption. Here we assume the strongest such assumption,
local finiteness. Thus for the remainder of the paper, unless specifically indicated
otherwise, all LAA’s will be locally finite.

We introduce some useful notation. I* denotes the set of all finite sequences
of A-variables without repetitions. Let A be a (locally finite) LAA;. Let a € A,
T =z, Zp € ", and p € Al Recall that a variable z is independent of a
if z ¢ Aa. Let pox = pg Pz, We say that z is independent of p o x if
2 ¢ Apy, U UApg,.

Definition. Assume A is a locally finite LAA and p € Al. For each a € A, let

=g, --zp, € I* such that Aa C {z1,...,2n}, and choose 2 = 21 -2, € I*
such that the z; are distinct from the z; and independent of both a and pox. We
define i

Sp(a) := Spox S¥(a) forallac A.

Lemma 6. The definition S’p(a) is independent both of the choiceof € =z, -zp
such that {z1,...,2n } C Aa and the choice of z = z, -~ 24 independent of a and
po.

Proof. The proof is in three parts. We first prove that, with x fixed, the definition
is independent of the choice of z. Let w = w;---wn € I* be any other sequence
of variables that are distinct from the z; and independent of both a and po . We
assume without loss of generality that they are also distinct from the z;; otherwise
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we could consider a third sequence of variables disjoint from both z and w. Let

x’' = z3 - zy; 2’ and w’ are similarly defined.

Spox 57 (a) = S;OX,VS;;SZI‘ Sy (a), by Lem. 5(iii)

)
: AS‘;IOX,AS';’;‘IS,JI‘,‘I S;:’(a), by Lem. 5(iv)
= Syl St SYSE (a), by Lem. 5(iii)
=St b[‘fm .SX Swi(a), by induction hypothesis

= Spox Sw (a). by Lem. 5(iii)

In the second part of the proof we show that the definition of S'p(a) does not
depend on the order of variables in the sequence z = 1 - Tn. Let 2’ be any
permutation of £ and let 2’ he the corresponding permutation of z. Then by

repeated application of Lem. 5(iii) we have Spox Sy (a) = pox 'Sz (a).
Finally, assume y = y, - -y,, € I* is another sequence of variables such that
{y1,---,ym} € Aa, and let w - wy- W, € 17 be distinet from the y; and

independent of both a and p o y. We must show that

Séox 53 (a) =S¥ SY (a).

poy
Clearly we can assume without loss of generality that {y1,---,ym} = Aa. In
view of the second part of the proof, we also assume without lost of generality
that T = yu = y1 - yu, - un—,, where {ur, o tnem } = {2z, .. ,Zn } \ Aa.

Finally, in view of the first part of the proof, we u--ume without loss of generality
that w = 2y -z, Let v = 2.,y -2, so thal z ww.

SZ S;( (a) __ ALY yu (a)

pox  Opolyu)wy
= Spov S pou S Sy (a)
= S0y Spou S% (a), by Lem. 3 since z; ¢ Aa for all s
= S;’oy Sy (a).
The last equality holds by Lem. 3 since z; ¢ AaU{z,...,2n} D SY fori =
N S

Thus S’p is a well defined mapping from A into itself for all every p € Al. S is

called the simultaneous substitution operator and S'p(a) is the result of simultane-
ously substituting p, for 2 in a for each z € Aa.
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Lemma 7. Assume A is a locally finite LAA;. Let ¢ & Al be defined by ¢, = z#
for each z € I. Then S.(a) = u for alla € A.

Proof. Let £ = z1---z, be an enumeration without repetitions of Aa and let
z = 21z be disjoint from x and independent of a. Note that e ox = x. Let
' =z9- -z, and 2’ = 29+ 2,. Then

Se(a) = Siox S} (a)
, = 5;5; (a)
= §2,8215%15%/(a), by Lem. 5(iii)
= S,Z(:S;‘,/(a), by Lem. 5(iv) and (83)
= a, by the induction hypothesis. [

Let p e Al, a € A, and z € I. Then p(a/z) € Al is the mapping such that for

ally €1
a. fy=u

plaje)y - {
Lemma 8. Assume A is a locally finite LAA;. Let p € I.
(i) Sp(ab) = Sp(a)S,(b) foralla,be A.

Leta € A andz € I. Let z € [ be distinct from = and independent of a and of py
for every y € Aa.

(i) .§p(~)\z‘.a) = )\z.‘é},(l/z)(a).
(i) S¢Sp(z/z)(@a) = Spw/z)la) for every b e A.

py. otherwise.

Proof. (i) is an immediate consequence of (8s) and the definition of S.

(ii) Let y = y1--yn € I* such that {y1,...,yn} = Aa \ {z}. Let w =
wy - -wn € I* be disjoint from y and {z, z}, and independent of both a and po y.
Then

Az.gp(z/z)(a) = )\z.S;)voy S;(Z/I):S’fv 57 (a)

= )\Z.Ag;:’oy S;S‘{, S:(a)
)‘Z'S:oy SY S¥(a), by (83)
=S¥ 8% (A2.5%(a)), by (8s)

= Sp(Ax.a), by (a).
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(iii) If z ¢ Aa the result is obvious. So we assume 2 € Aa. Let y and w be as
in part (ii), and assume in addition that w is independent of . Then

S5Sp(2/2)(@) = SESp2 1eyoty ) Su (@)

= S5 Sp0y Spiz/z). Sw St (a)
= gV

SgSY SE(a), by (83) and Lem. 5(iii)

poy * ’
(a)

= Spb/w)olyz)Soe
= Spojzy(a). O

Functional LAA’s and representation. The main difference between lambda
abstraction theory and the lambda calculus is that one is a pure equational theory
while the other is not. This accounts for the distinctly algebraic nature of the
lambda abstraction theory in contrast to the highly combinatorial lambda calculus.
Another important distinction between them is that it is apparent what the models
of lambda abstraction theory are: they are the algebras vhat satisfy the laws (B1)-
(Bs), (a), i.e., lambda abstraction algebras. In this sense there is a close analogy
with the theories of groups and rings. On the other hand, there are no simple LAA’s
(in the nontechnical sense); in particular, there are no finite LAA’s. In fact, as we
have already mentioned, nontrivial lambda algebras are no easier to construct than
nontrivial models of the lambda calculus.

There is a notion of a “natural” lambda abstraction algebra—the algebras that the
axioms of lambda abstraction theory are intended to characterize. They correspond
to functional polyadic algebras and, more loosely, to representable cylindric alge-
bras; we call them functional lambda abstraction algebras. Not surprisingly, they
are closely related to the environment models of laml da calculus. Functional LAA’s
are obtained by coordinatizing environment models by the A-variables in a natural
way. We will try to explain this intuitively before we give the formal definition.

Let V be an environment model and let AV: VY -2, v be the encoding of
the admissible functions of V into V. Let I be the set of A-variables. Elements
of VI (ie., assignments of elements of V to A-variables) are called environments.
Let f € vV'. Each A-variable z and environment p determines a function Jep =
(flp(v/z)): v € V) in V'V, recall that p(v/z) is the environment obtained from p
by reassigning v to z. f is admaissible if each of the functions fz,p 1s admissible in
V, ie., is in the domain of AY. Every functional lambda abstraction algebra A
consists of a set of admissible functions in VV' for some environment model V. V
is called the value domain of A. The A-abstraction of a member f of A is defined
as follows: Az’ (f)(p) = AV (fz,p) for every environment p. f and Az™ (f) can be
viewed as two different forms of the same function in Vv’ with the former being the
intensional and the latter the extensional form. The important point here is that,
In contrast to environment models, the intensional form of the function corresponds
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to an actual element of the functional LAA. This is similar to cylindric algebras
where the propositional function associated with a first-order formula (with free
variables) corresponds to an actual element of the algebra. In the lambda calculus
the only way of accessing the intensional form of a function is by means of a A-term
that defines it.

Definition. Let V = (V, V. AV) be a structure where V' is a nonempty set, -V isa

binary operation on V, and AV . vV £, v is a partial function assigning elements
of V to certain functions from V into itself. V' is called a functional domasin if for
each f in the domain of AV,

(2) fv) = ()_\V (f) Ny, forallveV.

Note that AV must be injective.

Functional domains have an alternative characterization that is taken to be their
definition in Meyer {10].

Let V be a functional domain. Define ¢: V — vV by setting

@(u):=(u-Y v:veV), forallueV.
(2) can be reformulated in terms of @ as f(v) = ®(\V (f))(v), forall v € V, L.e,,
(3) !P()\V (f)) = f, forall fin the domain of AY .

Conversely, let V is a nonempty set, #: V. — vV, and X: vV _2, v such that (3)
holds. Define u-v = (®(u))(v). for all u,v € V. Then (2) holds and hence (V, -, A)
is a functional domain. Thus a functional domain can be alternatively defined as a
structure (V, AV, @ ) satisfying (3).

Definition. Let V = (V.-¥ AY) be a functional domain and let I be a nonempty
set. Let Vi = {f: f: VI -2, vV}, ie., the set of all partial functions from V' to

V. By the I-coordinatization of V we mean the algebra

V= (v, VY ire D), @V e e )),

where, for all a,b: vi 2. v rel,andpeVvh

(a-V1b)(p) := a(p) -V b(p), provided a(p) and b(p) are both defined; oth-
erwise (a -'! b)(p) is undefined.

(xz'".a)(p) := AY ({alp(v/z)) : v € V)), provided {a(p(v/z)) : v € V)
is in the domain of AV (note this implies a(p(v/z)) is defined for all
v € V); otherwise (xz¥".a)(p) is undefined.

o 2V (p) := pa.
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Definition. Let V and / be as in the preceding definition. A subalgebra A of total
functions of V7, i.e., a subalgebra such that (Aa:v’ .a)(p) is defined for all a € A4 and
pevi, is called a functional lambda abstraction algebra. I is the dimension set of
A and V is its value d‘bmu.mf

In the sequel a subalgebra of V; of total algebras will be called a total subalgebra
of V7.

Lemma 9. Let A be a functional lambda abstraction algebra with dimension set
I and value domain V. Leta € A and z € I.

(i) Forallbe A andp e V',

(S5(a))(p) = a(p(b(p)/z)).
(ii) z is algebraically independent of a (i.e., z ¢ Aa) iff

a(p(v/z)) = a(p). forallveV.

Proof.

(ii) Assume z ¢ Ab, ie., ST(b) = b for some : # z. Then, for all ¢ € VI,
b(q(qz/a:)) = b(q(zA (g)/z)) = b(q) by part (i). First taking ¢ = p we get

(5) b(p(p./z)) = b(p).

Now take ¢ = p(v/z) for arbitrary v € V, and note that ¢, — p. and hence
9(gz/z) = p(v/z)(p./2) = p(p./z). We thus get

(5) b(p(p./z)) = b(p(v/z)).
The combination of (4) and (5) gives the conclusion of the implication from left to

right. The proof of the implication in the opposite direction is straightforward and
is omitted. O
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Proposition 10. Every functional lambda abstraction algebra is a lambda ab-
straction algebra.

Proof. Let A be a functional LAA;. We verify each of the axioms (81)—(8s), ().
We will use Lem. 9 repeatedly, often without comment. Let a,b,c € A, z,y €1

withz #y,and p € vi

(81) (SZ(z*))(p) = z* (p(a(p)/z)) = pla(p)/z)= = alp).
(B2) (SZ(W™))(p) = v* (p(alp)/2)) = P(a(p)/2)y = Py = v* (p)-
(Bs) (52 (a))(p) = a(p(z? (p)/ z)) = a(p(pz/2)) = a(p).

(B4)
(S{f(/\a:A .a))(p) = (/\:z .a) (p( b(p /x))
=Y (< (p(b(p)/2) J(v/z)) v € V>)
{a(p(v/z) )):veV)), sincep(b(p)/z)(v/z) = p(v/z)

=\Y ( p
= (Az® .a)(p)-
(Bs) (SZ(a * b)) (p) = (a-* b)(p(clp)/2))
= a(p(c ( ) )) b(p(c(p)/x))
= (S%(a ) Y (52(6))(p)
= (SZ(a) A SZ(b) )(P)

(Bs) Assume y ¢ Ab. For every v € V set p* - p(v/y). Then by Lem. 9(ii),
b(p) =b(p(v/y)) = b(p"), and hence,

©6)  p(b(p)/z)(v/y) = p(v/y) (b(p)/z) = p(v/¥) (b(p(v/¥))/2) = P"(b(p")/z).

(s£0™ 0))(p) = (A" .a) (p(b(p) /)

= 2" ((a(p(b(r)/ )( ) :veV))
(a(p®(b(p*)/2)) 1 v E€V)), Dby (6)
(Si(a)(p*) : v EV))
(SE(a)(p(v/y)) :v e V))
(Ay Si(a))(p).

= A
AV

\'

(
"
(
(

>

The verification of () is similar to that of (36) and is omitted. [l
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Let A = (A,* Xz™ 2%).c; be an arbitrary LAA;. We define the functional
domain V' = (V,-V AV} associated with A as follows: V = A and -V = A The

domain of AV : VV 2, v 5
Dp = {(Sf(a):v€V>:a€Aand:ceI},
and for each function in this set we define
AV ((8%(a):v e V)) = az? a.

The following lemma shows that AV is well-defined.
Lemma 11. <S$(a) tv € V> = (S}j(b) v € V) implies Az® .a = Ayt b,

Proof. Assume SZ(a) = SY(b), forallv e V. If ¢ = y, then taking v = 2% = yA we
get a = S7(a) = S¥(b) = b by (B3), and hence Az® .a = Ay™ .b. Suppose now that
z # y. Taking v = 24, we get 0 = 5%(a) = SY(b) = S¥, (b). Thus a is independent
of y by Prop. 4(iii). Now taking v = y*, we get b — S¥(b) = SZ(a) = S7a (a).
Hence, by (a), Az® .a = AyA -S7a (a) =% b O

So AV and hence the structure V' are well defined. Recall that V = A.

Lemma 12. V is a functional domain.

Proof. We must show that, for each f in the domain of AV , condition (2) is satisfied.
f 1s of the form (SZ%(a) : v € V), for some a € A and z € I. Thus

AV ()) Vo=t a) A v=28%a) = f(v). O

The following theorem is the main result of the paper. It is the algebraic analogue
of the completeness theorem for lambda calculus.

Theorem 13 (Functional Representation of Locally Finite LAA’s). Every locally
finite lambda abstraction algebra A is isomorphic to a functional lambda ab-
straction algebra. More precisely, A is isomorphic to a total subalgebra of the
I-coordinatization of its associated functional domain.

Proof. Let V be the functional domain associated with A and let V; be its I-
coordinatization. Define ¥: A — V; as follows (recall that V; is the set of all
partial functions from V! to V):

¥(a)(p) = S‘p(a), for every a € A and p e V.

Note that ¥(a) is a total function. Recall that e = (zd iz el eVl ¥(a)(e) =
Se(a) = a by Lem. 7. So'¥ is one-to-one. We complete the proof by verifying that
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¥ is a homomorphism from A to Vi and hence an jsomorphism between A and a
total subalgebra of V7.
Let a,b€ A,z € I,and pe V%

¥(a A b)(P) = S'p(a A b)
= S,(a) -V Sp(b), by Lem. 8(i)
=w(a)(p) -V ¥(b)(p)

AP Sy (@), by Lem. 8(ii)
AV ((Sjgp(z/x)(a) tv € V))
=AY ((8,/m)(a) :v €V)), by Lem. 8(ii)
W (@ (@)p(o/) v EV))

(

Finally, the interpretations of the A-variables are preserved (recall that the A-
variables are constant symbols in the language of LAA’s).

(2 )(p) = Sp(a™) = 82, (a*) =ps =2 ' (p). O

Further results. Lambda abstraction theory is much more extensively developed
than we have been able to indicate here. As in the case of the theory of cylindric
algebras, which it p:rallels to a large extent, the emphasis is on representation
results. There exist LAA’s, even of infinite dimension, that are not isomorphic to
any functional LAA. But there are much weaker dimension-restricting conditions
than local finiteness that guarantee functional representability.

A LAA is said to be dimension-complemented if it is of infinite dimension and
Aa # I for all a € A. Every dimension-complemented LAA is isomomorphic to a
certain kind of generalized functional LAA called a point-relativized functional LAA.
The point-relativized functional LAA’s turn out to be (up to isomorphism) exactly
the LAA’s that can be neatly embedded in an LAA of infinitely higher dimension.
(This notion is the exact analogue of that of the same name in the theory of cylindric
algebras; see [8, Part 1].) Using this result we can show that the point-relativized
functional LAA;’s form a variety and are thus axiomatized by pure identities. Every
functional LAA; is isomorphic to a point-relativized functional LAA;, but we do not
know at this time if the converse is true. However they do generate the same variety.
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A large part of the theory is devoted to exploring the connection with models of
lambda calculus. The two kinds of models of lambda calculus of most interest are
the lambda algebras and the lambda models;? see Barendregt [1] and Meyer [10]. Let
A be a LAA. The zero-dimensional part of A is the set of elements with empty di-
mension set, together with the app:opriate restriction of the application operation.
If A is of infinite dimension, then its zero-dimensional part is a lambda algebra,
and every lambda algebra can be obtained this way. Using this characterization we
give a new proof, using Birkhoff’s theorem (see Gratzer [5, p.152]), that lambda al-
gebras form a variety. Lambda models are special kinds of lambda algebras and can
be identified with those functional domains V for which there exists a functional
LAA with value domain V. A functional LAA; is full if it is the largest possible
LAA[ over its value domain. A full functional LAA, exists over every lambda model
and is obviously unique. A natural notion of a full point-relativized functional LAA
can also be defined and there is a corresponding existence result. Lambda mod-
els can be characterized (up to isomorphism) as the zero-dimensional parts of full
point-relativized functional LAA’s.

Connections with other work. As we have tried (o emphasize in this paper,
lambda abstraction algebras can be viewed as a contribution to the theory abstract
substitution. Cylindric and polyadic algebras are two early contributions to this
theory that have greatly influenced our work. The main reference for cylindric
algebras is (8]; for polyadic algebras it is [7], see especially [6]. We also mention
here Németi (11]. It contains an extensive survey of the various algebraic versions
of quantifier logics; it also includes a comprehensive bibliography.

None of these systems presents a theory of pure substitution. In lambda abstrac-
tlon and cylindric algebras, abstract substitution is « defined operation. In polyadic
algebras it is a primitive notion, but there are other prin:itive notions present (viz.,
abstract quantification and the Boolean operations). In the transformation algebras
and substitution algebras of LeBlanc 9] and Pinter (13! substitution is primitive and
abstract quantification is defined in terms of it. A pure theory of abstract substi-
tution has been developed by Feldman [3.4] (see the additional references given in
his first paper). This work parallels ours in many respects and we acknowledge our
indebtedness to it.

Finally, we mention that some work that has been done on a theory of substitu-
tion in combination with al stract variable-binding operators. See [12], {14].

2Lambda models are essent ially the same as environment models; sec 10].
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Free Lattice-Ordered Abelian Groups and
Varieties of MV-Algebras

Roberto Cignoli

MV-algebras were introduced by Chang [4], [5] as the algebraic counterparts of the
Lukasiewicz infinite valued propositional logic. ‘

They can be defined as algebras (A, @, =,0) of type (2,1,0) satisfying the following
equations:

MVI) z@(y®2)=(cdy) @2

MV2) z0y=y®z

MV3) 200 =12z

MV4) -~z =1z

MVS5) 2@ -0 = -0

MV6) ~(-z@y)@y=-(z®y) &=
Indeed, by taking y =: =0 in MV6 we obtain:

MVT) z & -z = 0.

Therefore, if weset 1 = <0 and 20Oy = ~(=z @ —y), then the system (A. B, ®, -, 0, 1)
satisfies all the axioms given in [13], Lema 2.6, and hence the above definition of an
MV-algebra is equivalent to Chang’s original definition ( cf.[6]).

Moreover, if we define z = y = ~z @ y, then the system (A, =>, -, 1) is a CN-algebra
(9], [11] or a Wajsberg algebra [8]. Conversely, if in a Wajsberg algebra (A4,=,-,1) we
put 2@y = =z = y and 0 = -1, then the system (4, &, -,0) is an MV-algebra (see [8]).

MV-algebras also coincide with bounded commutative BCK-algebras (see (8] and [14]),
and hence they also coincide with Bosbach’s bricks [3].

As usual, we are going to denote an MV-algebra (A, &, -, 0) by its underlying set A.

Let G be a lattice-ordered abelian group (abelian l-group for short) and u € G,
u > 0. Then the segment [0,u] = {z € G | 0 < z < u} equipped with the operations:
z@y = (z+y)Au, and -z = u — z, is an MV-algebra, which we will denote by I'(G,u,.
This is the most general example of an MV-algebra, because Lacava [12]. generalizing
a previous result of Chang [5], showed that for any MV-algebra A there is an abelian
l-group G and 0 < u € G such that A is isomorphic to ['(A,u). If H is another abelian
l-group and 0 < v € H, and h: G — H is an I-group homomorphism such that A(u) = 1,
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then the restriction of A to the segment [0,%] is a homomorphism I'(k) from I'(G,u) into
['(H,v), and it is easy to check that I' is in fact a functor from the category A of abelian
l-groups to the category M of MV-algebras.

The relations between MV-algebras and abelian [-groups were further developed by
Mundici [13]. An element u of an l-group G is said to be a unit if for each z in G there is
a natural number 7 such that z < nu. Let G denote the category whose objects are the
pairs (G,u) such that G is an abelian /-group and u is a unit of G, and whose morphisms
are the [-group homomorphisms which preserve the units. Mundici [13] proved that T’
defines a natural equivalence from G to M. Mundici observed that our present notation
is consistent with the notation used in [13], where I is applied only to abelian [-groups
with unit: as a matter of fact, letting G’ be the l-subgroup of G given by those elements
of G whose absolute value is dominated by some multiple of u, it follows that u is a unit
of G', and T'(G',u) = I'(G, u).

The equivalence between the categories G and M makes MV-algebras useful to classify
approximately finite-dimensional C* algebras ([13], [15], {17], [18]), and to investigate the
Murray von Neumann order of projections in operators algebras on Hilbert spaces ([6],
(19]). Mundici also discovered applications of MV-algebras to the study of the complexity
of adaptive error-correcting codes [16].

A fundamental result of Chang ([5], Lemma 8) asserts that the algebra I'(@, 1) gen-
erates the variety of MV-algebras, where () denotes the additive group of the rational
numbers with natural order. To prove this result Chang made explicit use of the com-
pleteness of the (first-order) theory of the totally ordered divisible abelian groups. On the
other hand, Komori [11] characterized all subvarieties of MV-algebras by making explicit
use of the completeness of the theory of a special class of totally ordered abelian groups,
previously introduced by him in [10].

The aim of this note is to show that these results of Chang and Komori can be derived,
via the properties of the functor T, from the fact that the variety of abelian [-groups is
generated by Z, the additive group of the integers with natural order. This result is
in turn a consequence of Weinberg'’s characterization of free abelian [-groups (see the
Appendice of [1], and the references given there). A similar approach was already used
by Di Nola and Lettieri ([7], Lemma 3.8) to characterize the variety generated by perfect
MV-algebras.

We hope that the proofs we present here may render the theory of MV-algebras more
accessible to people iterested in these algebras as a tool to be applied outside the fieid
of mathematical logic. for instance in Functional Analysis or in Coding Theory.

We are going to 1 se the following notations: R will denote the additive group of the
real numbers with n: tural order. For each integer n > 2, L, will denote the finite chain
0,1/(n—1),---, (n=2)/(n~1), 1, considered as a subalgebra of the MV-algebra ['(R,1).
Note that for each n > 2, the algebra L, is isomorphic to I''Z,n —1).

Lemma 1 Let G, H be abelian I-groups, 0 < u € G and h : H — G be a surjective l-
group homomorphism. Then there is0 < v € H such that h(v) = u and I'(h) : I'(H,v) —
I'(G,u) s a surjective homomorphism.

Proof. Since h is surjective, there is r € H such that i(z) = u. Thenv =2V0
satisfies h(v) = u and v > 0. Therefore I'(h) : I'(H,v) — ['(G,u) is a homomorphism.
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To check that it is onto, take y € [0,u]. There is z € H such that h(z) = y, and hence
t=vA(zV0)€e0,v]and ht)=y. O

Lemma 2 Let H be an abelian i-group and 0 <v € H. If {K.}ic;, I £ 0, is a family of
l-groups and
b H — [ K
€l
ts an l-group embedding, tlen J = {j € I|lh(v); # 0} # 0 and the correspondence
[0,v] 3 2 — {h(z),},es defines an embedding

®:I'(H,v) — [ (K;, h(v);).

j€J

Proof. Since h is an l—groub embedding and v > 0, A(v) > 0 and hence J # §. The
remainder of the proof is obvious. O

Theorem 3 The variety of MV-algebras is generated by the MV-algebras L,,, n > 1.

Proof. Let A be a non trivial MV-algebra. Then there is an abelian l-group G
and 0 < u € G such that A is isomorphic to I'(G,u). By ([1], Corollarie Al1T7),Gisa
homomorphic image of a subdirect product, say H, of l-groups isomorphic to Z. Hence
by Lemma 1, A is a homomorphic image of I'(H,v) for some 0 < v € H , and by Lemma
2 T'(H,v) is embeddable in a product of algebras I'(Z, n;) for some n; € Z, n; > 1, and
the algebras I'(Z, n;) and L, are isomorphic for each n; > 1. O

Remark: Since Chang ([5], Lemma 3) proved that each MV-algebra is a subdirect
product of totally ordered MV-algebras, in the above proof we can take A to be a totally
ordered MV-algebra. Hence the existence of a (totaily ordered) abelian l-group G and a
unit u € G such that A is isomorphic to I'(G, u) is guaranteed by Lemmas 5 and 6 in [5].

Corollary 4 ([5]) The variety of MV-algebras is generated by the algebra I['@,1).

Proof. Whenever an equation o(zy,---z;) = T(z1,- -, ) is falsified in '(Q, 1),
and, say, ry, - - -, 7 are rationals falsifying the equation, then letting d be their least com-
mon denominator, the equation is also falsified in the finite chain 0,1/d,2/d,---,(d—1)/d,
1 (because the MV operations of negation and addition do not change common denomina-
tors). Thus, if an equation holds in all MV-algebras L,, then it holds in the MV-algebra
I'(Q,1). The converse is trivial. O

For each abelian I-group G, let A(G) be the lexicographic product Z ® G. It is well
known that A(G) is an abelian [-group (see, for instance, [2], Chapter XIII, Section 2,
Lemma 3). It is easy to check that for each [-group homomorphism & : G — H, the
function A(k) : A(G) — A(H) defined by the prescription A(f)((m,a)) = (m, h(a)) for
each (m,a) € Z®G, is an l-group homomorphism. It is easy to check that A is a functor
from the category A of abelian I-groups to A. Note also that & is injective (surjective) if
and only if A(R) is injective (surjective).
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For each 1 < n € Z and each element z of an l-group G, (n,z) is a unit of A(G),
and hence T'(A(G), (n,z)) is an MV-algebra. The MV-algebras T'(A(Z),(n,0)) and
T(A(Z),(n,1)) will be denoted respectively by K. and H,. The algebra K, coincides
with the algebra S considered in [11].

The next lemma was proved by Komori ([11], Lemma 4.9) by means of some direct
computations.

Lemma 5 (Komori) For each k € Z, Var(T(A(Z),(n,k)) = Var(K,).

Theorem 6 For each abelian I-group G and each b€ G, b > 0, Var(L(A(G),(n, b)) =
Var(K,).

Proof. Let G be an abelian I-group and G 3 b > 0. By ([1]), Corollaire A.1.7,
G is a homomorphic image of a subdirect product, say H, of l-groups isomorphic to Z.
Suppose h : H — G is a surjective l-group homomorphism. By Lemma 1 there is
0 < ¢ € H such that h(c) = b. Therefore, A(h) : A(H) — A(G) is a surjective [-group
homomorphism such that A(k)(n,c) = (n,b), and hence T'(A(R)) : T(A(H),(n,v)) —
['(A(G),(n,u)) is surjective. Suppose now that I is a nonempty set and h : H —
Z! is an l-group embedding. Then the function f : A(H) — A(Z)" defined for each
(m,z) € A(H) by the prescription f(m,z) = {(m, h(z);)}ier is also an l-group embedding,
and by Lemma 2 we have that ['(A(H),(n,c)) is embeddable in a product of algebras
['(A(Z),(n, k:)). Hence, by Lemma 53, [(A(G),(n,b)) € Var(K,). On the other hand,
since the correspondence (m, k) — (m, kb) defines an [-group embedding h:AZ)—
A(G) such that h(n,1) = (n,b), it follows that I'(h) : H, — T[(A(G),(n,b)) is an
embedding. Hence, H, € Var(T'(A(G),(n,b))), and since by Lemma 5, Var(H,) =
Var(K,), we finally have Var(T'(A(G), (n,b))) = Var(K,). O

From the above theorem we can derive the key result used by Komori to determine
the varieties of MV-algebras ([11], Theorem 4.10):

Theorem 7 (Komori) Let A be a totally ordered nonsimple MV-algebra and let M be
its unique mazimal ideal. If A/M is isomorphic to Loy, then Var(A) = Var(K,).

Proof. By ([11), Lemma 4.4) there is a totally ordered abelian l-group G and

u € G, u > 0, such that A is isomorphic to I'(A(G),(n.u)). Then by Theorem 1?1,
Var(A) = Var(K,). C
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PARTITION PROPERTIES AND PERFECT SETS

CARLOS AugusTto DI PRIsco

Instituto Venezolano de Investigaciones Cientificas
Apartado 21827
Caracas 1020-A, Venezuela

We present an example of the use of partition relations in consistency proofs. We
will use a partition relation of pairs of real numbers to obtain a consistency result about
perfect sets of real numbers. Section 1 contains some definitions and the statement of
the main result. Section 2 is devoted to a proof of the fact that Ramsey ultrafilters are
”preserved” by Sacks forcing. More general cases appear in the literature ([HP] treates
the case of finite product of Sacks forcing, and [L] infinite products, preservation of
Ramsey ultrafilters by iterations of Sacks forcing is proved in [BL]) but for the sake
of completeness we include this simpler case. In section 3. contains the proof of the
consistency of a partition property of [w]“ x w*“ using an argument from [Mi], and in
section 4. the proof of the main theorem is completed.

§1. PERFECT SET PROPERTIES.

A set of real numbers is perfect if it is closed and contains no isolated points. It is
easy to show that a perfect set has cardinality 2%, the cardinality of the continuum.

The Axiom of Choice implies that there are totally imperfect sets, this is, sets which
neither contain nor are disjoint from a perfect set. This result is due to Bernstein (B],
who also noticed that a totally imperfect set cannot be Lebesgue measurable nor can it
have the property of Baire. We will say that a set of reals A has the Bernstein property
if either A or its complement contains a perfect set.

It has been shown by Solovay [So| that if the theory ZFC+”There is a inaccessible
cardinal” is consistent then it is also consistent ZFC+DC+ ” every set of reals is Lebesgue
measurable, every set of reals has the property of Baire and every uncountable set of
reals contains a perfect subset”. The assumption regarding an inaccessible cardinal is
necessary to obtain the consistency of both the property about Lebesgue measure and
the perfect subset property. The case of the Baire property is different: the consistency

of ZFC is enough to show that "every set of reals has the property of Baire” is consistent
with ZFC+DC [Sh].

I would like to thank W. Hugh Woodin for many conversations on the topic if this paper.

Typeset by Ap5-TEX
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DC is a form of the Axiom of Choice which is strictly weaker than the full axiom.

Clearly if every uncountable set contains a perfect subset, then every set has the
Bernstein propery, but these are not equivalent propositions (not even in consistency
strength).

Instead of working directly with the set of real numbers, we will work with the Baire
Space, w?, the set of sequences of natural numbers, with the product topology obtained
when giving the discreet topology to the set of natural numbers. A base for this tolopogy
is given by the sets U, = {@ € w¥: (3k €w)a [ k = s} where s is a finite sequence of
natural numbers.

The Baire Space is homomeorphic to the irrational numbers, and therefore the ele-
ments of w* will be called reals.

We will address the question of whether the existence of an ultrafilter on the set
of natural numbers is consistent with Bernstein’s property for all sets of reals. ( The
existence of an ultrafilter on the set of natural numbers is also strictly weaker than AC
and it does not follow from DC).

We will prove the following theorem after reviewing some results about Ramsey
ultrafilters (Section 2) and after establishing the consistency of a partition relation of
pairs (Section 3).

Theorem 1. Con(ZFC+"There is an inaccessible cardinal”) implies

Con(ZF+DC+ "There is an ultrafilter on w” + "Every set of reals contains or is
disjoint from a perfect set”).

The results presented here are not the best possible (see remarks at the end of the
paper), but the proofs given are illustrative of the way partition properties can be used
to establish consistency results in Set Theory. The consistency of the partition property
discussed in section 3 is proved by an argument given by Miller in [Mi], where he shows
that the partition relation holds for Borel partitions.

This consistency result also follows from a result of James Henle [H] which makes use
of the dual Ramsey property of Carlson and Simpson [CS].

§2. THE HALPERN-LAUCHLI THEOREM AND RAMSEY ULTRAFILTERS

In next section we will establish the consistency of a partition relation. One of
the main ingredients we will use in the proof is the fact that Ramsey ultrafilters are
preserved by Sacks forcing. We will proceed to prove this fact, using a variant of a weak
version of a combinat >rial result due to Halpern and Lauchli [HL}.

Definition. An ultrafilter U on w is Ramsey (or selective) if for every decreasing
sequence Ag O A; 2 ... of sets in U, there is an increasing function f : w — w such
that range(f) € U, and for every k € w, f(k +1) € Agk).
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The existence of Ramsey ultrafilters on w is independent from ZFC, but follows from
the Continuum Hypothesis. (See [J1] for equivalent formulations of the property of
being Ramsey for ultrafilters on w).

A tree on w is a subset T of w<¥ ordered by extension with the property that if
8 €T then s [ i € T for all i < lenght(s). We say that a tree is finite branching if
each node has finitely many inmediate successors. The set of (infinite) branches of a
tree T is a closed subset of w*, it is denoted by [T']. This set is perfect if each node has
at least two incomparable successors. The height of a node of a tree is defined as the
order type of the set of predecessors (in the tree) of that node. The height of the tree
is the supremum of the heights of its nodes. The n'* level of a tree is the set of nodes
of height n.

A tree is said to be a finite branching tree is each node has finitely many inmediate
successors. A tree on w is perfect if each node has incompatible successors, in other
words, each path eventually branches).

Let T be a finite branching tree of height w with the property that each node has
at least two inmediate successors. Denote by T'(n) be the n'* level of T. S CTis
a level subtree if it is a subtree ( i.e. the order relation of T restricted to S is the
order relation of S) and Vn3m[S(n) C T(m)] We say that S is dense if (Vs € S)(Vt €
Tt an immediate successor of s)(3s’ € S)[t < s'].

If U is an ultrafilter on w, we say that S C T isalU — full subtree of T if {m :
InS(n) CT(m)} € U.

The following version of the Halpern-Liuchli Theorem is due to Halpern and Pincus
[HP].

Theorem. If U is a Ramsey ultrafilter on w and T is a finite branching perfect tree
any node of which has at least two inmediate successors, for any F : T — 2, there is a
level dense U-full subtree S C T on which F is constant.

Proof (Pincus [P]). Consider the folowing statement.

(*)Vk € wVa € T(k){ne€w: ¢ T(n){F(b) =0and a < b]} €.

Suppose (*) is true. For each k € w and each a € T(k), let A 4 satisfy

Vn € Ago3b € T(n)[F(b) = 0 and a < b].

Let Ay = NaeT(k)Ak,a- Notice that Ay € U. Also, Vn € ArVa € T(k)3b €
T(n)[F(b) =0and a < b

Without loss of generality we can assume that the Aj’s are decreasing, and if we set
By = Ak41, since U is Ramsey, there is a function f 1w — w with range(f) € U and

Vk € w(f(k+1) € By = Agrys1)-
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The desired subtree S C T is now built with levels in range(f). Let S(0) be any
a € T(f(0)) with F(a) = 0. Such an a exists since any member of T(1) has such
a successor in T(f(0)). If S(k) has been defined, consider ¢t € T(f(k) + 1). Since
fk+1) € Agpys1, there is by € T(f(k + 1)) satisfying F(b;) = 0 and by > t. Set
S(k+ 1) = {bt :3ds € S(k‘\ <t< bt]}

The subtree S is dense, U-full, and all its nodes have F image 0.

Suppoose now that (*) does not hold. Then we have

Bk e w)FaeT(k)){n€w:VbeT(n)la < b= F(b) =1]} € U.

Fix such a k and a, and A € U such that Vn € AVb € T(n)[b > a = F(b) = 1].

Set $ ={beT:3nc Afb € T(n) and a < b]}, S is level dense, U-full and F is
constantly 1 on its nodes.

In [HP] Halpern and Pincus prove a more general version of the theorem we state
below, namely, if a finite number of Sacks reals is added by product forcing to a model
in which there is a Ramsey ultrafilter, this ultrafilter generates a Ramsey ultrafilter in
the generic extension. Laver [L] generalized this to contably many Sacks reals. The
difficulty in obtaining these more general versions lies in the corresponding Halpern-
Lauchli results needed to prove them.

Let S is the partial order of Sacks perfect set forcing (i.e. the set of perfect trees on
w ordered by inclusion, p < g if and only if q is included in p). This forcing adds a real
to the ground model; if G is S-generic over M, then z¢g = NG is the real added. G 1is
recovered from z¢ as the set of all perfect trees of which z¢ is a branch.

For each n € w one can define an order relation <, between perfect trees saying that
p <n ¢ if p < ¢ and p and ¢ coincide up to their nth splitting level. A well known fact
about Sacks forcing is that for every sequence pg >1 p1 >2 p2 =3 ... thereis a condition

q called the fusion fo the sequence such that for every n € w, ¢ <n pn-(See, for example,
[J2]).

The next theorem was proved by Solovay (see [HP]) and Baumgartner and Laver
[BL].

Theorem. Let M be a model of ZFC+” U is a Ramsey ultrafilter on w” then for any
G S-generic over M M [G] E U generates a Ramsey ultrafilter.

Proof. We will first show that every subset of w in M[G] contains or is disjoint from a set
in U. From this follows that U generates an ultrafilter U* in M[G]. Then, we will show
that this ultrafilter is Ramsey. Both things are accomplished via fusion arguments.
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a) Let 7 be a term for a subset of w, and let P € Sbe such that p I 7 € w. We will
findr <pand X €U suchthatrlF X Crorrl-X N7 =0.

Extend p below each node in its first splitting level to decide 0 € 7, obtaining this
way a condition p, with the same first splitting level as p. Once p, has been obtained,
extend it below each node .n the (n + 1) - th splitting level to decide n € 7. This way
we construct a sequence of conditions p >, p; >9 po >3.... Let g be the fusion of the
sequence (i.e. for all n, ¢ <, p,). The splitting nodes of q form a perfect tree, and its
nodes are divided in two classes: F(s) = 0 if s is in the (n + 1) — th splitting level and
gslFn €1,and F(s) = 1if g, Ik n ¢ 7. Notice that by extending g if necessary, we may
assume ¢ is finite branching, and by the previous result, there is a level dense U-full
subtree T of S. This subtree of splitting nodes determines a condition r <gq,and X is
the set {m : InT'(n) C S(m)} € U.

b) To show that this ultrafilter is Ramsey, first notice that for any function f 1w — M
in M[G], there is a function g € M such that g : w — [M]<“ such that for every n € w,
f(n) € g(n). This is an easy fact about Sacks forcing (see [Sa]) proved also by a fusion
argument. If pIF f: w — M, we define a fusion sequence by deciding the value of f(n)
below each node in the (n + 1) — th spliting level of the previous forcing condition. To
obtain a finite number of possible values for each f(n), it is enough to assume that p is
a finite splitting tree.

Now,if AgD A, D ... is,in M[G], a decreasing sequence of elements of the ultrafilter
U* let h: w — M be a function in M|G], such that if hA(n) = Y,, Y, € U and Y,, C An
(we are assuming AC in M, and therefore we have it in M[G]). By the previous remark,
there is a functiong € M, g : w — M, such that for each n, 9(n) is finite and h(n) € g(n).
Put h’'(n) = Ng(n), the function A’ is in M and for each n, g'(n) € U and h'(n) C A,,.
If we put now B, = Ni<nh'(i), we obtain a decreasing sequence Bg O B, O ... in M,
and using the fact that U is a Ramsey ultrafilter in '/, we know there is an increasing
function f : w — w such that f € m, and for each : f(n+1) € By C Agmy. The
function f works for the sequence Ao, Ag,....

§3. A PARTITION PROPERTY FOR PAIRS OF REALS

As customary, [w]“ denot 's the collection infinite sets of natural numbers. Notice
that [w]* can be viewed as a subspace of w* by identifying every infinite set of natural
numbers with its natural enumeration.

Consider the following partition relation for pi.irs of reals.

RP:

For every F : [w]¥ x w* — 2 there is an infinite z lw]“ and a perfect set P C w¥
such that F is constant on the product [z]“ x P.

This can be viewed as a parametrized version of the Bernstein property.
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Theorem. Con(ZFC+There is an inaccessible cardinal) implies Con(ZF +DC+ RP).

R. Laver has shown that an n-dimensional version of this parametrized partition
property (finite powers of w* are considered) holds for Borel partitions. A proof is
contained in [LSV], whe:~ Laver’s result is obtained as a consecuence of a partition
theorem for Borel partitions of trees.

The theorem will follow from the next Lemma by the methods developed by Solovay
in [So] (See [Je]). The lemma shows that the property RP holds for partitions of certain
specific form. Following Solovay, to obtain the theorem we pass to the inner model of
the Levy Collapse given by the sets definable from a real and an ordinal, and then use
the fact that all partitions in the inner model have that specific form.

As we mentioned above, this line of argumentation appears in [Mil.

If U is a Ramsey ultrafilter on w, define [P as follows. The conditions in P are pairs
(s, S) where s € [w]<¥ , S € U and sup(s) < min(S). The partial order is defined as
follows (s,8) < (¢t,T)ifandonly ift C s, SCT and s -t C T, This is Mathias forcing
with respect to U, as defined in [Ma]. [P adds an infinite subset of w to the ground model
(a Mathias real), namely, if G is P-generic over M, z¢; = U{s : 35(s,S) € G} is the
generic subset of w. The generic filter G is obtained froi: zg as {(s, S):sCzg CsUS}.

2.0 of [Ma] says that z is generic (with respect to P) over M if z is infinite and z — B
is finite for all B € U. As a consequence, x is generic if and only if every infinite subset
of z is generic.

An important property of this forcing, also proven in [Ma), is that if ¢ is a sentence
in the forcing language, and (s, S) is a condition, there is T C S such that (s, T') decides
é. In particular, every forcing statement is decided by a condition of the form (@, S).

Lemma. Let M £ ZFC +There is an inaccessible cardinal, and let U be a Ramsey
ultrafilter in M. Let x be inaccessible in M, and let ¢ C Coll(w, < &) be generic over M
( this is the Levy collapse of k to ®;). In M[G], let A C [w]* x w* be such that

A={(z,a): Mlz,a]l F ¢(z,a)}.

Then, in M[G], there are ¢ = {w]” and P C w* such that P is perfect and [z]* x P is
homogeneous for A (i.e. this product is contained in A or disjoint from A )-

Proof. In M, let P be Mathias forcing with respect to the ultrafilter U, and let S be
Sacks forcing (perfect set forcing).

If (9, S’),T’) is a forcing condition in the product, there is an extension of the form
((8,8"), T") which decides the formula [f.a] F ¢(z.«). Suppose that the condition
((9,8"), T") forces the formula.

Our objective is to find a pair (S,T) such that S € [S']*. T is a perfect subtree of
T”. and for every z € [S]* and every a € [T]. the pair (z,a) is P x S generic over M.
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If we get such a pair then we are done, since if (z,a) is P x S generic over M, and
((9,8),T) is in the generic, then

((0.5),T)IF M(z,a] F ¢(z, a)

implies that (z,a) € A (where Z is the canonical name for the generic real added by P
and @ is the canonical name for the Sacks generic real).

Since card(S) < x and « is inaccessible, card({D C S: D is dense open}) < k. So,
in M[G], we can list the dense open subsets of S which lie in M as {Do, Dy,...}.

We build a fusion sequence Ty >¢ T; > Ts. .. Tn 2n Thyr ... as follows. Given Ty,
we extend below each node after the first splitting in order to meet Dy; once we have
defined T,,, we extend below each node following an nth splitting to meet D,,. If T is
the fusion of that sequence, each branch of T is Sacks generic. So we have a perfect tree
with each of its branches being a Sacks generic real.

Now, let x be P-generic over M. Such an x exists in M[G] since cadinality of P is less
than k.

Claim: Every y € [z]* is P-generic over M [a] for each o € [T]

By the result of Solovay mentioned in the previous section, U,, the filter generated
by U in M [a], is also a Ramsey ultrafilter.

Let P, be the partial ordering defined by this ultrafilter in M [a].

Sublemma.

Let y be P-generic over M. Then, y is P-generic over M [a]

Proof of Sublemma. It is easy to verify that is D is a dense open subset of P and
D € M|a], then D is a dense open subset of P,. Ify - P-generic over M, by 2.0 of [Ma),
y is infinite and y-B is finite for each B € U. This implies that y-S is finite for each
S € Uaq, and therefore (using 2.0 of [Mathias] again), y is P,-generic over M [a). This
means that G = {(5,5) € P, :s Cy C sU S} is a filter which meets every dense open
subset of P, belonging to M[a). By the comment above, G meets every dense open
subset of I’ which is in M [a]. So, y is P-generic over M a].

This ends the proof of the sublemma. And from this the Claim follows inmediately.
The pair (z, [T']) is homogeneous for A since for every y € [z]* and every a € [T), (y, @)
is P x S generic over M.

Note that the same result can be obtained if we consider partitions of [w]“ x 2“, since
the perfect set forcing we used above is equivalent to perfect set forcing with perfect
subtrees of 2<%,
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Using this fact, it is easy to verify that the partition relation RP implies the partition
relation obtained considering partitions into three colors (in fact, into any finite number
of colors); one just needs to verify that the proof given above proves that for every
partition F : [w]* x P — 2 (where P is a perfect set), there is an infinite set H and a
perfect Q C P such that /- is constant on the product [H]“ x Q.

The consistency of ZFC+DC+RP might as well follow from the consistency of ZFC
alone, but this is unknown: the property "every set is Ramsey” (i.e. VA C [w]|¥3z €
[w]* with [z]* C A4 or [z]* N A = ) follows from the consistency of ZFC+there is an
inaccessible cardinal (it was established by Mathias [Ma] that this property holds in
Solovay’s model), but it is not known if it follows from the consistency of ZFC alone.

§4. CONCLUSION

In this short final section we just conclude the proof Theorem 1 and make some
remarks about this result.

Proof of Theorem 1. Force with P(w)/fin over the model of DC+RP obtained in the
previous section. This way we add an ultrafilter on w. Given a partition F : w¥ — 2
in the extension, let z € [w]* be a condition such that z IF F : w¥ — 2. Define, in the
ground model, the following partition G : [z]* x w* — 3 by G(z,a) = i if and only if
z I+ F(a) =i (for i € {0,1}), and G(z.a) = 2 if x does not decide the value of F on a.
Let (z,T) be homogeneous for G with z € [2]* and " a perfect tree. We can find such
a homogeneous pair using the partition relation RP (which holds in the ground model)
and an isomorphism between [w]* and [z]*. Note that G cannot take constant value 2
on [z]¥ x P, because if z does not decide F(a) there is y € [z]* which decides it. Let
i € {0,1} be the constant value of G on [z|* x T. Then, for every « € [T], z Ik F(a) = i.
By a standard density argument, this is enough to show that in the extension M [G]
there is a perfect set homogeneous for F.

There are two directions ‘n which Theorem 1 could be strengthened.

(1) Eliminating the hypothesis of the existence of an inaccessible, and
(2) replacing Bernstein property by the Perfect Set Property.

Using some techniques developed by Woodin, it is possible to obtain the second of
these strenghtenings.
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EQUIVALENCIA ELEMENTAR ENTRE FEIXES

A. M. Sette e X. Caicedo

INTRODUGCAO

Neste artigo estudamos a equivaléncia elementar entre feixes de estruturas
sobre espagos topoldgicos, com respeito a semantica de Kripke-Joyal enriquecida
com novos conectivos intuicionistas.

A nogao de feixe foi introduzida por Lazard e desenvolvida por Cartan
em 1950. Tal nogdo se mostrou extremamente itil em diversas dreas da ma-
tematica tais como geometria diferencial, geometria analitica, fungbes diferen-
ciais, topolégia algébrica, etc. Na década de 60, Grothendieck, Serre Giraud,
Artin, Verdier, entre outros, obtiveram expressivo avanc¢o nessa area, introdu-
zindo nogao mas geral de topos de Grothendieck. Giraud caracteriza os topos de
Grothendieck como uma categoria E satisfazendo as seguintes condigoes:

(i) E tem limites finitos

(i) E tem somas arbitrdrias disjuntas e universais

(iii) E tem relagdes de equivaléncia efetivas e universais e

(iv) E tem um conjunto pequeno de geradores.

A categoria de feixes sobre um espago X e o protétipo de um topos de Grothen-
dieck concreto.

Por volta de 1969/70 Lawvere e Tierney, preocupados em caracterizar a
categorias dos conjuntos, axiomatizam em linguagem de primeira ordem tal cate-
goria como um topos elementar satisfazendo determinadas condigées. A nogao de
topos elementar generaliza os topos de Gothendieck e mostrou-se, uma vez que
cada topos estd munido canonicamente de uma légica intuicionista, extremamente

rica para a ldgica, trazendo uma nova luz a teoria dos modelos intuicionista. Para
maiores detalhes ver [F-S], [Gr], [R] ou [G].

Na primeira parte deste artigo introduzimos a nogao (canonica) de pseu-

dogrupo (ver [E], [C-S]) de homeomorphismos parciais entre feixes de estruturas
sobre um espago topoldgico. Na segunda parte utilizamos a nogao natural de
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conectivo em um topos para introduzir novos conectivos intuicionistas na logica
interna do topos (cf. Caicedo [C]). Finalmente, generalizamos os teoremas de
Fraissé e Karp para o topos de feixes sobre um espaco X.

I. FEIXES DE HOMEOMORFISMOS PARCIAIS

Seja X um espago topoldgico e consideremos o topos Sh(X) constituido
por todos os feixes sobre X; Sh,(X) serd a categoria de feixe de estruturas de
tipo 7 sobre X, i.e., A é um objeto do S/,(X) se e somente se A = (A, R4)ge,
onde A é um obJeto de Sh(X) e paracada R € 7, R n-aria, R* é um subfeixe do
produto fibrado de A (n- vezes), na categoria Sh(X). Em outras pa.lavras para
cada ¢ € X a fibra A, sobre z esta munida de uma estrutura A,, = (A;, RA 2)Rer,
de tipo 7, tal que para cada R € r, _(n-dria) RA = UgexR2 6 um aberto no
espago de fibras do produto fibrado A, n vezes. Os morfismos de Sh.(X) sao
aquilos de Sh(X) que preservam homomorficamente a estrutura das fibras.

Observemos que para cada aberto U de X a estrutura A(U) de secgoes
sobre U é aquela induzida pelo produto cartesiano Il ¢y A, 10 conjunto A(U) de
secgoes continua do feixe A. O feixe de estruturas esta completamente determi-
nado pelo funtor U +— A(U) com as restrigoes naturais fy w : A(U) — A(W)
para U C W, que é um funtor contravariante da categoria Ab(X) de abertos de
X na categoria St, de estruturas de tipo 7 (com os homomorfismos correspon-
dentes). Para detalhes e propriedades bésicas consulte [T] onde o caso de feixe
de estruturas algébricas esta bem explicado.

DEFINIC;\O 1 - Dados A e B € Sh,(X) um homeomorfismo parcial de A em

B, h: A — B, é um homeomorfismo de um aberto A’ d- vspaco de fibras A em
um aberto B’ do espago de fibras B que preserve a estru ra das fibras, i.e., para
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cada z € X, h|A; é um isomorfismo parcial de A; em B,
e

ST cij

/;\;&_, /L\__,ﬁﬁ

N ‘ 4
~ 7
s 7/
N\
; Nl

ou seja, h é um isomorfismo na categoria Sh.(X) entre os subfeixe determinados
por A’ e B’ em A e B respectivamente.

t_

Seja Py a categoria que tem por objetos os objetos de Sh,(X) e por con-
junto de morfismos Py(A, B) de A em B os homeomorfismos parciais de 4 em
B. Observe-se que o homeomorfismo vazio ¢ pertence a Py(A, B). Para cada
k € w e aberto U de X definimos a subcategoria Py(U) da seguinte maneira:

DEFINICAO 2 - Py(U) = P, qualquer que seja o aberto U de X. Suponhamos
definido Pi(W) para cada W. Neste caso, h: A = B € Pry1(U) se h € P(U) e
(a) Para todo aberto W C U e © € A(W) existe uma cobertura de abertos
{W:}i de W e h; € Pi(W;) tais que h; 2 h|W; (Mais correto seria h{p~ (W), por
simplicidade escreveremos h|W;) e @(W;) C dom h; para cada i

(b) Reciprocamente para todo aberto W C U, ©' € B(W) existe uma cobertura
de abertos {W;},, e h; € P,(W,) tais que h; 2 h|W; e O'(W;) C codom h; para
cada i.
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A definigao geral de pseudogrupo podera ser encontrada em (E].

PROPOSICAO 1 - Para cada k, Pi(U) é um pseudogrupo.

Demonstragéo - Para k = 0 6 evidente que: 1- A restrigao do homeomorfismo
parcial h: A — B a um aberto de 4 é um homeomorfismo parcial. 2 - A inversa
de um homeomorfismo parcial A : 4 — B é um homeomorfismo parcial. 3 -
A unido de um sistema dirigido por inclusio de uma familia de homeomorfismos
parciais ¢ um homeomorfismo parcial, portanto Py é um pseudogrupo. Parak > 1
a proposigao segur-se por indugio.

PROPOSIGCAO 2 - O funtor U Pi(U) que atua em morphismos por res-
trigdes é um feixe de secbes sobre X, isto é:

(a) Se U C E entio h € P(U) implica h|W ¢ Py(W).

(b) Se U = UiU; entio h|U; € Pi(U;) para todo i, implica h € P(U).

De fato Py4; é um subfeixe (de pseudogrupos) de Py.

Demonstragao - Indugio sobre k.

A cadeia dos P pode ser continuada transfinitamente pondo-se P,(U) =
Ng<aPs(U) para a um ordinal limite. As proposiges 1 e 2 continuam validas.

Uma questdo natural que se pée, é de se saber quais os invariantes da acao
de Py sobre Sh,(X), o proposito deste artigo € responder tal questao.

II. CONECTIVOS EM FEIXES

Por Q designamos o classificador de subobjetos de Sh(.X), isto é, o feixe
de Sh(X) definido por: QU) = {W C U : W é um aberto de X}, para cada

U € Ab(X). Se U' C U, Q) iR QUU') é a restrigao canduica.

DEFINIC;&O 3 - Um conectivo undrio de X é um subfeixe de (1, isto é,
um conectivo undrio F é uma fungio F : U — Fy C QU) tal que se

133



U’ € Ab(X), U’ C U o seguinte diagrama comuta

QU) - U
U U
|

Fu — Fu
e além disso tem-se a propriedade de coeréncia (ou colamento): se {U:}i é uma

cobertura aberta de U e W € QU) é tal que W N U; € Fy, para cada i entéo
W € Fu,.

Observando-se que Q(U) x Q(U) = (2 x Q)(U) definimos um conectivo
binario como um subfeixe do feixe @ x @, em geral um conectivo n-nario é uma

fungao F : U — Fy C UU) x ... x YU) n-vezes, que faz commutar o seguinte
diagrama

anU) S anUY)

U u

Fo S Fu

e tem a propriedade da coeréncia. Equivalentemente, podemos definir um conec-
tivo n-nario como um morfismo F* : Q" — Q uo topos Sh(X).

Sejam -, V, A e — os conectivos usuais intuicionistas. Tais conectivos
correspondem aos seguintes subfeixes de €

ViU Fy = {(W, W) | WUW' = U)

AU Fy={(U, U)}

U Fy={(W,W)|WW CUeWCW}
~=: U~ Fy={W CU|W édensoem U}.

Dependendo do espago X podemos ter conectivos nao reduciveis aos anteriores.
Por exemplo:

Fu={WeQU):W ¢élocalinente conexo},

ou para X = IR e a medida de Lbesgue s

Fu={(W, W)eQU) w(WAW') = 0}.
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Para cada § € Ab(X) temos o conectivo:
Os:Uwm Fu={SNnU}.

Estes dltimos conectivos serao muito dteis mais adiante (para maiores esclareci-
mentos ver [C)).

DEFINIGAO 4 - Por L(X) designamos a seguinte linguagem, de tipo relacional

T, contendo:

(a) um conjunto infinito V de varidveis de cujos elementos serao designados por
z, y, z; com ou sem indices,

(b) simbolos relacionais R'™ € T

(c¢) um conjunto C de simbolos de conectivos, um para cada conectivo de X. Os
elementos de C scrao denotados por D com ou sem fndices.

(d) os simbolos 3 e ¥ para os quantificadores.

O conjunto F(X) das férmulas de L(X) é definido de modo usual. Para o
caso dos conectivos, se ¢y,...,9, sa30 formulas e O um conectivo n-irio entio
O(e1,...,¢n) é uma férmula.

Uma férmula de F(X) se interpreta em um objeto A de Sh,(X) esten-
dendo a semantica de Kripke-Joyal aos novos conectivos, da seguinte maneira;
onde ©4,...,0, € A(U):

1- Alky R(©,,...,0,) see (04,...,0,) € RAU)

2- A”‘U 91 =02 see 01 =@2

3- Alry O(p1,. .., 00 )(01,...,04) see ([p1(0)]y, - [a(0))y) € OV),
onde 8 = (61,...,0,) e [p(®)]y = U{W C U | Ak we(Oypy,..., Onw))

4 - Ay Vze(z, 04,...,0,) see para todo aberto W C U e todo
© € A(W) tem-se que A IFw (0, 0,|W,...,0,|W)

5- Alry 3zp(z, 04,...,0,) see existe uma cobertura (aberta) {U;}; de
U e existem O} € A(U;) tais que Alry, (0!, 0,|U;,...,0,|U)).

Podemos extender F(X) permitindo conjungdes Aier i e dijungoes V¢ p; in-
finitas com um nimero fixo finito de varidveis. Denotamos por Foo(X ) a esta
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extensao infinitdria. Neste caso

6 - Ali—u/\tp.- see Allyy; para cada ¢

7- AI}-U.\/gp; see existe uma cobertura {U;}; de abertos de U tal que Alkly, ¢;
{
para cada i.

DEFINIGAO 5 - Sejam A, B € Sh,(X),A’e B sio equivalentes (em Fuo(X))
. se para cada sentenga ¢ € Feo(X) tem-se Al-xp sce Dikbxp. Tal relagao serd
expressada por A = B.

Note -se que A = B see A|U = B|U, para todo U € Ab(X); onde A|U
é o feixe A restrito a U. Uma diregio da prova é trivial. Para a outra diregao
suponha que A = B. Dado ¢ € Foo(X) seja § = [gp]} entio Al-x0Ogsp logo
BiFxOgp o que implica [cp]g = §, portanto, AlFyp see U C S see Blryp.

DEFINICAO 6 - Dado ¢ € Foo(X) 0 grau (quantificacional) de ¢, em simbolos
g(p) é definido por:

1 - g(y)=0se ¢ éatomica ,

2-9(9(p1.--,9n)) = max{g(pi) | i=1,...,n}

3 - 9(3z¢p) = 9(Vzp) = g(p) + 1

4 - g(ANier #i) = 9(Vier i) = sup {g(ypi) | i € I}.

Ponhamos FX(X) = {¢ € Fuo(X) | g(9) < k}. Deste modo escreveremmos
A = B para indicar que A e B sdo equivalentes com respeito as sentengas de

Fk (X).

III. CHARACTERIZAGAO DA EQUIVALENCIA ENTRE FEIXES
DEFINICAO 7 - Um homeomorfismo parcial h : A — B preserva em U
uma férmula ¢ com n-varidveis (ou ¢ € invariante para h em U) se para to-
das as secgoes Oy,...,0, € A(W) com W C U e ©;(W) C dom h tem-sc que

Albw (0, ...,0,) see BiFwp(ho 04,...,h00,).

Observe-se com respeito a definigao anterior que o fato de ser h continua im-
plica ser A um homeomorfismo local, e assim, se © é uma sec¢io com dom® = W
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e O(W) C dom h entdo h o © é uma secgiao com dominio W.

TEOREMA 1 - Se ¢ € Foo(X) e g(p) < k entdo ¢ é invariante em U para todo
h e P(U).

Demonstragao - (indugio sobre o grau de ). Suponhamos que g(p) = 0.
Neste caso a demonstragio é obvia uma vez que por defini¢io o homeomorfismo
h preserva a igualdade e a estrutura de cada fibra. Suponhamos entio o teorema
valido para as sentengas ¢ com g(¢) < k < k' e vejamos que é valido também
para as sentegas ¢ tais que g(yp) < k’. Seja h € P/(U). Utilizamos indugio sobre
a complexidade de . O caso atémico é obvio.

12 Caso: Seja y = O(¢py,...,p¢m) com g(pi) < k'

Observemos  que pela  hipétese de indugio na  complexidde
temos AlFwi(0,,...,0,) see Blrwpih 00,,...,h00,) para i = 1,...,m
e qualquer que seja W C U. Portanto [:i(0)];} = lga,(h(@)]g parai=1,...,m
Deste modo AlFyO(p;,. ..,gpm)(G see ([p1(@)]5,-- -, [em(®)]A) € O(U) see

{PROIEE))) [ [spm(h(O))BU ) € O(U) see Bn—ucx(w,,...,%, J(©). Aqui h(B)
significa (h00;,...,h00n)

22 Caso: ¢ = 3z¢(z,0), entdo g(¢) = k < kK. Teumse que AlFyep see
existe uma cobertura aberta {U;}; de U e u; € A(U;) tal que Alby, d(ui, ©).
Aplicando a propriedade de extengio de h para cada {/, obtemos coberturas
{U?}o de U; e uf € B(U?) tais que h|UZ U {(pi(z), p& (z))}zeve € Pu(W).
Logo, como AlFya¢(p;|U?,©|U¢) tem-se que (hipotese de indugao sobre o grau)
Blkyad(u? ,h(O)) porém, U = U; U e portanto Bl-y3zé(z,h(0)). A outra
dire¢io se demonstra de modo analogo.

32 Caso: Seja ¢ = Vzé(z,0). Tem-se entdo que g(¢) = & < k', e AlryV¥¢(z,0)
see para todo W € Ab(X),W CUepce A(W) AlFwolp, ). Suponhamos que
Bllfu Vz¢(z,h(O)) entio existe W C U e p' € B(W) tal que Bljfw ¢(u', h(0)).
Pela propriedade de extensdo (a) existe uma cobertura {,}, de W,§; € A(W;)
e hi € Py(Wi) tais que h; D h|W, e hi 0§ = y'|W;. Logo dado que B||fy,
&(4'|Ui, h(©)|U;) para algum U; (pois do contrario se teria BiFwé(y/, h(0))),
tem-se que, pela hipétese de indugao no grau, A||fy, ¢(6;,0|U;) o que contraria
a hipétese inicial Aibyy. A outra direcio se faz de modo analogo.

42 Caso: ¢ = Aiel‘p‘ PP o= V;‘el""" Tem-se Allyp(0) see Alkypi(0)
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para todo i € [ see (hipotese de indugao na complexidade) By, (h(0©)) see
BiFy Aier wi- O caso da disjungao é igualiente simples.

No préximo teorema é importante cousiderarinos a tupla vazia de secgoes,
<,>, que pertence a todo A(U)". Note-se além disso, que todo homeomorfismo
parcial, incluindo o homeomorfismo vazio, envia <> em <>.

TEOREMA 2 - Seja k um ordinal. Dado A € Sh.(X) e secgoes 0=

< 04,...,0, > € A(U)", existe uma férmula o(zy,...,2,) € F:O(X) tal que
AlFy@(©), e para todo B € Sh,(X),U' C U e =< py,....ptn > € B{U)"
tem-se que BlFyr @(fi, .. ., i) 5€ € somente se existe (h: A — B) € P (U')" tal
que (ho ©;|U’) =

Demonstragao - (indugio sobre k). Suponhamos k = 0. Sejam zy,...,Zm
varidveis e definamos o = ¢, g do scguinte modo: ¢g = ¢; A P, onde

1= .-/<\JD[94 = 91]3”' =)

d, = /\ =] _ ‘ AR(.’I:.,,...,I.“'")
AT CCTRRRCI

E 6bvio que Alrpypo(©4,...,0p)ese U’ C U; BiFyipo(jtry - - -+ fin) 8€ € s0mente se
[ = w518 =[0:=0,]pnU' = [0, = 0,]) para i< je [R(siy o mi)]E =
[R(Oi,,... ,0.-,,)]5,, portanto para todo z € U’ tem-se pi(z) = p;(z) see O4(z) =
Q;(z); e (i (2),- -, pi,(z)) € RB see (0,,(z),....0;.(z)) € R o que significa
que h; = {(©;(z),ui(z))li = 1,...,n} é um isomorfismo parcial de A; em B, para
zeU'. Assimh = U hz é um homeomorfismo parcial tal que h = (0;|U’) = p;.
relU!

Suponhamos o teorema valido para k. Dados D € Sh,(X),6 € D(U)“W C U
e t € D(W) consideremos ¢,z ,(21,...2,,2) a férmula dada pelo teorema com
respeito a k para (D,6|W,t). Seja wo(zy,...,z,) a {ormula dada pelo caso k =0
para (A, ) e ponhamos:

P(z1,. .0 520) = @o(T1,y. .. Ta) A A DSD;',BIV’D,Z,:(Q’!* ce ey Ty T)
D,§,t

onde
SD.E.t = [E’ISPD,E,z(@h“"O")’ I]‘/}‘
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Observe que por construgio Aibyp(0,,...,0,).SeU' C Ue BlFyro(pay ..oy tin)
tem-se 19, 20 e 39 a seguir:

12 Bikyipo(fE); e portanto existe um homeomorfismo parcial h : A — B tal que
ho(Qi|U') = piji=1,...,n (caso k = 0).

22 Dado © € A(W),W C UI’B”-U,DSA,E,O 3z, 5 o(f: z), entio B Funs, 56
Jzp, 56(H,z) porém Sp5e 2 W, uma vez que pela hipdtese de indugio
All-wgaA'-é-‘e(§,G) e portanto AlkwachA'é-'e(*O_,x). Concluimos entio que
BH—WBzgoA,-e—'e(ﬁ,z). Seja W; uma cobertura (aberta) de W e u; € B(W;) tais
que B“‘W‘WA.Q‘,Q(/T,#:')- Pela hipétese de indugao existem homeomorfismos par-
ciais hi : A — B, h; € Pi(W;) tais que hio(O,|W;) = 1iIWi, isto é, h; D h|W; e

hio(O|W;) = pu!. O que prova a primeira parte da propriedade de extensio para
h definido em 19.

39 Dado u € B(W) e W C U’, tem-se que Biky:Osy - 320854, (1, 7) € como
por definicio Blrwyg 5 o(H, 1) temos que Spau NU' 2 W o que implica, por
definido de Sp 5, que AlrwIzpp ;,(0,z). Tal fato completa, como antes em
22, a demonstracio da propriedade de extensio para h. Coucluimos portanto

que h € Peyy(U') e ho(0i|U") = u.

Inversamente se existe (h 1+ A — B) € Py (U') tal que ho(©;|U") = u;
entdo para cada (D,§,t) com 6§ € D)t € DIW),W C U, tem-se que
(pelo teorema 1) (Spz )NV = [3”591)3,:(6v1)m' = [BxgoDvg‘t(ﬁ,:r)lg, e as-
sim BIFU:DSD'Z"BzgoD';J(ﬁ,:r). Ou seja BlFyo(fi) o que completa a prova do
Teorema 2.

Observe que na definicio de ®(Z1,...,,), na prova do leorema anterior ,
a conjungao percorre todas as estruturas de Sh.(X) (que forma uma classe pro-
pria). No entanto as férmulas ¥p5, tem grau k e portanto formam um conjunto
(modulo equivaléncia). No caso em que o espago topologico X e o tipo T sio
finitos a conjungio é finita e, portanto, ¢ finitaria.

Se considerarmos a tupla vazia < > € A(U) e U = X no teorema anterior
obtemos o caso especial seguinte:
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COROLARIO 1 - Seja k um ordinal. Dado A € Sh,(X) existe uma sentenca

pAE Fc‘;o(X) tal que Al-x 4 e para todo B € Sh.(X) tem-se que Bi-xp4 se e
somente se existe (h: A — B) € Pi(X).

COROLARIO 2 - Seja ¢ uma sentenga de Fr, (X), A € Sh,(X)epa asentenga
do Corolédrio 1. Tem-se entao que ¢ =x \/ PA-
Al xe
Demonstragao - Se Bl x ¢ entao, o fato de Bk x ¢ implica Bir \/ pA. Inver-
Al x o
samente se Bl x V 4 entdo existe uma cobertura {Ua} de X tal que BlFy,pa,
Alt-

para todo A tal qu: Alrxp. Logo B =y, A para todo AlFx . Assim Blky, o
para todo U4 portanto DlFx ¢ uma vez que {UA} cobre X.

COROLARIO 3 - Qualquer conectivo é definido a partir de A,V,A e Og,5 €
Q(X). '

Demonstragao - Consequéncia imediata do Corolario 2.

TEOREMA 3 - (Generalizagao dos teoremas de Fraisse e Karp para um topos
Sh(X)). Sejam A, B € Sh.(X). Tem-se entao que A =, B se e somente se existe
(h: A — B) € Pi(X).

Demonstragao - Se existe (h : A — B) € Pi(X) entao pelo Teorema 1, toda
formula ¢ € FX(X) é invariante em X para h. Em particular para toda sentenga
¢ € FX(X) tem-se Alrxp see DBlFx . luversamente se A =, D scja g4 a sen-
tenca de grau k do Coroldrio 1. Como Alxp4 entio Bl x4 e portanto existe
(f:A—> B) € P(X).

TEOREMA 4 - Se A =; B como feixes entdo para todo z € X, Az =¢ B; como
estruturas cldssicas.

Demonstragao - dado z € X definamos Fi = {h|Az : existe UeAb(X),zeU
e(h:A— B)€ P(U)}. Mostra-se facilmente por indugio que os elementos de
Fi sao k-isomorfismos parciais (no sentido de Karp) de A; em B;. Se A=« B
entdo existe (h: A — B) € Py(X) logo h|A; € F e assim Az =k B; em Ly
pelo Teorema de Karp.

Observagio Final. Notemos que todas as construgoes e provas dos resul-
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tados acima foram feitas externamente ao topos SA{X'). Ne entanto estamos

convencidos de que tais construgoes e resultados podem ser internalizados a win
topos de Grothendieck arbitririo,

BIBLIOGRAFIA

[C-S] Caicedo,X ; Sette, A.M., Logics and Pscudogroups. Contemporary Matlie-
matics 69 (1988). L.P. de Alcantara, W. Carnielli eds.

[C] Caicedo, X., Investigaciones sobre Conectivos Intuicionistas, Preprint. Uni-
versidad de los Andes, Bogotd, 1990.

[E] Ehresmann, Ch., Categories inductives et pseudogroupes. Ann. Inst. Fou-
rier, Grenoble 10 (1960), 307-336.

(E] Fourmnan, M. and Scott D. S., Sheaves and Logic. Lecture Notes in Math.

753 (1979). M. P. Fourman, C. J. Mulvey and D. S. Scott (eds.). Springer
Verlag.

[G] Goldblatt, R., Topoi. North-Holland, 1979.

(Gr] Gray, J.W., Fragment of the History of Sheaf Theory. Lecture Notes in

Math. 753 (1979). M.P. Fourman, C.J. Mulvey and D. Scott eds. Springer-
Verlag.

[R] Reyes, G.E., Theorie des Modeles et Faisceaus. Advances in Mathematics
30 (1978), 156-170.

[T] Tennison, B.R., Sheaf Theory, Cambridge University Press, 1975.

141






Claudio Pizzi

Modal Operators in Logics of Consequential Implication

§1. The minimal properties of systems aiming to axiomatize what we will
call Consequential Implication ( ©9) are characterized as follows:

1) It must hold =(A Gd-A) (Aristotle's thesis) and equivalently (A G¢ B)
DO (A B9 -B) (Boethius' Thesis)
2) B9 is non-monotonic in the following sense: the law of factor - (AT9B)
D((AAR)TI(B aR)) -and the law of monotonicity - (A TIB)D ((A A R) B4
B) - do not hold or hold in weakened form
3) ltis possible to define an "analytic* and a "synthetic" variant - G9'and B¢
- of any connective endowed with properties 1) and 2), such that beyond 1)
and 2) they have the following properties: if A is definable in the reference
system and has the minimal properties of standard logical necessity then
a) (A T9'B) implies O (A D B)

b)( A T9" B) does not imply O(AD B)
) (A B¢' B) implies( A B¢" B) but not viceversa.

While condition 1) is accepted in the realm of so-called connexive logic,
conditions 2) and 3) are not. In particular , the analytic - synthetic distinction is
normally not allowed by the linguistic resources of connexive logics (see
Angell [ 1 ] and McCall [ 4 ]). (A B9I-A)and (A CIB)D —(A G4 -B)
are the cornerstones of what, in the light of the historical tradition, might be
called "Chrysippean implication" . A consequence of these two laws which
Chrysippus seems not to have noticed is that accepting them  impiies
excluding the law of simplification (A A B) Gd B. If the latter were to hold, in
fact, we would have both (A A=A) B9 Aand (A a -A) B9 -A, namely a

couple of wifs which are incompatible with Boethius' Thesis.
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§2. Let us begin by formulating an axiomatization of a weak system of
implication, to be calied Cl. We will lthen have to prove that the implication
axiomatized in Cl, which is symbolized by —>, has the properties of analytical
consequential implication.

The symbols of the language of Cl are propositional variables p,g, r....

and the primitive connectives are -, v, —>. The auxiliary symbolsv, O, =
are defined as in standard Iogic' . while monadic modal operators may be
defined as follows:

if T=ptpDp and Ll=pi~T,0A=p; T —=A 0 A=pt ~0O-A

The axioms of Cl are the following:

O. Standard axioms for classical propositional calculus PC and

(@) (p—>a) A (@ —>m)D(p —>71)

(b) ~( (par) =>L) D ((p —>q) D ((pa 1) —>(a A T))

©((p A ~q) —> 1) A ~(p —>1) A ~(~q —> 1)) D (p —>q)

(d)(~p —>~q) D (q —>P)

(e) (p —>1)D(L—>p)

() (L—>p) D (p —>1)

(@) ~(p —>~P)

(h) p—>p

Rules: Uniform Substitution (US), Modus Ponens for = , Replacement of
Proved Material Equivalents (Eq)

Remark: Thanks to the given definitions of the modal operators, axiom (b)
might be reformulated as § (par) D ((p —> @) D ((pa 1) —> (q A r)), while
axiom (c) might be reformulated as (O(p2a) AQp A~ O0q)D (p —> o))

Let us define a function ¢ from the language of Cl to the language of the
deontic system KD which, asis well known, is axiomatized as follows:
A1-14 Axioms for PC (classical propositional calculus)

A5 0Op D dp
A6 O(pDq)>(@p>0q)
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Rules: Modus Ponens for =+, US: (Nec) I- A onlyif I-OA
¢ is defined as follows:
$(P)=p
¢( —A) = 2 ¢(A)
¢( A °B) = ¢(A) ° ¢(B) (where °is any two-place truth-functional connective )
(A —>B) = 9(A) —> ¢(B) = D($(A) D4(B)) A (0(B) D 04 (A)) A (T4(B) D 0o (A))
In the second place, another translation function v from the language ot KD
into the language of ClI may be defined as follows:
Y(p) =p
Y(~A) = = y(A)
Y (A °B) =9(A)°y(B)
Y( OA) = Oy(A) = (T )—>yp(A)
Aemark. since y(T)isT, YT )—>y(A) equals T—> p(A).

Now it may be proved by induction on the length of the proofs the

following Lemma holds:
Lemmai1. () I-xkpA onlyif I- g Y(A)
(i) 1- c1 A only if I ko &(A)

Proof: For the details of the proof of (i) see Pizzi [7] A key step of the proof
is given by considering that axiom (9). namely Aristotle's thesis, is equivalen_t
to Boethius' Thesis, namely (p —> q) D ~(p —>q); by US from the latter it
follows (T —>q) D ~(T —> =q), and (T—>q)2-~(T —>-q) =y(0OgD
0a) .  The proof of (ii) may be performed by employing the tableaux method
for KD , which is, of course, a simplification of the tableaux method for T
obtained by weakening the requirement that R is reflexive into the
requirement that R is serial, namely that for every mj, there is a mj such
that mj R m;.

Furthermore, one may prove

Lemmai1.2 l.kp A= (¢ A))
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oiA= §p((A)
For the proof see Pizzi[7 ] and Pizzi [6] (Suffice it to remark that in no
step of the proof reported in the latter work , which is given for T, there is
an application of Op D p).

By definition of embedding , we have an embedding of Xinto Y when

I-xA iff i- vy ¢(A). By a result whose simple proof may be found in Smirnov
[ 9] the conjunction of Lemma 1.1 and Lemma 1.2 amounts to proving that
there is an embedding of KD into Cl and of Cl into KD . We have then
proved the following theorem:
Theorem 1. \-kp A iff -ci W(A)

l-cr A iftlkp ¢(A)

Another way to state the same result is the following: if we extend KD by the
mentioned definition of —> and Cl by the mentioned definition of O , all the
theorems of the former turn out to be theorems of the latter and vice versa.
This amounts to saying that KD and Cl are definitionalily equivalent systems.
This equivalence result has the merit of providing a decision procedure for
Cl - if A is a Cl-wff to be tested , it is sufficient to test ¢(A) by the tableau
procedure for KD. Thanks to this procedure it turns out that the law of factor
((p —>q) D ((p ar) —>(qar)))and the law of monotonicity for —> ((p —>q) D
((p A7) —> q ) are not Ci-theorems ; furthermore , if O is defined in the
mentioned way, it may be proved that (A —>B)DO(AD B). Since we
already know that -~(A —> -A) and ( A —> B) D - (A —> -B) are
interdeducible theorems of Cl, this proves that —> has the properties of what

we before defined as analytical consequential implication.

§3. Now one may show that there is at least a second system of consequential
analytical implication, which is like CI except for the fact that the
axiomatized implicative connective is non-contrapositive. We will call this

parallel system Cl=>. If OA is defined as T =>A, the axioms of Cl=> are:
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a)((p=>a)r(@=>1))D(p=>r)
BYOPAND((P=>a)D((p A1) =>(qan))
c)(DP2>g)alp)D(p=>q)
e)(p=>1) D(L=>p)
f)(L=>p)D (p=>1)
g) (p=>q)> - (p=>-q)
hYp=>p
Like CI, Cl=> is proved to be definitionally equivalent to the deontic logic KD.
The translation functions however are different: we have in fact to define two
new functions ¢' and ' which are coincident with ¢ and vy except for the
following clauses
$(A=>B)=¢'(A) =>¢(B)= D(¢'(A) D ¢(B)) a ((¢'(B) D O¢'(A)
v(OA) = Oy'(A) = T =>y'(A)
Thanks to an argument which follows the lines of the proofs of Lemmas 1.1
and 2.1 we may prove in fact two lemmas:
Lemma 2.1 (i) |- kpA only if I- Ci=>V'(A)
(i) - G A ONly i -k $(A)
and
Lemma22 l-kp A= vy (¢(A)
I-Ci=> A= ¢'(W((A))
Thusit turns out, as before, that another theorem can be proved
Theorem 2 |- xpA iff I Cl> '(A)
- C-Alff - kp ¢(A)

It remains to be proved that the connective => has the properties which
identify a connective as a connective of consequential implication. As a
matter of fact, we are able to prove that “(p=>-p) and (p=>q)D ~(p =>
~q) are interdeducible (1), that (p=>q)> O (pDq)isa Ci-theorem while
(P=>q)D((pan=>qg)and (p=>qg) D((parr) => (g A 1)) are not such .

Furthermore (p=>q)>0 (p> q). but not the converse implication, may be
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proved to hold. Then => hrus tiie properties of an operator of analytical
consequential implication.

A questionable feature of => is due to the fact that contrapositivity is
considered tc be an intuitive feature of analytical implication . But Parry's
analytical  implication, for instance, is not such (see[ 5 ]) since it is
based on the principle of variable-containment (only the variables in the
antecedent may occurr in the coﬁsequent). However, the most important
difference between —> and => is that the nice symmetry between T =>p and
- p'=> 1 is lost because of the failure of contrapositivity. For the same reason,
while we have among the theorems (L =>p) = (p=>1) . welack (p=>T) =
(T=>p).

The two systems Cl and Cl=>, as it is to be expected, are proved to be
definitionally equivalent. The translation functions ¢" (from Cl=> into CI) and
" (from Cl into Cl=>) are coincident with ¢ and y as concerns the truth-
functional connectives and differ in the following clauses:
¢ (A=>B)=(T —>((¢" (A) D ¢"(B)) A (= (T —>9"(B) D (T —>-¢"(A)))

Y (A=>B) = (¥'(A)=>"(B)) a (T =>y"(B)) D (T =>y"(A})

The method used in the proof of the embeddability theorem is given
by the tableaux procedure for KD, since both systems are
embeddable in KD. Thenwe are ableto prove
Lemma 3.1

(i) I-ciA onlyitl- ci=> 9"(A)
(i) - cesA onlyif -y ¢'(A)
Lemma 3.2
I-cl=> A = y"( ¢"(A))
o A =¢"(y"(A))
Theorem 3
-1 A if and only if - Ci=> y"'(A)
- ce>A ffandonly it I- g ¢'(A)
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A consequence of Theorem 3 is that Ci and Cl=> are definitionally equiva-

lent systems.

§4. Let us now extend Cl by a new axiom which is
N (Pp—>q)D(pDq)
By this addition we obtain a system which will be named CI.0O.

In a parallel way, we extend Cl=> by
(i) (p=>g)>(pDq)
soto obtain a system which will be named CI.O=>.

On the modal side, we add the axiom Op D p to KD and what we obtain is
the well known system KT, usually known asT.

By a simple extension of the preceding argument it is easyto prove
that the translation functions ¢,¢',¢ " and P, ¢, " allow us to prove that
Cl.O, CL.O=>, T are definitionally equivalent. Thus they are all decidable by
the well known tableaux procedure used for T (see Hughes and Cresswell

(3]

§4. Let us now move to the logic of synthetic consequential implication. Here
the problem of defining such operators becomes more difficuit since
we have less firm intuitions about the properties of this new family of
connectives . We may begin by analyzing the behaviour of what has been
called "circumstantial operator" (see Agvist [10]). The minimal axioms for this
operator "+" are

(i)*pDp

( Op D Oxp

Adding both axioms to CI.O we obtain a system which is called CI.O* in Pizzi
[6 ] . Ifweaddtherule

R*OEqI-A =B ---> |-*A = B
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the resulting system will be called Cl.O*Eq . It the addition is made to Cl=>
we will obtain a system which will be called Cl.O*=>Eq.

Since we know that Cl.O and CI.O=> are both definitionally equivalent to T,
the problem is now how to extend suitably the language of system T . This
language may be enriched by new symbolic objects which may be called
quasi-variables . w is a new atomic wif in the language, and we add a new
formation rule to the effect that if A, B, C are wifs then wA wB, wC . are
wifs. Each of the quasi-variables w , wA , wB wC . may be substituted to a
var.iable, but not vice versa. The exponents of the quasi-variables however
are treated as normal wifs: in other words, the atomic variables occurring in
them are subject to Uniform Substitution.

Let us call T.OW the system based on this language and obtained by
extending T with the axiom
TWO 0pD Q(WPa p)
The models for T.OW are T-models extended with a specific clause for V
mirroring TWO:
VR1. If some mj exists such that mj R m;j and V(Am;)=1. then some my exists
such that mi Rm; and V(A,mj )= V(wA m)=1.

T.OW turns out to be decidable and complete by a simplification of the proof
given in Pizzi [7] for the system which is there called TWO.

Let us then extend T.OW by areplacement rule for materially equivalent
wifs, or more simply by the rule:

RWO'-A=B-->1-wA = wB

The resulting system will be called T.OWEq .
The models for T.OWEQ are 4-ples <M,R,R¥ vV > where
(i) M={my,mg,ma ...}

(i) Ris areflexive dyadic relation on M

(iAW S M x M,
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(iv) Visdefined in T.OW -models with the addition of the following further
clause :

VR2 If V(wA,m) = V(wB | m;) then there exists some world mj such that
mi RW mj and V(A,mj ) = V(B,mj).

A decision procedure for T.OWEqQ may be sketched in this way. Let us
first devise a tableaux decision procedure for T.OW by simply extending the
tableaux method for T with a rule mirroring VR1. If A is the wif to be tested, et
us then list all the subformulas of A. First, let us replace all the O-degree
subformulas of the exponents of the quasi-variables in A by one of the TOW-
equivalent wffs - let us say, the first in lexicographical order among the
shortest one ; then, let us replace all the 1-degree equivalent wifs in the
same way , and so on until ail the quasi-variables in the resuiting wif A' are
either identical or non- equivalent. At the end of the replacement procedure,
let us test A' by the tableaux method for T.OW. The same result may be
obtained by converting rule VR2 into a rule for tableaux construction . It
may also be proved that T.OWEq is complete in respect of the class of
T.OWEq -models, and that p= (WP A p)is not a valid equivalence. ,

Now we may prove a new embedding theorem from CI.O*Eq to T.OWEq
which is the following. Let us define a transiation function Tr which is so
defined:

Tr(p) =p

Tr(-A) = ~Tr(A)

Tr(A ° B) = Tr(A) ° Tr(B)

Tr(*A) = w Tr(A) A Tr(A)

It may be proved then, by induction on the length of the proofs, the
following  result: : for every A, l-cio*gqA iff l-rwoeq TH(A).  The proof is an
adaptation of the proof given in Pizzi [ 7 1 relating CI*O (a system

which differs from CI.O*Eq for having in place of R*OEq the stronger |- A DB
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--->1-*AD*B) to TWO (a system which differ from T.OW for having, in place

of RWO, the stronger -A DB-->1-wAD wB).

§5.1n defining operators for synthetic consequential implication we meet just
at the beginning an intriguing problem.The problem is that there is a plurality
of synthetic conditionals which we may define on the background of
CI.O*Eq. Let us look for instance at this selection (where of course A=>Bis
defined as D(A D B) a () BD0A))

A>B =pt*A=>B

A>0B=pi*A —>B

A>1Bz=ps *A=>*B

A>2B=pixA —>*B

A>3B=pi (ADB) A (*A=>B)

A>4B=pi(ADB) A (xA —>B)

One has to check , however, that the operators which are thus defined
satisfy the conditions by which they may be qualified as operators of synthetic
consequential conditionals. In other words we have to show that , if Td"is
a synthetic consequential conditional,

a) AG9"Bisimplied by A =>B or by A —>B but not viceversa

b) A G¢9" Bdoes not imply (A DB)

c) B9 " satisfies Boethius' Thesis and Aristotle's Thesis

d) B4" does not satisfy the law of factor and the law of monotonicity

While it is not difficult to show that b), c), d) are satisfied by any conditional
of the above list, a)is not easily satisfed by each one ofthem.  Look
for instance at A> 1 B =p; *A =>*B, which is not implied by A —> B , atleast
on the basis of the minimal axiomatic basis above given for x. A>3B, on the
contrary, is an operator of synthetic consequential implication :in particular , it
is straighforward to see that A =>B implies A > 3B (as regards Aristotle’s

Thesis, notice that *A => B implies ~(*A => -B) v = (A D -B). hence
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~(A >3 -B), and A =>Bimplies *A =>8) .

For sake of simplicity in what follows we will concentrate on the first
operator of the list, symbolized by the simple ">", but we have to stress that a
primary direction of work in the field of consequential implication is the
comparison between the properties'of the different definable operators. The
advantage of choosing >3 in respect of > is, for instance, due to the fact
that A > *Ais a theorem , while A >3 *A is not such. This remark, however,
suggests that it is important :0 study the properties of the fragment of C1.O+Eq
in which ">" occurrs but the circumstantial operator does not . The problem to
be treated now is : which is the > - fragment of CL.OxEq ? In other words,
which are the theorems of Cl.O+Eq , if there are any, which vyield all and
only the theorems containing -, ° => > ?

If we extend the language of C1.O by the symbol ">" and we define => and
(0 as at page 2, we call Cl.O>Eq the system which is obtained by adding to
CLO the following axioms:

AT((P>q)a(@=>1)D(p>T)

A2 (p>a)D(0qD=(p>L))

A3 ((P>a) A (p>r)D(p>(qar)
A4(p=>0)D(p>q)

AS (P>q)D~(p>=-q)
AB(1>p)D(p>l)

A7(p> L)D(L >p)

US, MP and Eq are the primitive rules for the system.
Theorems
1) p>p
2) (P>q)a(p>=q)) D (p> 1) (from A2)

30 pD - (p>L) (from A3)
HOPD(x(p>q)v-(p>-q)) (from A2 by -q/r)
5) - (p > =p) (2)
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8) (p—3L) D(p>1)
7)~(p> L)D-(p—31)
8) ~(p>1)D0pP
9)-~(p>L) =0p (3).8)

Remark.
Axioms A3 A4, A5, A6, A7 turn out to be redundant.
a) we. show that the hypothesis (p >q) A (@>1) A ~(p>r), i.e. the negation of A3,
leads to a contradiction. From it ,in fact ,((p>a) A (@>71)) D ~(p >r) follows . But
from A1 we have (p=>q) D (p >4), hence also ((p =>Q) A (q =>r) D~ p=>0).
Since (p2>-q)> -(pDq), aconsequence is =((p=>q) A (@=>r) D(p
=>r)), which contradicts axiom a' of C1.O=>.
b) A4 follows from A2 by US ( p/q).
c) From A3 and 9) have (p>q) 2D (=0pD =0q) and (p > ) D (~0p D (=0q A
-~ 0p). Since we have (~p 2 (~0g D (p=>q)) and (=0p » ~0q) D (p <=>q)
we have ~0p D ((p >q) D O(q = p)). Then we have also )p D ((p>aq)a(p>
~q) D((q =p) A (p =—q)), hence =0p D ((p>q) » (p > ~q))D L). But this
amounts to =0p D ((p > q) D ~(p > ~q)). Conjoining this theorem to 4) - a
simple consequence of A2- we obtain (p > q) D ~(p>—q), i.e. A5,
c) By US in A3 ( L/p) we have ( 1>p) D (Op D ~( 1>1)) . then ( 1l>p)2> P>
1);then ( 1>p)D~0p . ( 1>p)D( L=>p) and ( I>p)D(p=>1):
hence ( 1>p ) D (p>L1). A6isthen redundant.
d) We know that ~)p =p => 1 :since by3)p>1 implies p=>1 |, by Ad we
havep>1 =p=> 1 .Since(p=> 1)D(1 =>p) and(p=> 1)> (L >p) .
by Eq (p>L1)D(1>p )isthenatheorem Thus A7 is redundant

What we have now to show is that system Cl.O > Eq contains all and
only the >-theorems of Cl.O*Eq.

Of course, if we define a translation f from the language of Cl.O>Eq into

the language of CL.O*Eq as

154



f(p) =p
f(A°B)=f(A)°f(B)
fOQ0OA) =0f(A)
f(A>B)= *A=>B
it is easy to show that |-ci0-eq A  implies l-cl.o*eq f(A).
in fact, all the f-images of the axioms are Cl.O*Eq theorems, and the rules
preserve this property. How can we prove the converse assertion, namely
that |-ci.o'eq f(A) implies I-ci.0>Eq A? A possible proof is semantic.To begin
with, ‘we formulate a semantics for CI.O>Eq. which is given by models
<M,R,RX V> defined as follows:
1) M is a non empty set of possible worlds my, ma, mg, ...
2) R is a reflexive relation over M
3) RX is a function from the set X of wifs into the set of all binary relations on M
R:X —> P(M X M). In other words, for every wif B belonging to the set of
Cl .O*Eqg-wfifs, there is a binary relation indexed by B: R BC M x M.
4) for every B, RBC R
5) Vis defined as in T-models  with the following additional clause:
V(A>B, mj=1iff
(i) at every world m; such that m; R A m;, V(A D B mj)=1
(ii) It there is a world m;j such that m; R mj and V(B,mj)=1, there is a world mg
such that m; RA my and V(A,my )=1
(iiiy if RA 2R B.then V(A m)=V(Bm;) for some m; of M
A wit A is CI>Eq- be valid iff V(A,m;) =1 at every world m; of every CI>Eq-
model.
Note that clause (iii) of the definition of V asks us to identify relations which
are indexed by expénents which turn out to be equivalent: for instance (A A A)
> B and A > B turn out to be equivalent thanks to this identification, which is

granted by the equivalence between A A A and A.

The properties of this system may be outlined as follows.
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Soundness. By simple Reductio arguments we may show that the axioms A1-
A2 turn out to be Cl.O>Eg-valid and US, MP, Eq are validity-preserving.
Remark 1. We know that ~(p > -p) is interdeducible with (p >q) D ~(p > -q)
(see note (2)) and that p =>q implies p>q . This remarkis essential in order
to prove that > is an operator of synthetic consequential implication. In order
to prove that monotonicity and the law of factor do not hold forit itis
sufficient to show that the fimages of the relevant >- wits are not theorems of
ClL.O*Eq.
Remark 2. Notice that (p A q) > p is not validated by this semantics. In fact , no
contradiction follows by the hypothesis that p is true in some R-accessible
world and p A q is faise in some R P A4 -accessible worlds . OpAaq)D((paq)
>p)is, however, a theorem.
Completeness . The completeness of Cl .O>Eq is proved by a suitable
application of the Henkin method (for an application of this method to
conditional logic see Chellas [ 2 ]). The proof can be reconstructed by any
reader who is familiar with this method to prove compieteness. We may
simply observe that the canonical model may be defined as a 4-ple <M, R,
RX, V> such that:
a) M is the set of maximal consistent extensions of Cl.O>Eq
b) forany x and y st. x and y belongto M, xRy iff , whenever DA EX, A Ey
.c) forevery A, xR A y it and only if
A>B exiff i) ADB €x and (ii)if thereisan ysuchthatx RyandBey, B
>1le&Ex
d) V(p.x)=1 iff p € x, for every atomic variable p.

The crucial step is to show that the foregoing model is a Cl.O>Eg-model, but
this is not difficult by observing that (i) whenever JA € x, A €x, since UA D
A belongs to every x, so that R is reflexive (i) if, by Reductio, we were to

have xAXy but not xRy for some x and y, we would have O (A D B) € xand

[y
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AD B[& vy, but this implies A>B ¢ x, contrary to the fast_that O (A D B)
implies A> B by A1.

By a standard inductive argument then we prove a proposition which
implies the semantic completeness of ClL.O>Eq.

TF. Let M=<M, R, RX, V> be a canonical mode! for Cl.O>Eq. Then, for every
A and for every x e M, V(A x)=1 iff A € x.

§6. We have to relate the Ci> Eq- models to the Cl.O*Eqg-models . But
since we already dispose of an embedding theorem of Cl.O*Eq into TOWEq
(see p.8) we may directly relate the CI*OEqg-models to the TOW Eg-
models.

As a preliminary remark, let us notice that any Tr-image of >-formulas does
not contain any occurrence of the degenerate quasi-variable w, so that the
value assignment to atomic wffs of CI>Eq concerns the same stock of atomic
wits of the language of CI*Eq.

Let us then move from a CI>Eq -model & and define a derived structure ¢ *
=<M*R* RW* V %> in this way:
1)M* =M
2) R*=R
3) mRW*my; iff, for some A, m;RA m;
4)V* is a value assignment to all the atomic variables of the
language ( hence to all the atomic wifs with the exception of w) .

The truth value of every wif is uniquely defined by the same rules which are
given forT along with two further clauses . the first of which presupposes
the definition of Tr given at page 8 :

()  V*(WA mj)=1 iff m RK mj and A =Tr(K) (so V* (wTr(A), mj )=1
I mj RAm;)
(i) if there is at least one world m;j such that m; R mjand V¥A mj) =1, then

thereis at least one mj such that mi RW*m; and V¥wA A A, my)=1
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(i) If v*(wA = wB mj) =O then there is some m; such that m; RW*m; and
V*(A = B,m; )=0

What we have now to show is that Q* is a T.OWEq -model (see p.9)
Suﬁiée it to consider the following facts:
(a) R* equals R by definition
(b) RWXC M x M |
(c) since miR¥ m; whenever for some A, m; RAm;, and mj RA m; implies m; R
m; , then m; RW m; implies mj Rm. thus clause (ii) of the definition of V*
implies clause VR1 of the definition of V . Clause (iit) is equivalent to | clause
VR2 df the definition of V. V* is then a value assignment having the properties
required for a TOY Eq-model.
Lemma 4.1 Let V a valuation function of a Ci>Eg-model M, and V* a
valuation function of a model M* derived from M. Then, if Tr 1s defined
as at page 8 with the clause for "*- wits” replaced by
Tr(A > B) = O(WTTA) A Tr(A) DTr(B)) a (U(Tr(B)) D QWA A Tr(A))
m; is an arbitrary world belonging to the support of both M and M* | then
V(A m;)=1iff V*(Tr(A),mj)=1
Proof. The proofis by induction on the length of the wifs.
Critical step:
Let us suppose by Induction Hypothesis that the property holds for arbitrary A
and B. This means that, for any m; V(A D Bm, )=1ift V*( Tr(A D B), mj)=1 iff
V*(Tr(A) D Tr(B), mj )=1 Let us then suppose that V(A >B, m;j) =1. Two
consequences | follow , (i) and (ii):
(i) atevery RA-world mj, V(ADBmj)=t and, by clause (i) of the definition of
the derived model and by definition of RW*, m; RW* m;and V(wTrA)  mj) =1.
By Induction Hypothesis, at every such world mj, V*(Tr(A D B), my)=1 and, by
PC, thié irhblies VE((WTTA) A Tr(A)) D Tr(B), mj)=1. Now RW%*- accessible
worlds may be RX-accessible worlds, where X is a wff equivalent to A, or not..

Inthis second case, clause (i) grants that, f miR"*mj,
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V(WTTA), m;)=0 . In these worlds , by PC, we have V*((wTT(A) TrA)) D
Tr(B) my)=1. Then at every R¥*-accessible world mj we have V*((wTr(A) »
Tr(A)) D Tr(B)), mj)=1, so V*O((WTrA) A Tr(A)) D Tr(B), m; )=1. A converse
argument from V*IK(WTrA) A Tr(A)) DTr(B), mi)=1 to the conclusion that V
(Tr(A D B), mj )=1 at every RA-world is easily derived from the preceding
one.

(i) if V(A > B, mj) =1 this means that , if there is some mj such that mj Rm; at
which V(B,mj )=1, then there is some RA-accessible world m; at which
V(A,m))=1. But thanks to the Induction Hypothesis and to condition (ii ) for
V¥, this implies that , if there is some m;  such that  m; Rm; at
~ which V*(Tr(B),m;j )=1, then there is some RW®-accessible world mj such
that V*(wTr(A) 5 Tr(A), my) =1. The converse implication is also correct.

By conjoining propositions (i) and (ii) we obtain that V(A >B mj)=1 iff
V*O(WTA) A Tr(A)) D THB), mi)=1 and V*(OTr(B) D o(wTr(A) Tr(A)),m;)
=1. Hence by simple transformations we have that V(A > B) mi)=1iff V(Tr(A>
B).mi)=1. QE.D.

Theorem 5. It Alis not athesis of CI>Eq. A is not a thesis  of TWOEQ.

Proof. By the completeness of CI>Eq, from the supposition that A is not a

Ci>Eg-thesis it follows that there is a falsifying CI>Eqg-model for A. In other

words, there is at least one world m; of a model & such that V(A m; )=1. But by

Lemma 4.1 this implies that in the derived model A, V¥(Tr(A), mi)=1. Then, by

the completeness of T.O¥Eq, we have that Tr(A') isnota T.O¥Eq -theorem .
Thanks to the Representation Theorem connecting T.OYEqto Cl.O™Eq the

following theorem is then a corollary of the preceding one

Theorem 6. A is a thesis of Cl>Eq iff Tr(A) s a thesis of Cl.O™Eq

The conclusion is then that no >-thesis beyond the ones derivable from
CI>Eq may be derivable inside Cl.OxEq: if it were, by the representation
theorem linking Cl.O*Eq toTWOEq , it would also be a TWOEQg- thesis, which is

impossible.
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§7. The foregoing result - concerns a basic system of consequential
implication, CI*OEq, and depend on the definition of the most simple > -
operator. Further developments of this inquiry concern stronger systems
- such as CI*0O, CI*1 and CI*2 formulated in Pizzi [ 7 ] - and have to take into
account different >-operators and the logical interrelations between the
fragments identified by each one of them. The possibility of deriving such
critical conditional theses as Simplification of Disjunctive Antecedents --
op D (((pva)> r) D(p >r))- or Transttivity -((p>q) A (@ >1)) D (p>r)- depends
on suitable axiomatic extensions of the minimal basis which has been given
for the circumstantial operator. A detailed analysis of these developments may
be easily obtained by applying the methods employed in the preceding

pages, but lies however beyond the scope of this paper .

NOTES

(1) The line of the proof follows the one given at note (2)

(2) We already know that 9p D ((p>q)D -~ (p > -q)) (see Theorem 8) so that
what we have to show is simply that ~(p > =p) yields ~0p D ((p > q )= ~(p >
-q)). As a premise, letusremarkthatop> (p=>T)isa Cl.O=>-thesis. Let us
suppose -90p Ao (p>q). This implies, by the argument subb)atp11.-0¢q
and O -q . But O~q implies ¢ ~q , and we know that ¢~q > (-q => T). -¢p
equals T =>-p. Then suppose by Reductio p>-q. From A1, p>-qand
-q =>Twehavep>T ,but since T =>-p we have, via A1, p> -p, contrary
to Aristotle's Thesis = (p > =p). Hence ~0p A (p >q ) and p > ~q are

inconsistent, and —9p A (p>q ) implies = ( p > =qg). This Argument
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presupposes that a Deduction Theorem may be proved for Cli>Eq, but a
parallel argument may reconstructed without this device.
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Abstract

In this paper we study a closure for partial algebras. Partial algebras are
treated here as algebraic systems that consist of a set, relations, partial oper-
ations on this set, introducing an external element which will be the value of
the operations where they are not defined.

The closure constructed here is not as general as we would like to, because
we had to impose some restrictions on the operations and relations in order
to get a total algebra that has a partial subalgebra isomorphic to the original
one; and that preserves the s-identities. Finally we study some examples of
partial algebras in which this completition is the minimal one with respect to
the properties we mention above.

Introduction.

Partial algebras are structures whose operations are defined only on a proper
subset of the universe. We mayv approach the stidy of these structures from several
angles, which depend on different axiomatic svstems. In particular, there are distinct
concepts of identities in partial algehras. homomorphisms and congruence relations
which give rise to different completitions. These structures may be embedded into
total structures of the same type of similarity having certain desired properties. In

*This paper was funded by Fondeevt project 814-91
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this work. we present a particular completition that preserves one kind of identities
and which we prove that is minimal in the sense that any other completition of the
algebra that preserves the same type of identities contains an isomorphic copy of
the original. We begin this work with some definitions which will be used in the
construction of the completition of a given partial algebra.

1 General Results.

1.1 Axiomatic System.

As the logical system we use the usual axioms and for the identity axioms we use the
following;:

[;: 3u(u~7) wherew # 7, Tisa variable or an individual constant.
L (Vu ugm) AM((Yu u#n)) > 1=

[+ T~ ¢ — (¢ — 1) where ¢ is obtained from the atomic formula ¢ replacing all
ocurrences of the term 7 by o.

Iy 7~ o0 — (n =~ o) where oy is obtained from the term 7, replacing some
ocurrences of the term 7 by the term o.

[52 327(1‘ ~ f(TU ..... T.,,,_[)) — 3.’1)()(1‘0 ~ T()) AA an_l(xn_l ~ Tn—l)

The inference rules are detachment and generalization.

1.2 Definitions.
1.2.1 Partial Algebra.
The structure

A= (A F,,R;, ck) icl
j€J
keK

is a partial algebra if:
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1) A# ¢ and x € A (where y is an arbitrary fixed element).
i) ¢k € A, for cach k € K.
i) R; € ™A for each 5 € J and n; the arity of R;.

iv) F; are partial operations on A such that for each i € I, if pi > 0 is the arity of
F;, then
Fo2 (AU{x}) — Au{x}.

and if Fi(my.--- .7, _,) € A. then 7; € A for each term T J < pi.

1.2.2 Weak Product.

Let A; = (A;. I, Ry, 0;)) be partial algebras of the same similarity type, where
Fuy = (Fy; - j € J) are partial operations.
Ry = (R : k € K) are relations.
Oy is a neutral element of A; such that for each

ai € Ai, Fly);(0;.- -+, 05,04,05. - . 0;) = a; for any placing of a; in the sequence.

The weak product of 2.7 € I is defined as the partial algebra B = HE(,- such
i€l
that:

B = (I A;, F7, R¥,0)
€]

i) HA/;L- ={fe ‘IeIJAi :{i € 1: f(i) # 0:} is a finite subset of I}.
i€ t

i) 0= (0;)ies.
iii) R* is an n-ary relation such that

Rk = {(f07 e vfn—l) . (f()(i), ce ,fn_l(i)) € R(,‘)k for each 1 € ]}
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iv) If the arity of Fi;), is n and fo. . fae1 € II/A,-, then
el

<F(i)j(ft)(i)- e sfn-x(i))>ig1 if .
F (oo fum) = Fa),(fo(@). -+ fao1(4)) € A forevery 1 € I,

X otherwise.

1.2.3 Partial Subalgebra.

Let %A and B be two partial algebras of the sane similarity type 2 is a partial
subalgebra of B2 & S,B) if A C B. the relations in 2 are the corresponding
relations of B restricted to A and if F' is an n-ary function symbol and

B ; B
al,...aneA, then Fm((bl-,---afn):{f (al...an) ifﬁOt F (al...an)eA

1.2.4 Congruence Relation.

In the litersture we can find several concepts of congruence relation. The one we will
use in this work is the following:

R is a congruence relation on the partial algebra 2 iff it is an equivalence relation
on A and if F is an n-ary operation symbol, a;...a, € A,by,..., b, € A, a;Rb;
G=1,...n)and F(a,...a,) € A, F(by...by) € Athen F(a;,...a,)RF(b:...bx)

1.2.5 Coset Algebra.

Let :
Ql = <A, F:Z, R77 Ck) ‘IEEI
jeJ
keK

be a partial algebra and R congruence relation on 2, then the coset algebra B = A/R
is defined as the partial algebra

B = (B, F/ R ¥ ier ,where
j€J
keK
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i) B={a/R:aec A}. where a/R is the equivalence class of a with respect to R.

i) & = /R

i) R*= {{ao/R. - .an_y/R) : 3a)- - al,_, (aRay A - -+ A an-1Ra),_,
Aag. - .al,_) € R}

iv) If the arity of F} is n, and ao/R. -+ .ap_;/R € B, then
{d:3ay---3a,_,3d'(aoRah A+ A an_1Ral,_,

_ ANRd' A Fi(ag,---al,_)) = d'}, if
F'(ag/R. - ,an_1/R) = this set is not empty,

X othewise.

Remark: In Mikenberg (2] it is shown that this is well defined.

1.2.6 s-Identities in partial algebras.

Let 7 and 7 be terms. then:

i) An e-identity (7e7’) is a formula of the forin:

Jrx~tAdrr~TAT~7

ii) An s-identity (7s7') is a formula of the form:

(rer V T'er’ — rer’)

There exist other concepts of identities in partial algebras, and they can be found,
for example in [1].

1.2.7 A special congruence relation.

Let A = (A, F;, Ri,0)jes be a partial algebra and B = A

€] d
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i) If f € B. we denote by f* the (finite) tuple of all the non-zero coordinates of f
in the order they appear in f and we define £(f) as the length of f* and i(f)
as the natural number 5 such that f(j) # 0 and for all £ > j, f(k) = 0.

ii) For f.g € B. we define the relation S as follows:
fSy iff  f*=g".
(It is casy to verify that S is an equivalence relation on B.)

iii) Let B~ N{1 :7T is a congruence relation on B such that S € T}.

2 Construction of the Clousure

2.1 Theorem
Let B = TIA where A = (A. F;. R;.0) is a partial algebra, and © any congruence

relation on B that includes R (defined in 1.2.7 (iii)). Then A = B/O is a total
algebra thai preserves the s-identities of 2.

Proof: (Mikenberg (3].)

2.2 Definition

For each n-ary operation F” of B = HQ( we define a new operation F9 as follows:

Let f € B, then

(F;)P*1(f*) if &(f) =m > Land (n+ p(n—1) =m),
Fi(f) = f(@) if £(f) =1 and

X otherwise,
where
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(Fj)l(a0~ c ~an—1) - F}(am T san—l)
(F3)* a0, -, am-1) = (F;)*(Fy(a0, -, @n-1), G, -, Am—1)
and m=n+p(n —1).

The following theorem gives necessary and sufficient conditions to obtain a total
algebra that has a partial subalgebra isomorphic to the original one, in case that
we have more then one strictly partial operation and some relations. The first two
conditions are imposed on the operations, and they correspond to a generalized dis-
tributive condition and a restriction on the domains of the operations where they are
defined. The last two conditions are on the relations of the algebra, and they are a
kind of congruence condition for the relations with respect to the operations.

2.3 Theorem.
If the partial operations of the original algebra A satisfy the following conditions:

i) For each ag,- -, an_y € A. Fj(ao. -+, au_1) = Fi(ao, - ,@n-1) for each (j,k) €
J x .J where both operations are defined and

1) For each fo, -, fa_y € B, FI(F¥(f,, - *fam1)) = Fe(F4Sy), - - S F(fut))
for any 3. k. £ € J, where all of them are defined,

and if the relations of the algebra 2 satisfy:

wr) Ri(0,---,0) for everyi € I and

w) For each n-ary relation R* of A, if fo,-- -, fa—1 € B and RF(fo, -+, faz1), then
there exist fg, -, fr_1.5 € J such that fIRfi,i < n and F7(f!) is defined for

every 1 < n and o o
Re(F7(fo). - F2(f_))

(where R is the congruence relation defined in 1.1.7 (ui)).

Then the total algebra A constructed in Theorem 2.1 has a partial subalgebra iso-
morphic to the original algebra 2.

Proof:
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Let h: AU {x} — AU {x} be defined by:
h(a) = (a,0.--}/R for every a € A. and let
€ = (h(A), F,. Ri,0)jes

i€l

be the partial subalgebra of % with universe h(A).

Then in Mikenberg [3] it is shown that h is a one-one function such that for each
j€ Jag, ,n-1 € A,

Fj(ao, s .CL.,,,_I) e A iff —F_]-(hao,- < ,han_l) S h(A)

and

h(Fj(ao. - an-1)) = Fi(h(ao). -, h(an-1))

Therefore, we only need to show that

Ri(ao, -+ .an_y) iff Ri(hao,- - yhan_1) -

In one cirection this is trivial. so let us assume that Ri(hao,- - -,han-1), then

3fO- e aafn——l- fiR(("iaO' ' ')a 1<n and Ri(f()v' o ’fn—l)'

Then applying condition (iv) we get

3., 3f,_,.3j€J suchthat fiRfi,k <n and

F7(fL) is defined for k < n and

Ri(F(f3).++ P (fima)):

Using Lema 2.5 in Mikenberg [3] we have

Fi(f!) = a,i < n and therefore,

Ri(ao,"  Gn-1)- |
Remark:

Condition (i) and (ii) in the preceeding theorem cannot be weakened in case we
have more than one strictly partial operation. See Mikenberg [3].
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3 Refinement Algebras

3.1 Definition.

A = (A.+.0) is called a refinement algebra if it is a partial algebra that satisfies the
following conditions:

i) + is commutative.
1) + is associative.
iii) 0 is a neutral element.

iv) If a; + ay = by + by € A. then there exist ¢, ¢y, c3,¢4 in A such that

a = ¢+ b1 = 1 +¢C3
ay = C3+ ¢y by = o+t

v) If (a1 + a3) + ¢ = b+ c € A, then there exist by, by, c1,co in A such that

b = b1+b2 ay+cp = ¢ +cs
¢ = ¢+ as+c = by+c

These algebras were introduced by Tarski [5).

Remark:

In this case, the weak product of this algebra preserves the s-identities of the
original algebra and therefore it is also a refinement algebra. (R.A).

3.2 Proposition.

Let A = (A,+,0), be R.A., let B = fI;}Ql, let T' be the following congruence relation
on B:

fTg iff there exists a sequence r;; c¥Nx49) 4 such that

171



f@ = >y

i<tlg)

g(g) = Z Tij

i<i(f)
Then 2 = B/T is a total R.A. that contains a partial subalgebra isomorphic to
A.
Proof: Mikenberg [3]

3.3 Theorem.

Let A = (A.+,0) be a refinement algebra. Let T be the relation defined above, then

A= l'LQl/T 15 the minimal total refinement algebra that preserves the s-identities of
A and has a partial subalgebra isomorphic to 2A.

Proof.:

Let 2’ be another total refinement algebra that preserves the s-identities of 2 and
that has a partial subalgebra €' isomorphic to . Let h: % — & be this isomorphism.
We will construct an isomorphism from 2 into 2'.

Let H : A — A’ be defined by
HT) = S h(f(j)). where f € A and

F<S)

3 is the finite sum +' of A’

It is not difficult to see that H is well defined and is a homomorphism between
total algebras. Let us check that it is injective.

Let f/T,g9/T € A and assume H(f/T) = H(g/T), then
Y @) = X h(g())

i<i(f) 3<1(g)
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Since 2 is a refinement algebra, there exists a sequence ¢;; such that

hf@) = Y @ and

7<(g)

haG) = Y ¢y

<)

Besides, @ is a partial algebra and

h(f(#) e @ ,h(g(j)) e @

therefore ¢;; € €', so

JO=0(Y e = X )
J<Uyg

) 7<%g)

and

9@ =h (S )= S b ey)

1<2(f) W< )

Therefore, fT'g by definition of T and hence. H is one-one homomorphism from
A into A

3.4 Remark:

This theorem shows that this completition (i.e. 2A) is the minimal one with respect
to the preservation of s-identities.

4 Some Applications

4.1 Remark.

If A = (A, F}, R;,0)jes is a total algebra and © is a congruence relation that contains
i€l

S(def. 1.2.7 (ii)), then 2 & I12/6).
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We will now construct in much the same way a closure for a special kind of
partial algebras which provide, as particular cases, the construction of the structures
(Z,+,—,0) from (N, +,—,0) and (Q - {0},-,+,1) from (Z — {0}, -, +, 1).

Let the language £ have two binary operation symbols F' and G and a constant
symbol 0, with F' a total operation and G a partial operation.

Let 2 = (A, F,G,0) be a partial structure for this language which satisfies the
following axioms:
Al- F(z,0)=F(0,x) ==«
A2- F%(z,y,z) = F*(y, z,x), where

FO(xo) = x0
FY(xo, 1) = F(z0,71)
Fn+l(‘r(l', U 7xn7xn+l) - F(Fm(‘rO? e ,xn),xn-}-l)-

A3 Glz,y) =z iff F(y,z) = x.

In this case we want to construct the smallest total algebra 2 that preserves these
axioms and that has a partial subalgebra isomorphic to 2. We cannot just apply
Theorem 2.3 for this construction, because F is a total operation and hence it does
not satisfy condition (i) of this theorem. Anyhow, we will construct the completition
2 in a similar way, and for this we will need the following properties:

4.2 Proposition.

G) F(z,y) = F(z,2) =y = 2.

(i) Flz,y) = F(y,2)-

(iil) Glz,0) = 2 AG(z,z) = 0A (G(z,y) = 0iff 2 =y).
(iv) F"*(xo, s Zns1) = F(xo, FM(@1.o -+ Znt1))-

(v) Let a,b,c € A and G(b,c) € A, then

G(F(a,b),c) € Aand G(F(a,b),c) = F(a,G(b,¢)).
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(vi) Let a.b,c,d € A, then
if G(a,b) = G(a.c) = d, then b = ¢, and
if G(a,b) = G(c,b) = d, then a = c.

(vii) G(F(z,y).y) = x.

(vili) Let a.b,c.d € A.G(F(a,b).F(c,d)) € A and G(G(a,c),G(d,b)) € A, then
G(F(a.b). F(c.d)) = G(G(a.c).G(d,b)).

ix) F*(F(zo-yo). -+ F(®n.yn)) = F(F™zo. . 2n), F*(0, -, Yn)

(x) F"(G(zo0.10). . G(xn ) = G(F™(xo." - . za), F™(yo. - - “Yn), if all the terms
are defined.

4.3 Definition.
Let ‘B = H:JQ[, we define a relation R on B as follows:

fRgiff FY9(£(0),g(1). -, g(i(g))) = F¥N(g(0), £(1),---, FG(F))).

4.4 Proposition.

R is a congruence relation on B.

Proof: It is not difficult to see that R is reflexive and symmetric, and for transitivity
and congruence properties, we use the properties in proposition 4.2.

4.5 Proposition.

For each f € B, there exists f' € B such that fRf’ and i(f') < 1.
Proof.:
Suppose f € B. If i(f) > 1, define f’ as follows:

/= (f(0), FED=1(f(1),---, f((£))),0- )
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and if i(f) < 1 take f' = f.

4.6 Proposition.

A = B/R is a total algebra.

Proof.: Apply theorem 2.1 since R 2 S (def. 1.2.7 (ii)). There is also a direct proof
using the properties in 4.3.

4.7 Proposition.

A contains a partial subalgebra isomorphic to the original one.

Proof.:

Define h:%
a

1l

A by
(0.0.--)/R=7

and let € = (h(A),F,G,0) the partial subalgebra of 2 with the corresponding re-
stricted operations. Then it is not difficult to see that h: 2 — € is an isomorphism
from 2 onto €.

4.8 Proposition.

(i) If G(a,d) € A and G(c,b) € A, then
F(a,b) = P(c,d) iff G(a,d) = G(c,b).

(i) If G*(ao, - -, an) € A and G(ao, F* (a1, -, an)) € A,
then G"(a,o, ce ,an) = (:(aann—l(ala e aan))7

whenever they are defined.
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(ii) G(G(a,b).G(c,d)) = G(G(a,c), C(b,d)),

when all the operations are defined.

4.9 Theorem.

A is the smallest tolal algebra that preserves the s-identities of A and that has a partial
subalgebra 1somorphic to U.

Proof.: Let ' be another closed algebra that contains a partial subalgebra € iso-
morphic to 2.

Let h: A — € be the isomorphisin.

For f € 2, we define H(f) = G’i(f)(h,’(f(())).--~,h’(f(i(f)))) where G’ is the
interpretation of the operation G in .

Let us check that H is well defined:
fRg iff F¥@(£(0),9(1). -+, g(i(9))) = F¥D(g(0). (1), -, f(i(f)))
iff PO (R (£(0)), B (g(1)), -+, K (9(i(9))) = PRI (g(0)), -, K (F((£))))
iff F/(R(£(0)), F*O=1(h(g(1)), -, K (g(i(9)))) = F'(K(g(0)), FHUO=1(R(f(1)), -, K (f(i(f))))
i G/ (W (£(0)), FUO=H R (F(1)), -+, W (F(5())) = G (W (g(0)), FHO=1(K (g(1)), -, W(g(i(g))))
iff GO (R (£(0)), B(F(1)), -, K (F(3(1)))) = G4 (' (g(0)), W' (g(1)), - -, K'(g(i(g))))
iff  H(f)=H(@)

Therefore, considering f
and g

1

we have that:
H(@®) =0 and

H(F(f,7)) G'(F'(W'(£(0)),h'(9(0))), F'(K'(£(1)), h'(g(1))))
F'(G' (' (£(0)), ' (f(1))), G'(h'(9(0)), B (9(1))))

F'(H(f),H(9))

o
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also

H(G(f,9)) G'(G'(R'(£(0)), '(9(0))), G' (W' (£(1)), A'(9(1))))
G'(G'(W(£(0)), K'(f(1))), G'(R'(9(0)), R'(g(1))))

G'(H(f),H(). =

4.10 Remark.

For partial algebras whose set of axioms are s-identities, we have prove that the
completition preserving the axioms always exists, and the construction is done with
an appropiate congruence relation over the free algebra generated by the terms of the
original algebra.

178



References

[1] Burmeister, P. 1986. A model theoretic oriented approach to partial algebras.
Akademic Verlag, Berlin.

[2] Mikenberg, 1.F. 1978, From total to partial algebras, in Mathematical Logic, Pro-
ceedings of the First Brazilian Conference, Marcel Dekker Inc., pp. 203-223.

[3] Mikenberg, LF. 1980, A Closure for partial algebras, in Mathematical Logic in
Latin America, North Holland Pub. Co., pp. 239-253.

(4] Olivos, E. 1990, Algunos resultados sobre algebras parciales, Tesis de Magister
en Ciencias Exactas (Mat.) Facultad de Matemadticas, Pontificia Universidad
Catdlica de Chile.

[5] Tarski,A. 1949. Cardinal Algebras, Oxford University Press.

179






Subalgebras of a Finite Three-valued Lukasiewicz
Algebra,

M. Abad L. Monteiro S. Savini J. Sewald

INMABB - CONICET and Departamento de Matematica, Universidad Nacional del
Sur, 8000 Bahia Blanca, Argentina.

Abstract

It is well known that the number of Boolean subalgebras of a finite Boolean
algebra B, with n atoms, is the number of partitions of a set with n elements, and
that the number of isomorphic (Boolean) subalgebras of B with ¢ atoms, 1 < ¢ < n,
is the number of ¢-partitions of a set with n elements. It is clear that the number
of non-isomorphic subalgebras of B is n. In this note we determine the number of
subalgebras of a finite non trivial three-valued Lukasiewicz algebra L, the number
of subalgebras isomorphic to a given subalgebra and the number of non-isomorphic
subalgebras of L, and we give a method to construct all the subalgebras of L.

1 Introduction

Let B be a finite Boolean algebra. Since B is isomorphic to the product of n Boolean
algebras B = {0,1} for some n, n > 1, we will denote B = B", when we want to make
evident that the number of atoms of B is n.

Let BS(B) denote the set of Boolean subalgebras of B, A(B) the set of atoms of B,
and for b € B, A(b) = {a € A(B) : a < b}.

If S € BS(B) and A(S) = {s1,s2,...,8} is the set of atoms of S, then
P(S) = {A(s1),A(s2),...,A(s;)} is a partition of the set A(B). Conversely, if P =
{Xi,Xa2,..., Xu} is a partition of A(B) and we consider z; = \V{z :z € X;},1 <i < u
and X(P) = {z1,23,...,2,}, then the Boolean subalgebra of B generated by X(P),
S = BS(X(P)), is such that the atoms of S are the elements of X (P). The map S — P(S)
is a bijection from BS(B) to the set of partitions of A(B).

For a finite set X with n elements, n > 1, let N[X] denote the number of elements of
X, P(n) the set of all partitions of X and p(r) = N[P(n)]. It is well known that if we
put p(0) =1, then forn >0,

ln+ 1) =3 (7)pl0)

t=0
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Any partition of X with ¢ classes, 1 <t < n, is called a t-partition, and the set of all
t-partitions of a set with n elements is denoted by P*(n), n € N, ¢t < n. It is well known

that - (t)
izo(—1)'(;) ¢ =9
p'(n) = NP'(n)] = ; .
For b € B, let BS(b) denote the set of Boolean subalgebras of B containing b, that is,
BS(b) = {S € BS(B): b€ S}, and if S € BS(B), let BS(S, b) be the Boolean subalgebra
generated by the set S U {b}.

Remark 1.1 Let B = B". Ifb=0 or b =1, then N[BS(0)] = N[BS(1)] = N[BS(B)].
If b € B — {0,1}, we are going to determine N[BS(b)]. Let S € BS(b) and A(S) =
{51,82,...,8:}, 1 <t < n . Then P(S) is a partition of A(B). Since b € S, then for
every s € A(S), s <bors < —b. Let A(S,b) = {z € A(S):z < b} and A(S,-b) = {z €
A(S): z < —b}. Since b # 0,1 then A(S,b) and A(S, —b) are nonempty sets. It is easy to
prove that A(b) = U{A(z) : z € A(S,b)} and A(—b) = U{A(y) : y € A(S,—b)}. Then we
have that the sets P1(S) = {A(z) : z € A(S,b)} and P(S) = {A(y) : y € A(S,—b)} are
partitions of the sets A(b) and A(—b) respectively. Then, if S € BS(b), b # 0,1 we can
define the following bijective function: ¢(S) = (Pi(S),P2(S)). Therefore, if N[A(b)] =,
1 < r < n, then N[BS(b)] = N[P(r)] x N[P(n —r)]. This formula is also valid for b =0
orb=1, that is, if r =0 orr = n.

Definition 1.1 A three-valued Lukasiewicz algebra is an algebra (L,A,V,~,V, 1) of type
(2,2,1,1,0) where (L,A,V,~,1) is a De Morgan algebra and V is a unary operator (pos-
sibility operator) satisfying : ~zVVz =1, zA~z =~z AVz, V(zAy)=VzAVy.
For short, we shall say that L is a Lukasiewicz algebra, [1, 2, 5].

The necessity operator is defined by Az =~ V ~ z . It is well known that B(L) =
{t € L: Ve =2z} ={z € L: Az = z}is a Boolean algebra. Moisil [2] proved
that Lukasiewicz algebras satisfy the following determination principle: If Vz = Vy and
Az = Ay then z = y (see also [6]). L is called a centered Lukasiewicz algebra, or a
(three-valued) Post algebra, if it has a center, that is, an element c of L such that ~ ¢ = c.
The center of L (if it exists) is unique, and z = (Az V) AVz forall z € L, [2, 4, 7].

An azis of a Lukasiewicz algebra is an element e of L with the properties: (E1) Ae =0
and (E2) Vz < AzVVe, for all z of L, [4]. Observe that (E2) is equivalent to z < AzV Ve,
for all z € L. If the axis of L exists, it is unique, and using the determination principle, it
is easy to see that x = (AzVe)A Ve, for all z € L [7, page 14]. Following A. Monteiro, L
is called a (three-valued) Moisil algebra if it has an axis, [7, 9]. If L is a Boolean algebra,
then 0 is the axis of L. Furthermore, if c is a center of L, c is also an axis. The converse
of this last statement is not true.

It is well known that if u,w € B(L) verify u < w then [u,w] ={z € L :u < z < w}
is a Lukasiewicz algebra, where the operations A , V and V are the operations A , V
and V of L, and the negation is defined by ¥ z = u V (~ z A w), z € [y, w]. It is clear
that u is the least element and w is the greatest element of [u,w]. It is easy to see that
B(Ju, w]) = [u,w] N B(L).
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If L is a Lukasiewicz algebra with axis e, then [0, €] is a Boolean algebra. Indeed, it is
clear that [0, €] is a distributive lattice with least element 0 and greatest element e. If we
put by definition —z =~ Vz A e, then

—(zAy) = ~V(zAy)Ae=(~VzV~Vy)Ae
= (~VzAe)V(~VyAe)=—zV—y.
—zAzx = ~VrAeAz=0.
——z = ~V-zAe=~V(~VzAe)Ae
= (VeVA~e)Ae=VzAe.

Since A(— —z) = Ve AAe=0= Az and V(- — z) = Vz A Ve = Vz we have by the
determination principle that — — z = z.

Let A(L) = {zx € L: Az = 0}. Then it is easy to see that A(L) = [0, €] (see [8]). The
operator V is a Boolean isomorphism from [0, €] onto B([0, Ve]). In fact, ify € B ([o,Ve)),
then y € B(L) and 0 <y < Ve. Let z = y Ae. Then z € [0,¢] and Vz = ViyAe) =
VyAVe=yAVe=y. Now, if Vo = Vy, since Az = Ay = 0, then z = y. On the other
hand, V(z Ay) = VzAVy, V-2 =V(~ VzAe) =V ~ V2 AVe =~ Vz A Ve =~ Vz,
and V0 = 0.

In the case the algebra L has a center ¢, the Boolean algebra [0, ¢] is isomorphic to

B([0,1]) = B(L).

It is well known that every homomorphic image of a Lukasiewicz algebra L can be
obtained up to isomorphism, as a quotient algebra L/F where F'is a A -filter of L, i.e. a
filter such that: if z € F then Az € F.

Furthermore, F(z) = {z € L : 2 < z} is a A- filter if and only if z € B(L), and L/ F(z)
is isomorphic to [0,2] = {z € L: 0 <z <z}, [7]. Gr. C. Moisil [4] proved, applying
results of ring theory, that if L has an axis e, then L is isomorphic to the direct product
of a Boolean algebra and a centered Lukasiewicz algebra. L. Monteiro [7] obtained the
same result proving that L ~ L/F(~ Ve) x L/F(Ve) where L/F(~ Ve) is a Boolean
algebra and L/F(Ve) is a centered Lukasiewicz algebra. Moreover he proved that if L is
finite and B(L) has n atoms then L ~ B x T* | where B is the Boolean algebra {0,1}
and T is the centered Lukasiewicz algebra {0, c, 1} and j + k = n.

Remark 1.2 Taking into account [7, pages 71-72] we can prove that j is the number of
atoms a € B(L) such that a <~ Ve and k is the number of atoms a € B(L) such that
a < Ve. Furthermore, if a € A(B(L)) is such that a <~ Ve , then [0,a] = {0,a} and if
a € A(B(L)) is such that a < Ve then [0,a] = {0,a A e,a}, [8].

2 Number of subalgebras

If S is a Lukasiewicz subalgebra of a Lukasiewicz algebra L and f € L, let denote LS(S, f)
the subalgebra generated by the set S U {f}. If f verifies Af = 0 then LS(S,f)={z ¢
Liz=(ssA~Vf)V(s2AVF)V (s3A f), where s1, 2,53 € S} [7, page 41].
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Lemma 2.1 If L is a Lukasiewicz algebra, S* a Boolean subalgebra of B(L), xo € A(L)
and L, = LS(S*,zo), then B(L,) = BS(S*, Vo), and o 15 the azxis of L.

Proof.
1. Let us see that B(L;) = BS(S*, Vo).
(a) If z € B(L1) € B(L), then Az = z. Since B(L1) C L; then
= (A ~ Vo) V (b2 A Vo) V (b3 A o),
where by, by, b3 € S*. Then

z=Az = (byA ~Vzo)V (b2 A Vo) V (bs A Azo)
(blA ~ Vmo) \Y (b2 A Vil;o) S BS(S*,VIL'Q)

(b) If z € BS(S*,Vzo), then & = (bA ~ Vo) V (b2 A Vo), where by,by € 57,
then z = (byA ~ Vo)V (b A Vo)V (0AZo) € Ly, and it is clear that Az =,
SO T € B(Ll)

2. Now we prove that zg is the axis of L.

(a) We have Az = 0 from the hypothesis.

(b) For every ¢ € Ly, z £ Az V Vo This is equivalent to prove that Az <
A(Az V Vzo) and Vz < V(Az V Vzo). If £ € L then

r = (b1/\ ~ V(Eo) \% (bz A VZE()) \Y (b3 A .’Eo),
and then Az V Vzgo = by V Vzo and

Vi = (bA~ Vo)V (b2 A Vo)V (b3 A Vo)
= (byA ~ Vo) V ((b2 V b3) A Vizo)
= (bhVVzo)A...< b VVzo
= Az V Va,.

Remark 2.1 If L is a centered Lukasiewicz algebra and c is the center of L, then L; =
LS(S*,c) is a centered subalgebra of L and B(L,) = BS(S*,Ve¢) = BS(S*,1) = S§". If
St, S3 are Boolean subalgebras of B(L) such that LS(S;,c) = LS(S3,c) then we have
St = B(L1) = B(Ly) = 55.

Let L be a finite Lukasiewicz algebra, e the axis, LS(L) the set of Lukasiewicz subal-
gebras of L. Note that BS(B(L)) C LS(L).
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Remark 2.2 Let S € LS(L). Since S is finite, S has azis ¢'. Observe that ¢’ € [0,¢].
Then 5* = SN B(L) € BS(B(L)), and LS(S*,¢') = S. In fact, if z € LS(S*,¢') then
= (A ~ Ve)V (b, A V)V (b3 Ae') , where by, by, b € S* C S. Sincee € S,
Ve!',~ Ve' € S, thereforez € S. Ifz € S, then z = (Az V €e') A Vz, but Az,Vz €
SNB(L) = 5" C LS(S*¢), and since e’ € LS(S*,¢') then z € LS(S*,¢).

Consider the product II(L) of the sets BS(B(L)) and A(L) and the mapping « from
II(L) into LS(L) defined by

a((S*,z0)) = LS(S*, z0).

By the preceding remark « is onto.

Let P = {a7!(S) : S € LS(L)} . Then P is a partition of II(L). If R, is the
equivalence relation determined by P, then N[II(L)/R,] = N[LS(L)]. Let us determine
N[LS(L)). 1t is easy to see that a is not injective and, in general, the sets a”1(9),5 €
LS(L) have different cardinality.

Lemma 2.2 If z,y € A(L),z # y , then a((S*,z)) # o((T*,y)) for every S*, T* &
BS(B(L)).

Proof. If SL(S*,z) = SL(T*,y) = S, since z and y are axes of S and the axis is unique,
thenz =y. O

Remark 2.3 If(5*,a) € II(L), let C((5*,a)) = {(T*,b) € (L) : o((T*, b)) = a((S*,a))},
and if a € A(L) let TI(L,a) = {(5*,a) : S* € BS(B(L))}. Then Lemma 2.2 says that
C((5*,a)) C I(L,a), that is, II(L,a) is the union of the distinct equivalence classes
contained in I1(L,a).

Lemma 2.3 If 5*,T* € BS(B(L)),a € A(L) then o((S*,a)) = a((T*,a)) if and only if
BS(5*,Va) = BS(T*,Va).

Proof. If LS(S*,a) = LS(T*,a), then by Lemma 2.1, BS(5*,Va) = B(LS(S*,a)) =
B(LS(T*,a)) = BS(T*,Va). Now, if z € L5(5*,Va), then z = (A ~Va)V(tAVa)V
(v A a) where s , t, u € 5*. Since S* C BS(S*,Va) = BS(T*,Va) = B(LS(T*,a)) and
~ Va, Va, a € LS(T*,a), then z € LS(T*,a). In a similar way it can be proved that
LS(T*,a) C LS(S*,a). O

Remark 2.4 By using the previous Lemma it is easy to see that N[I(L,a)/R,] =
N[BS(Va)] (see introduction). So N[II(L)/R,] = Yeeaw) NII(L,a)/R,].

Now we want to find N[LS(L)] = N[II(L)/R,].

Supose that L is neither Boolean nor centered. Then I = B’ x T%, 7 > 0,k > 0.
So B(L) = B"™ where n = j + k and N[BS(B(L))] = N[P(n)]. The elements of L are
n-uples = (x1,z,,...,z,) where z; € B, for 1 < ; <jandz;€Tforj+1<:<n. So
AlL)={ze€L:z;,=0,1<i<ja € {0,¢} € T,54+1 < i< n}. Then the Boolean

algebra A(L) has k atoms.
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Remark 2.5 Since the Boolean algebra A(L) has k atoms, there exist (’:),O <r<k

elements of A(L) which are supremum of r atoms of A(L). If b€ A(L) is the supremum
of r atoms of A(L), then Vb is the supremum of v atoms of the Boolean algebra B(L).

Since B(L) has j + k atoms, from Remarks 2.4 and 2.5 we have:

k

N[ﬁS(Bj x TF)] = Z (]:) p(r)p(y + k —r).

r=0

This formula is also valid if L is a centered or Boolean algebra. Indeed, if L is Boolean
then L = Bi = Bi x T°. Then A(L) = {0} and N[LS(B? x T°)] = p(j). If L is centered
then L = B® x T*, A(L) = B(L) ~ B*, and

k

wes) =3 () ptopte )

r=0

Now we are going to determine the number of non isomorphic subalgebras and the
number of subalgebras isomorphic to a given subalgebra of a finite non trivial three-valued
algebra L. We know that L ~ Bi x T*,5 >0,k > 0 and j, k not simultaneously zero.

CASE A.j >0, k=0. Then L ~ B’ is a Boolean algebra and it is well known that
there exist j non isomorphic subalgebras of L, and if S ~ B" 1 < h < jis asubalgebra
of L, there exist p*(j) subalgebras of L isomorphic to S.

CASEB.j>1,k>1. {5 € LS(L), then §' ~ Bi'xTK, j'>0,k'>0,j, k' not
simultaneously zero.
Note that

e j' > 1, since if j/ = 0 then S’ would be a centered algebra, and then L is centered,
which is a contradiction.

e Since B(S') ~ B¥*¥ is a Boolean subalgebra of B(L) = Btk then 1 < j' +k <
itk

e 1<j <j+k Indeed,if j+k < j', then j+k+k <j +k <j+k, and then
k' < 0, contradiction.

e 0 < k' < k. Since S’ is finite, it has axis ¢’ € §', ¢’ € A(L) = [0,¢]. We know that
[0,¢] ~ B*, then [0,¢/]s = {z € §': 0 <z < ¢} B¥. But [0,¢]s: C [0,¢], so
0<K <Lk

Summing up, if §’ is a subalgebra of L ~ B’ x T*, then S’ ~ Bi' x T¥ | where (j', k')
verifies: 1 <7 <j+k 0<K <k 1<y +K<j+k=n.

For j, k fixed positive integers, let P(j, k) the set of pairs (j', k") which verify the above
conditions.

So

NIPG, K = S0 + k= h) = j(k + 1) 4 FERD)

h=0 2
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Then we have a function 8 : LS(B? x T*) — P(j, k).We are going to see that 3 is
surjective and then we will have as a consequence that the number of non isomorphic
subalgebras of L ~ B x T* is precisely N[P(j, k)].

Let (5',k') € P(j,k). If ¥ = 0, any subalgebra S’ of B(L) ~ B’** that verifics
S’ ~ B¥', is such that B(B?') = (B’ x T°) = (5, 0).

Ifk' > 1,since k' < kand j'+4&' < j+kthen k¥’ < j+k—j', and then k' < EN(7+k—73").

Let h be such that &' < h < kA(j+k—j') <k, and a € A(L) such that N[A(Va)] = &,
(see Remark 2.5). Let us consider a k'-partition of A(Va), Xi,..., Xy and a j'-partition
of .A(N Va), X1+kr, BN an'+k’- So (see Remark 11), P = {Xl, BN ,Xk’aX1+k’, ce ,Xjr+k/}
is a (j' + k')-partition of the set A(B(L)) of atoms of B(L). Then, from Introduction,
there is a subalgebra S of B(L) corresponding to P whose atoms are a; = Viz :z € X},
1<i<j' 4k,

Let $' = LS(S,a). Since a € A(L), we know that a is the axis of ' and B(S") =
BS(S,Va), but since Va = V¥, a;, then Va € S, and then B(S5") = S. Since there are
k' atoms of B(S’) = S preceding Va and j' atoms of B(S') = S preceding ~ Va, then
(see Remark 1.2) S’ ~ B?' x T¥. Then every subalgebra S’ constructed in the previous
way verifies 8(S") = (5', k).

Observe that if B(S') = (j/, '), that is, if S’ ~ B’ x T* then, by Remark 1.2, S’ has
the form indicated in the previous construction.

Therefore N[3~!(j',k')] is the number of subalgebras isomorphic to B’ x T*'.

Then:

1) If ¥ =0, N[B~1(;',0)] = p’'(j + k) and then

J+k

So = Z; N[B™(5",0)] = p(j + k).

2) If k' > 1, there exists (Z)pk'(h)pj/(j +k—h), K <h<EA(j+k—3"), subalgebras
S’ of L such that B(S') = (5, k'), so

EAGHE=T)
MG = 3 ()t R G k)
h=k'

IflSj’Sj,thenk§j+k—j’,andifj+1Sj'Sj-f—k—l:n—l,then
n—j3' =j+k—j <k, so

> NBT(LE)

{3,%")EP (5,k) k' #0

S YNGR S S N K

K'=1j'=1 =i+l k=1

=S, +8,.
k J k k " P B
1= I3 (4o (- )
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ko k (k i,
= h J n —
>Iy (h)p )(;p (
LA AN .
= 3U(F) BN P = )

S p(n - R

i'=i+1

. iz;[(ﬁj)p(h)(

Note that £LS(B? x T*) is the disjoint union of the sets B7*((j’,

P(j, k). Since n — k = j, then we can write
N[LS(B? x T*)]
m+ 21} e
h=

+Z() WS P (n— )]

,_]+1

() 2 -t

=So+51+52

COMLCRL)

which coincides with the formula previously determined.

k')), where (', k') €

CASE C. j =0, k>0, that is, L ~ T*, and then L is a centered algebra.

Let S’ be a subalgebra of L. Then S’ =~

Zero.

B’ x T¥, where j', k' are not simultaneously

As in the previous case, it can be proved that the pair (5',%") verifies 0 < ;' < &,

0<k<kand1<j+k <k
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Given a fixed positive integer k, let P(k) be the set of all pairs (j’, k') which verify the
above conditions. Then

Al R 43k
NPk =k+k+> t= +3k
t=1

2

Let us consider the set BS(L) of Boolean subalgebras of L, that is, the set of Boolean
subalgebras of B(L), the set CS(L) of centered subalgebras of L and the set AS(L) of
axed (neither Boolean nor centered) subalgebras of L. Then £S(L) is the disjoint union
of these three sets.

If S’ € LS(L) then S’ ~ B” x T*¥. Observe that:

1) S’ € BS(L) if and only if k' =0 and j' > 1.

2) S'€CS(L) if and only if 7' =0 and &' > 1.

3) S’e AS(L) if and only if 3' > 1, k' > 1.

We are going to prove that the function 4 from L£S(L) into P(k) defined by
v(B¥ x T7') = (j',k'), is onto. If k' = 0, any subalgebra S of B(L) ~ B* satisfying
S’ =~ B?" is such that v(B? x T°) = (5,0). If j' = 0, let S’ be a subalgebra of B(L) such
that S’ ~ B¥. Then S = LS(S', c) verifies S = B® x T*', so v(S) = (0,%"). Suppose j’
,k' 2 1. Since by hypothesis, ¥’ < k, ¥’ < k—j'and j;/ > 1 then ¥’ < kand k—j' < k. Let
h be such that &' < h < k—j' <k and a € A(L) such that N[A(Va)] = k. Since h < k, a
is not the center of L. As in Case B, consider a k’-partition of .A(Va) and a j’-partition of
A(~ Va). Then we obtain a subalgebra S of B(L) such that $' = LS(S,a) ~ Bi' x T¥.
Since 1 < h < k, 5" is neither Boolean nor centered and v(S5') = (j/, ¥').

We know that if §' € LS(L) verifies v(S’) = (5, k'), then S’ ~ B¥ x T¥. Then the
number of non isomorphic subalgebras of T* equals to N[P(k)] and the number of subalge-
bras isomorphic to a subalgebra S’ ~ B¥' xT¥ is N[y~(j’, ¥')]. Then Zf,=1 N[y71(y',0)] =
N{BS(B(L))] = p(k) = N[CS(L)] = Ty N[y (0, K)].

If j/,k' > 1, then there exist =7, (,’:) p*' (R)p’'(k — h) axed subalgebras S of L such
that v(S5") = (5, k). So

N[LS(TH]= 3 N7 K) = p(k) + p(k)
(4K )YeP (k)

+ > Ny~ k)
(j’,k’)GP(k),j’,k’zl

k=1 k=g' k=i’ i\ 4
=2p(k) + Y[ (D <h>p" (h)p’

7'=1k'=1 h=k'

’

(k= R))]

= 2p(k) + 2 (f)p(r)p(k —r)=3 (l:) p(r)p(k —r).

r=0
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