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MONADIC SYMMETRIC BOOLEAN ALGEBRAS

by

Manuel Abad and Luiz Monteiro

ABSTRACT. The purpose of this paper is to introduce and investigate a new
(equational) class of algebras, which we call Symmetric Monadic Boolean
Algebras or simply Algebras, as a system (B,3,T) where B is a Boolean al-
gebra, (B,3) is a Monadic Boolean algebra [P.Halmos, 1962], (B,T) is a
Symmetric Boolean algebra [Gr.C.Moisil, 1954,1972; A.Monteiro, 1966,1969],
and 3Tx = T3Ix, for all x € B.

In §2 we characterize simple algebras and prove a decomposition theorem.
We also obtain the number of automorphisms in the finite simple algebras.

In §3 we prove that the variety of Symmetric Monadic Boolean algebras 1is
lTocally finite. As an application of these results we obtain in §4 tne
structure of the Symmetric Monadic Boolean algebra with a finite set of
free generators.

* The most essential results of the present paper were submitted to

VII Coloquio Latinoamericano de Algebra (July 6 to 10, 1987) in a

talk given at the University of Chile, by L.Monteiro.

Received, September 1988.






1. INTRODUCTION

The object of this section is to give definitions and some well-known re-
sults of the theory of Monadic Boolean Algebras and Symmetric Boolean Al-
gebras, that are relevant to this paper. For further information and refe-
rences on these algebras the reader is referred to [7,8,9,10,11].

A Monadic Boolean Algebra is an algebra (B,3) such that B is a Boolean al-
gebra and 3 is a unary operation (called quantification) defined on B sa-
tisfying the identities:

M1) 30 = 0 3 M2) x = xAadx ;3 M3) 3{xady) = Ixady , [7]. For the sake of
simplicity we say that B is a monadic algebra.

It is well known that if K(B) = {x € B: 3x = x}, then K(B) is a Boolean
subalgebra of B which is upper conditionally complete, that is, if x € B
the family {k € K: x < k} nas an infimum in K.

If B is a finite Boolean algebra with |B| > 1 and A(B) is the set of all
atoms of B, then there exists a one-to-one correspondence between the set
of partitions of A(B) and the set of quantification operations defined on
B.

If {Ci}lsist is a partition of A(B), then the elements bi = X!C.x s

1
1 <i<t, are the atoms of K(B).

If x € B and A(x) = {a € A(B): a < x}, then x =V{a: a € A(x)}.

A Symmetriec Boolean Algebra is an algebra (B,T) where B is a Boolean alge-
bra and T is a Boolean automorphism of B such that TTx = x, for all x € B
[8,9,10,11,2,3]. We say that B is a symmetric algebra.

1.1. LEMMA., If B is a symmetric algebra, {aj} a family of elements in

JjEJ
B and there exists a = _V_a. , then there exists .V_Ta. and T(.V. a.) =
jes 3 jes %3 jes’i
= .V T1a..
Jed J

PROOF. We have aj < a for every j € J, then Taj < Ta for every j € J. On
the other hand, if b € B is such that Taj < b for every j € J, then aj =

= TTa. <Tb , and a = V a. < Tb. Therefore Ta < TTb = b.
J jey 3

Let X be a non-empty set, B a symmetric alggbra, and BX the set of all

functions from X into B. We can define on BX the following pointwise ope-
rations:



(fvg)(x) = f(x) vag(x) ; (fag)x) = f(x) ag(x)
(-F)(x) = -(f(x)) ; (TF)(x) = Tf(x)
0(x) = 0 : 1(x) =1

for all x € X, and so (BX,V,A,-,T,O,l) is a symmetric algebra.

1f £ € B and there exists the supremum (infimum) of the set R(f) =
= {f(x): x € X}, we note 3f = V R(f) (Vf = AR(f)). Then we have the fol-

lowing functions in BX:

(BF)(X) = 3f ; (Wf)(x)

Vf . X € X.

1.2. DEFINITION. A symmetric subalgebra S of a symmetric Boolean algebra

BX is said to be a monadic functional symmetric Boolean algebra if it ve-
rifies:

S1) If f €S, there exist the elements 3f, ¥Yf in B.

s2) If f e S, Af and ¥f are elements of S.

1.3. LEMMA. If S is a monadic functional symmetric Boolean algebra, then
the operation 3 has the following properties, for f,g € S:

EO) 30 = 0 ; E1) f <3If ; E2) A(f A3g) = 3f AJg ; E3) ATF = T3If.

PROOF. The properties EO,El and E2 are well known (see for example [12])

E3) From Lemma 1.1 T( V f(x)) = V T(f(x)) = V (Tf){x) , therefore
xeX xeX xeX

TI = ITS.

These results lead us the following definition:

1.4, DEFINITION. A monadic symmetric Boolean algebra (an algebra for short)
is a system (B,3,T), where (B,3) is a monadic algebra, (B,T) is a symmetric
algebra and T3x = 3Tx , for x € B.

As usual the unary operation Vx = -3-x defined on an algebra B, is called
universal quantifier,.

For an element k of an algebra B we say that k is a constant element if
dk = k, and the set of such elements is denoted by K(B). It is easy to see
that k € K(B) if and only if ¥x = x and that 3B = K(B).

If B is an algebra it is well-known that K(B) is an upper conditionally
complete Boolean subaigebra of B. If x € K(B), we have 3x = x and then



3Tx = T3x = Tx, therefore Tx € K(B). So (K(B),T) is a subalgebra of the
symmetric algebra (B,T).

Suppose (B,T) is a symmetric algebra and K is a symmetric subalgebra of B

which is upper conditionally complete, then there exists a unique existen-
tial quantifier 3 on B such that (B,3,T) is an algebra and such that 3Ix =

= x for x € K. If we define 3x =A{k € K: x <k}, we know that (B,3) is a
monadic algebra such that 3x = x if and only if x € K. A1l that remains is
to verify that T3x = 3Tx , x € B.

a) 3Tx < T3Ix. Endeed, from x < 3x it follows Tx < T3x and hence
3Tx < 3IT3x. Now 3Ix € K and K is a symmetric subalgebra of B, then
Tix € K and thus 3T3x = T3x. It follows that 3ITx < T3Ix.

b) TIx <3ITx. Since ITx = A{k € K: Tx <k}, to prove that Tdx <« ITx we
must show that T3x <k for every k € K such that Tx < k. So let k be
an element of K such that Tx < k. Then x < Tk and hence 3x < 3Tk. It
follows Tix < T3Tk. Since k € K, then Tk € K, thus 3Tk = Tk and hence
T3Tk = TTk = k, tnerefore TIx < k.

For an element b of an algebra B we say that b is an Znvariant of B if

Tb = b, and the set of such elements is denoted by I(B). (I(B),3) is a
monadic subalgebra of the monadic algebra (B,3). Finally I(B) n K(B) is a
Boolean subalgebra of B, where Tx = 3x = x, x € I(B) n K(B). Moreover
I(B) nK(B) = I(K(B)) = K(I(B)).

We proceed to consider some examples of algebras.

1.5. EXAMPLE. Let B be the Boolean algebra of Figure 1.

1
X 0 a1 a2 1
Tx 0 a, a, 1
4 .
31x 0 1 1 1
0 32x 0 a, a, 1
FIGURE 1 TABLE 1

Then (B,31,T) is an algebra such that K(B) = {0,1}and I(B)

{0)1}.
(B,HZ,T) is an algebra such that K(B) = B , I(B) = {0,1}.

1.6. EXAMPLE. Let B be the Boolean algebra of figure 2.



X Tlx sz Ix
0 0 0 0
a; a, a, b
a, a, a; b
a, a, a, a,
a, a, a, a,
b b b b
c g e h
d e g h
e d c i
f f f f
g c d i
h i i h
i h h i
J J k 1
k k J 1
1 1 1 1
FIGURE 2 TABLE 2

Then (B,3,Tl) and (B,3,T2) are algebras.

2. HOMOMORPHISMS

2.1. Homomorphisms and quotient algebras

Let A,A' be algebras, h:A - A'. We call h a homomorphism if:

H1) h(xay) = h(x)Anh(y) ;3 H2) n(-x) = -n(x)
H3) h(3Ix) = 3Ih(x) ; H4) n(Tx) Th(x).

From H1 and HZ2 it follows that h is a Boolean homomorphism (B-homomorphism),
from H1, H2 and H3, h is a monadic homomorphism (M-homomorphism) and from
H1,H2 and H4, h is a symmetric homomorphism (S-homomorphism).

From H1 to H4 it is possible to prove:

H5) h{xvy)
H7) h(1)

h(x) v h(y) ; H6) h(0) =0
1 ;  H8) n(vx) = vh(x).

The notions of epimorphism, monomorphism, isomorphism and homomorphic ima-
ges are defined in the usual way.



Let A, A' be algebras and h a homomorphism from A into A'; the set
Ker(h) = {x € A: h(x) = 1} has the following properties:

N1) Ker(h) is a filter,
N2) If x € Ker(h) then vyx € Ker(h),
N3) If x € Ker(h) then Tx € Ker(h).

If F is a filter of an algebra A and F verifies conditions N2 and N3 we
say that F is a monadiec S-filter (MS-filter, for short). If F is a filter
verifying N2 we say that F is an M-filter. If a filter verifies N3 is said
to be an S-filter.

2.1.1. LEMMA. Let A,A' be algebras and h a homomorphism from A onto A'.
Then:

1 - The restriction h of h to K(A) is an S-homomorphism from K(A)

[K(A)

onto K(A'), such that Ker = K(A) n Ker(h).

2 - The restriction h of h to I(A) is an M-homomorphism from I(A)
[1(a)

onto I(A') such that Ker(h ) = I(A) n Ker(h).

[1(a)
If F is an MS-filter of an algebra B, then the relation "x = y (mod.F) if
and only if there exists f € F such that xaf = yaf" is a congruence. If
x € B, |x| denotes the congruence class containing x and B/F denotes the
quotient algebra, where the operations are defined as uswual:

IxIadyl = Ixayl 5 Ixfviyl = Ixvyl 5 =Ix| = [=x| 5 T|x| = [Tx| ;
3[x| = |3x|. The function v:B » B/F defined by ¢(x) = |x| is an epimor-
phism such that Ker(v) = F.

2.1.2. LEMMA, Let B,B',B" be algebras, h':B = B' an epimorphism, h":B » B"
a homomorphism. If Ker(h') C Ker(h") tnen there exists a unique homomor-
phism h:B' » B" such that h" = ho h'. Moreover if h" is an epimorphism,
then h is an epimorphism. If h" is an epimorphism and Ker(n') = Ker(h")
then h is an isomorphism.

2.1.3. COROLLARY. If B,B' are algebras and h:8 - B' is an epimorphism,
then B' and B/Ker(h) are isomorphic.

Hence, every homomorphic image of an algebra B can be obtained up to iso-
morphism, as a quotient B/F, where F is an MT-filter of B.

Recall that if X is a non-empty subset of a distributive lattice R with 0



and 1, then the filter F{(X) generated by X is the set of all elements

y € R such that there exist elements X aX ces X € X such that

2"
Xy AXy Ao AX <y. It is well known that if X verifies the property

X implies xay € X" then

>
<
Mm

F(X) = {y € R: there exists t € X with t < y}.

If X = @, then F(P) = {1}. If X = {a} we write F{(a) instead of F({al).
F(a) is called a principal filter. If R is finite, every filter is princi-
pal.

If B is a monadic algebra, the M-filter MF(X) of B generated by X verifies
MF(X) = F(v¥X). If B is a symmetric algebra, the S-filter SF(X) of B gene-
rated by X verifies SF{X) = F(X U TX). Again we write MF(a) instead of
MF({a}) and SF{a) instead of SF({a}). We have MF(a) = F(v¥a) and SF(a) =

= F({a} u {Ta}) = F({a,Ta}) = F(aaTa). It is easy to see that F(a) is an
M-filter if and only if a € K(B) and F(a) is an S-filter if and only if

a € I(8B).

If B is an algebra, MSF(X) denotes the MS-filter generated by X. We are
going to prove that MSF(X) F{(VYX U TVX). From the preceding results

F(¥YX U TYX) = SF(¥X). If X P, then MSF(@) = {1} and SF(V@) = SF(P) =

= {1}. Suppose now X # @. We know that X C MSF(X), then ¥X C ¥Y(MSF(X)) C
C MSF(X). Since MSF(X) is an S-filter, we therefore have TS(¥X) C MSF(X). To prove that
MSF(X) € SF(V¥X) it is sufficient to show that 1) X C SF(¥X) and 2) SF{¥X)
is an MS-filter.

1) If y € X, Yy € ¥YX C SF(VX). Since Yy <y and SF(¥X) is a filter then
y € SF{¥X).

2) Since SF(V¥X) is an S-filter, it remains to prove that it is also an
M-filter. If z € SF(VX) = F(VX U TVX), then

A= Y AY, A Ay <z , where y; € VX UTvX , 1i=1,2,...,n,
then y; = ¥Yx with x € X, or y; = TVYx with x € X. Then in any case

y; € K(B). Thus a = Ya < VYz and consequently Yz € F(YX U TVYX) = SF(V¥X),
which completes the proof.

In the case X = {a}, then MSF(a) = MSF({a}) = F({va,TVa}) = F(Va ATva).

We now give the relationship between MS-filters in an algebra B, S-filters
in K = K(B), M-filters in I = I(B) and filters in I(K(B)). Let D,S,M and
F respectively denote the set of all MS-filters in an algebra B, the set
of all S-filters in K(B), the set of all M-filters in I(B) and the set of



all filters in I(K(B)).

Consider the following functions:

e b—S s wl(D) =D nK(B) = 3D
¢, D—M , wz(D) =D n I(B)
¢3: § — F . ¢3(F) = F nK(I(B)) = 3F
¢, M— F s ¢,(F) = Fn I(K(B))

"

) 1 1‘% (1)

We have:

2.1.4. LEMMA. If we order the sets D,S,M and F by inclusion then Prs Voo

¥4 and v, are order isomorphisms and the diagram (1) commutes.

PROOF. It is well known that ¢ and ¢, are isomorphisms. If D € D, then
it is easy to see that wl(D) =DNK(B) €S, DNnK(B).= 3D and
F(D n K(B)) = D.

Conservely, if D* € S, then D = F(D*) € D and D* = D N K(B). Since VD* =
= D* and TD* C D* we have F(D*) = MSF(D*).

If D € D, then ¢2(D) =DNAI(B) eEMand D = F(D Nn I(B)). Also, if D' € M
then D = F(D') € D and D' = D n I(B). Moreover F(D') = MSF(D'). The veri-

fication of commutativity being immediate, the proof is complete. -

2.1.5. LEMMA. If D € D then K(B/D) = K(B)/(D n K(B)),
1(B/D) = I1(B)/(D n I(B)),
K(B/D) n I(B/D) = (I(B) n K(B))/(D n I(B) N K(B)).

[

In the next section we shall use these results.

2.2. Simple algebras and representation theorem

An algebra is called trivial if it has only one element.



2.2.1. DEFINITION. An algebra B is called simple if

1) B is non trivial.
2) A11 the homomorphic images of B are either trivial or isomorphic to B.

Since the homomorphic images of B are the algebras B/F, where F is an MS-
filter, we have:

2.2.2. LEMMA. An algebra B is simple if and only if its only MS-filters
are {1} and B. '

The proofs of the following lTemmas is routine:

2.2.3. LEMMA. F(x) is an MS~-filter of an algebra B if and only if
x € I(K(B)).

2.2.4, LEMMA. If M is an MS-filter of an algebra B, then B/M is simple if
and only if M is maximal.

2.2.5. LEMMA. F(a) is a maximal MS-filter of B if and only if a is an atom
of the Boolean algebra I(K(B)).

2.2.6. COROLLARY. a is an atom of the Boolean algebra I(K(B)) if and only
if B/F(a) is a simple algebra.

2.2.7. THEOREM. If B is a non trivial algebra, then the following condi-
tions are equivalent.

(i) B is a simple algebra.

(ii) I(K(B)) is a simple Boolean algebra.
(iii) K(B) is a simple symmetric algebra.
(iv) I(B) is a simple monadic algebra.

PROOF. (i) implies (ii) by lemmas 2.2.3 and 2.2.2. The equivalence of (ii)
and (iii) was proved in [2, Th.2.2, page 209]. If x € I(B) then

I3x € K(I(B)) = I(K(B)). It is then clear that (ii) implies (iv). Let (iv)
nold, and let F be an MS-filter in B such that F # {1}. Then there exists
x €F, x # 1. The element y = ¥Yx ATVUx € F and also y € I(B). Ify =1,
from y < ¥x <x it would follow x = 1. Then y # 1 and therefore Vy = 0.

But it is clear that Vy = y, thus we have 0 = y € F and then F = F(0). So

(i) holds. .



It is known [2,10,11] that any simple symmetric algebra is isomorphic to
one of the algebras listed in figure 3.

1

Sl X Tx S, i__lz_
0 0 0
1] 1 k -k Wl
0 -k
0 1

FIGURE 3

IR

So an algebra B is simple if and only if either K(B) S. or K(B) = Sz'

1
A simple algebra B is said to be of type I, if K(B) = {0,1}, and of type II,
if K(B) = {0,k,-k,1}, where k # 0,1 and Tk = -k.

Certain intervals in an algebra B turn out to be algebras.

2.2.8. LEMMA. i) Let p,u belong to I{K(B)), such that p < u, then
(IpsulyvsA,myp,u,3,T), is an algebra, where m=x = pv (-x Au), for
p <X < u.

ii) K([p,ul) = K(B) N [p,u].

iii) Let a € I(K(B)). Then the function H defined by H(x) = xAa is a homo-
morphism of B onto [0,a]l, such that Ker(H) = F(a).

iv) If B is finite, then A([0,a]) = A(B) n [0,a].

2.2.9. COROLLARY. B/F(a) and {[0,a] are isomorphic algebras and then
K(B/F(a)) and K([0,a]) are isomorphic symmetric algebras.

Let B be an algebra, we denote by A(K N I) the set of all atoms of the
Boolean algebra K(B) N I(B) and by A(K) the set of all atoms of the sym-
metric algebra K(B).

2.2.10. LEMMA. 1) [0,a] is simple of type I if and only if
a € A(KN1I)nA(K).

2) [0,a] is simple of type II if and only if a € A(K nI) - A(K).

PROOF. 1) If [0,a] is a simple algebra of type I then K([0,a]) = {0,a}.
If b € K(B) and 0 <b < a, then b € K(B) n [0,a] = K([0,a)) = {0,a}.
Hence b = 0 or b = a, and then a € A(K). From 2.2.6 and 2.2.9 it follows
that a € A(K n 1).



For the conserve, if a € A(K n 1) N A(K) then 2.2.6 and 2.2.9 imply that
[0,a]l is a simple algebra. If b € K([0,al) = K(B) n [0,a] ther from

a € A(K) we have b = 0 or b = a. Therefore K([0,a]l) = {0,a}, from which we
conclude that [0,al is a simple algebra of type I.

2) If [0,a]l is a simple algebra of type II, from 2.2.6 and 2.2.9 we have
a € A(KN 1) and K([0,al) = K(B) 1 [0,a} = {0,k,-k = mkAa,a}, so it is
clear that a & A(K).

Conservely if a € A(K N I) -.A(K) then from 2.2.6 and 2.2.9 we have that
[0,a] is a simple algebra. If [0,a] were of type I, then from 1) it would

follow that a € A(K), a contradiction. Therefore [0,a] is of type II.

Observe that if b € A(K) then Tb € A(K).

It is easy to see that:

2.2.11. LEMMA. A(K N I) - A(K) = {a €A(KN1I): a=0>bvTb, beA(K), b # Tb}.

Observe that in this case since b & I I(B) then b € A(K nI). Similarly
Tb € A(K N I)}. Then b,Tb € A(K) - A(K N I).

2.2.12. NOTE. Let B be a finite algebra. Then:

1) If a € A(K n 1) - A(K) then a is the supremum of 2r atoms of B. Endeed

A(a) = A(b) U A(Tb), A(b) n A(Tb) = @. Hence |A(a)| = |A(b)]| + |A(Tb)].
Besides T is a bijective correspondence between A(b) and A(Tb), then
|[A(b)| = |A(Tb)|. Therefore |A(a)| = 2]|A(b)| = 2r, r natural, r > 1. From

this we have that if B is a simple finite algebra of type II, then B has
an even number of atoms. Endeed from 2.2.7 I(K(B)) = {0,1}, thus

A(K nI) = {1} and from K(B) = {0,k,-k,1} it follows A(K) = {k,-k}. Then
A(K n 1) - A(K) = {1} and so |A(B)]| = |A(1)] = 2r.

2) If the cardinals |A(K)| and |A1| are known, where A1 = A(KN1I)nA(K),
then from 2.2.11 and A1 C A(K) we have

ALK -A

|
= AL - 1A, .

JA(K N 1) - A(K)]

2.2.13. THEOREM. If B is an algebra, the intersection of all maximal MS-
filters in B is the MS-filter {1}.

PROOF. From lemma 2.1.4 the function ¢ = b3 09 is an isomorphism between

10



the ordered sets D and F. Since in a Boolean algebra the intersection of
all maximal filters is the filter {1} it follows that the intersection of

all maximal MS-filters in the MS-filter {1}. -

It follows from this tneorem and using well-known general results on uni-
versal algebra [5, Corollary 1, Theorem 11, Chapter VI] that any algebra B
with more than one element is .a subdirect product of the family

{B/M}MeM(B) , where M(B) is the set of all maximal MS-filters in B. Moreo-

ver M being maximal, the algebras B/M are simple. In particular, any non
trivial algebra B is semisimple.

As a consequence of more general results shown by A.Figallo [6], we can
state that a finite symmetric algebra is uniquely determined, up to iso-
morphisms, by the number of its atoms and of its non-invariant atoms.

In what follows we identify isomorphic algebras and isomorphic symmetric
algebras.

If the algebra B is finite, then B is a direct product of simple algebras,
more precisely we have:

2.2.14. THEOREM. If B is a non trivial finite algebra then

n
B = _II1 B/F(ai) , Where {ai} is the family of all atoms of I(K(B)).

i= 1<i<n

PROOF. We know that B is isomorphic to a subalgebra of the direct product

n
I B/F(a.). This isomorphism is h(x) = (h (x),h (x),...,h _(x)) where
i=1 i 1 2 n

h,: B » B/F(ai) are the natural homomorphism , 1 < i <n. Let us prove

that h is onto.

0
Ify = (yl,yz,...,yn) € igl B/F(ai), for each yi‘e B/F(a.) there exists

<g R
L

x. € B such that hi(xi) =y, Consider the element x =

i (XiA ai) € B.

1

It is clear that hj(ai) € I(K(B/F(aj)) = {0,1}. If for j#i hj(ai) =1
then a; € hgl({l}) = F(aj) and then aj <a,, a contradiction. Therefore

n
hj(ai) = 0 for j#i and hj(aj) = 1. Then hj(x) = iZl(hj(xi)A hj(ai)) =

=h.(x.)ah.(a.) = h,(x, = h.(x.) = Y. -
J( J)A J(aJ) J(xJ)A 1 hJ(xJ) Y- Therefore h(x) = y.

If we write K = K(B), I = I(B), A1 = A(K NnI)nA(K), A2= A(K n I) - A(K)

11



= , AL, UA, = A(KNI)and B = I B/F(a =
then A, N A, = ¢ ) ) ( ) &) (a)
= 1 B/F{a) x O B/F(a), where the quotients B/F(a), a € A1 are simple
acA acA

1 2
algebras of type I and the quotients B/F(a), a € A2 are simple algebras of

type II.

2.3. Number of automorphisms in the finite simple algebras.

We obtained in the above section that finite simple algebras of type I1I
have 2t atoms. This result is a consequence of more general results which
we prove in this section. Also we determine the number of automorphisms in
the finite simple algebras. This will be used en Chapter 4.

2.3.1. LEMMA. If B,C are finite Boolean algebras and h is Boolean homomor-
phism from B onto C, then:

(I) For b € A(C) there exists a unique a € A(B) such that h{(a) = b
[3, lemma 2].

(IT) If a € A(B) then either nh(a) € A(C) or h(a) = 0.
(IIT) If in addition h is injective, then h(a) € A(C) for every a € A(B).

PROOF. (II) Suppose h(a) # 0. Then there exist bl’bz"“’bt € A(C) such
t
that h{(a) = V bi’

i=1
From (I) we know that for each bi there exists a unique a, € A(B) such

t t
that h(ai) = bi then h(a) = izl bi = izl h(ai). Hence h(a a ai) =
t
= h(a) A h(ai) = (izlh(ai))A h(ai) = h(ai) = bi, for each i, 1 <i <t.

Since bi # 0 then ana a; # 0 and therefore 0 < aa ai < a. Then aa ai = a

and h(a) = h(aa ai) = bi € A(C).

(III) It is an inmediate consequence of (IT) and the hypothesis.
We denote by Bm the Boolean algebra with m atoms, m > 1.

2.3.2. LEMMA. Let i,j € Bm and let h be a Boolean automorphism of Bm such
that h(i) = j. Then h(A(i)) = A(j) and h(A(-i)) = A(-3).
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PROOF. If i=0, then j=0, and h(A(0)) = @ = A(0) and h(A(-0)) = n(A(1)) =
= A(1) = A(-0).

Suppose that a € h(A(i)), that is a = n(b) with b € A(i). Since b € A(B,)
then from lemma 2.3.1 (III) we have a € A(By). From b < i it follows that
a = n(b) <h(i) = j, that is a € A(j), then n(A(i)) € A(J).

Let ¢ € A(j). From lemma 2.3.1 (I) there exists a unique a € A(By) such
that h{a) = c. Since a <1 i v -i and a is a prime element of B, we have
a<iora<-i. If a <-i thenc = h{a) <h(-i) = -n(i) = -j. Besides
c <j, then ¢ < ja -]
fore ¢ = n{a) € h(A(1)).

i

0 which is a contradiction. Then a < i and there-

The other identity is obvious in view of the preceding proof and h(-i) =

= j. -

It is well known [14,15,3] that if h is a Boolean automorphism of a finite
Boolean algebra Bm, m > 1, then the function fh: A(Bm) > A(Bm) defined by
fh(a) = b if and only if h(b) = a, is a bijection.

Observe that fh is the inverse of the restriction of h to A(Bm). Conserve-

ly, if f is a bijection of A(Bm) then the function Hf: Bm > Bm defined by:
Hf(x) =V{a € A(Bm): f(a) < x}

is a Boolean automorphism of B+

Let the set of all bijections of A(Bm) be denoted by F BF(A(Bm)) and let
B-AUT(Bm) stand for the set of all Boolean automorphisms of B . Then the
m

function y: F » B-Aut(Bm) defined by y(f) = H f €F is bijective. Then

f’

IB-AUT(B )| =m! = 1x2x...xm.
m .
From Lemma 2.3.2 we conclude:

2.3.3. LEMMA., If i € Bm and h € B-AUT(Bm) is such that h(i) = j then
£.(A(3)) = A(i) and £, (A(-3)) = A(-i).

Observe that every bijection of A(B_ ) verifying one of these conditions,
also verifies the other.

Let F* = BF(j’i)(A(Bm)) denote the set of all bijections f of A(Bm) such
that f(A(j)) = A(i). The set of all Boolean automorphisms of B_ such that
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n(i) = § is denoted by B-AUT(**3)(B ). It is clear that F* CF and F* # p
if and only if |A(j)] = [A(i)].

The restriction y* = wlF* of ¢ to the set F* is a bijection between F* and
B-AUT(®>3)(B ). Endeed, if f € F* then H, (i) =v{a € A(B_): f(a) < i}.

If a € A(Bm) and f(a) < i then f(a) € A(i) = f(A(j)). Then f(a) = f(c)
with ¢ € A(j). Since f is one-to-one then a=c and then a € A(j). So

a € A(Bm) and a < j. On the other hand, if a € A(Bm) and a < j then

a € A(j) and then f(a) € f(A(j)) = A(i). Thus f(a) < i. Therefore

He(i) =vi{a € A(B_): a <j} = j. Hence H, € B—AUTti’j)(Bm).

Conservely, if h € B-AUT(®3)(B ) we know that the function f, € F, defi-
ned by fh(a) =.b if and only if h(b) = a, a,b € A(Bm), verifies w(fh) = h
and in view of the remarks made earlier we can state that fh € F*, then
p*¥(f.) = n.

It is clear that y* is one-to-one and then we have that y* is a bijection

between F* and B-AUT(i’j)(Bm).

Then [B-AUT{®-3)(B )| = [F*].
If r = [A(3§)] = |A(i)]| , it is clear that
[F*| = JA(I)IY . JA(-3)] = vl . (m-r)!

Note that if i=j=0 or i=j=1, then B-AUT(O’O)(Bm) = B-AUT(B_) =
= B-AuT 1D (p ),
m
If h € B-AUT(Bm) is such that h(i) = -i, i € B_ then |A(i)] = |A(-i)| and
P and A(i) U A(-i) = A(B,) then |A(B )| =

since A(i) n A(-i)

= [AG) ]+ JA(-1)]

2|A(i)|. Thus if B, is a Boolean algebra such that
there exists a Boolean automorphism h such that h(i) = -i, then m is even

and |A(i)] = %. In this case:
Dg 2
B-AuT gy = (B - D)= (M)

I[f B is a simple finite algebra of type II, that is, B = Bm, m natural,
m=>2, K(Bm) =S, = {0,k,-k,1}. Since T is a Boolean automorphism of B,

verifying T(k) = -k, we can state that B has an even number of atoms. In
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addition, from 2.3.2 it follows that T(A(k)) = A(-k), then B has no inva-
riant atoms.

Isomorphic algebras being identified, for each even natural number 2m,
m>1, there exists a unique simple algebra of type II, B

B;;, where.

A(B) = {a,,a a, }, K(B) = {0,k,-k,1}, k = v t
129930000850 s s Ky =K, s V, a -k Vv a

i=1 i’ i=m+l i

Ta. = a. i < = i
a1 a1+m » I <i<m, Tai ai—m , M+l < 1 < 2m.

2.3.4. LEMMA. If B is a simple algebra of type I then h € AUT(B) if and

only if nh is an S-automorphism of B.

PROOF. It is similar to the proof of lemma 2.4 indicated by L.Monteiro in
[13]. =
If B is a finite simple algebra of type I with m atoms, and 2t non inva-

riant atoms we note B = B¥* .
: m,2t

- ] t ]
2.3.5. LEMMA. |AUT(B;’2t)| = (r-2t)!.2°.t!.

* = - * 3 *
PROOF. By lemma 2.3.4 'AUT(Br,zt)l |'s AUT(Br,Zt)l and since Br,2t has
(r-2t) invariant atoms and 2t non dinvariant atoms, from our results
[3, Corollary 71 we have

|AUT(BY ,,) ] = (r-2t)!.2%. ¢!,

2.3.6. LEMMA. If B is a'simple algebra of type II, then h € AUT(B) if and
only if n is an S-automorphism of B such that either h(k) = k or h(k) = -k,
where K(B) = {0,k,-k,1}, k # 0,1.

'PROOF. If h € AUT(B), then h is an S-automorphism. Since k # 0,1 and h is
an injective function then h(k) # 0,1. Besides k € K(B) implies
n(k) € K(B) and then n(k) € {k,-k}.

Conversely, let h be an S-automorphism of B such that h(k) = -k. It suf-
fices to prove that

(*) h(3x) = 3h(x) for every x € B.

This condition is obviously verified if x=0. If x verifies 3x = k then
n(3x) = n(k) = -k. Since x < Ix = k then h{(x) < h(k) = -k. From h(x) £0
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and h(x) £ k it follows (see section 1) 3h(x) =A{y € K(B): h(x) <y} =
= -kal = -k. In a similar way if Ix = -k or 3x = 1 we can prove that the
condition (*) is verified. The case h(k) = k being similar, the proof is

compliete. -

If B = B;*, m even, m = 2, is a finite simple algebra of type II, we deno-
te by S-AUT(k’k)(B) the set of all S-automorphisms h of B such that

n(k) = k. It is clear that this set is non empty. Similarly we denote by
S—AUT(k’_k)(B) the set of all S-automorphisms h of B such that h(k) = -k.

It is also clear that this set is non empty since T € S—AUT(k"k)(B).
From lemma 2.3.6 we can state that
AUT(B**) = s-AUT R (B) U s-auT (k> 7R) ()

and since S-AUT(®®)(g) n s-auT (k=KX (B) = g we have:

2.3.7. LEMMA, If B is a finite simple algebra of type II then
[AuT(B) | = |s-AuT (B (g)| + |s-auT (=B gy,

The following succession of results will be used in the calculus of the
numbers of lemma 2.3.7.

If h € S-AU%(k’_k)(B) and f_ is the function from A(B) into A(B) defined
by fh(a) = b if and only if h(a) = b, we know that fh‘is a bijection on
A(B). From h(k) = -k and Temma 2.3.3 we have that fh(A(-k)) = A(k), which
is equivalent to fh(A(k)) = A(-k). Moreover, since h is an S-automorphism
fh(Ta) = Tfh(a),dfor every a4 € A(B), [3, lemma 3].

Let F** denote the set of all bijections on A(B) verifying 1) f(A(k)) =

= A(-k), and 2) f(Ta) = Tf(a), for every a € A(B). If y** is the restric-
tion of § to the set F**, from 2) we have that Hf is an S-automorphism of

B, and from 1) and the previous remarks Hf(k) = -k. Then it follows
[Fex| = |s-auT(R -k ()|

We are going to prove that the set BF(A(k),A(-k)) of all bijective func-
tions from A(k) onto A(-k) and the set F** have the same cardinality.

If f € BF(A(k),A(-k)) we define a bijection on A(B) in the following way:
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f(a) s if a € A(k)

Tf(a) . if-a € A(-k)

Since (i) A(B) = A(K) U A(-k) and (ii) @ = A(k) N A(-k), Fe is a function
defined on A{(B) and it is clear that it is bijective.

Since T is a Boolean automorphism on B verifying Tk = -k, then from lemma
2.3.2 we have T(A(k)) = A(-k) and T(A(-k)) = A(k). Observe that if

a € A(k) then Ff(a) € A(-k) and if a € A(-k) then Ta € T(A(-k)) = A(k),
thus f(Ta) € A(-k) and therefore Fg(a) = Tf(Ta) € T(A(-k)) = A(k).

F¢ is onto. Endeed, if b € A(B), from (i) and (ii) we have (iii) b € A(k)
or (iv) b € A(4k); In the case (iv) since f is onto there exists a € A(k)
such that f(a) = b, then T¢(a) = f(a) = b. In the case (iii), fromb € A(k)
it follows that a = Tb € T(A(k)) A(-k), then since f is onto there exists
c € A(k) such that f(c) = a, then d = Tc € T(A(k)) = A(-k) and Fg(d) =

= Tf(Td) = Tf(c) Ta = b. So we have that F; is a bijection on A(B). Mo-
reover, Fg(A(k)) A(-k) and if a € A(k), since Ta € A(-k), then Fg(Ta) =
Tf(TTa) = Tf(a) = TFg(a). If a € A(-k), then Ta € A(k) and Fg(a) =
Tf(Ta), thus TFg(a) = TTf(Ta) = f(Ta) = T¢(Ta). Then we have that

Fg € F¥*, It is clear that if we define o(f) = F¢ then ¢ is a one-to-one
function from BF{A(k),A(-k}) into F**,

If f € F**, f' = flA(k) is a bijection from A(k) onto A(-k). It is easy
to see that o(f') = f.

Then we have |F**| = |BF(A(k),A(-k)|, and since [A(k)]| = % , then
|s-auT e ()| = ().

In a similar way we can prove that the set S-AUT(k’k)(B) and the set of
all bijective functions on A(k) have the same cardinality and therefore

|s-auT R ()| = (Bt

" Then if B;* is a finite simple algebra of type II, with m atoms, m even,

m= 2
- AW
|AUT(B;*)| = 2(7)..

3. FINITELY GENERATED ALGEBRAS

Let G be a part of an algebra B; we denote by S(G) (respectively SS(G),
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MS(G)) the smallest subalgebra (symmetric subalgebra, monadic subalgebra)
of B containing G. S(G) (SS(G),SM(G)}) is called the subalgebra (symme-
tric subalgebra, monadic'subalgebra) generated by G. It is clear that
SS(G) € S{G), MS(G) < S(G).

The following lemma can be proved in the usual way:

-
—
.

LEMMA. If B,B' are aTgebras, h an homomorphism from B into B' and
G C B, then S{h(G)) = h(B).

3.2. LEMMA., If B is a simple algebra, and G € B is such that S(G) = B
then:

(i) If B is of type I, SS(G) = B.

(ii) If B is of type II, SS(G,k) = B, where we write SS(G,k) instead of
SS(G U {k}).

PROOF. (i) Since K(B) {0,1} € SS(G) then SS(G) is a subalgebra contai-
ning G. Thus B = S(G) € SS(G), that is B = SS({G).

(ii) We have K(B) = {0,k,-k,1} € SS(G,k). So SS(G,k) is a subalgebra con-

taining G. Hence SS{(G,k) = B. .

We now prove that if an algebra B has a finite set of generators, then B

is finite. That is, if G is a finite subset of B with |G| = n and S(G) =

= B , then B is finite.

We know that B is a subalgebra of the algebra P = 1 Sy» where M(B) is
MeM(B)

the set of all maximal MS-filters of B and Sy = B/M, M € M(B). If we pro-

ve that B/M is finite for every M € M(B) and the set M(B) is finite, then

P is finite and hence B is finite.

3.3. LEMMA. Let B be an algebra, G C B such that |G| = n, n natural,n>1,
S(G) = B and M € M(B). Then [B/M| < 2(4?%D),

PROOF. We know from 2.2.4 that if M € M(B) then B/M is a simple algebra.

First case: B/M is simple of type I, that is K(B/M) = {0,1}. If h is the
natural homomorphism from B onto B/M then by 3.1 and 3.2 SS(h(G)) =

= S{h(G)) = B/M. So h(G) is a set of generators of the symmetric algebra
B/M. Since |[h(G)] < n we have that B/M is finite and

1B/M] <24 (121, 111]).
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Second case: B/M is a simple algebra of type II, that is K(B/M) =
= {0,k,-k,1} where k # 0,1. Then SS(h(G),k) = S(h(G)) = B/M. So H(G) U {k}
is a set of generators of the symmetric algebra B/M.
n+1
Therefore |B/M| < 2047 ),
Then we have if B is a finitely generated algebra there exists only a fi-
nite number of algebras B/M, M € M(B). Endeed, following a similar path
as in [12], let w = |B/M|, M € M(B), we have:

1) On a finite set it is possible to define only a finite number of struc-

n+l
tures of monadic symmetric Boolean algebra. Then for each w < 2(4 ) the-

re exists only a finite number of algebras B/M, with |B/M| = w.

n+l
2) From 3.3 it follows that for w > 2 (4 )

w elements.

we have no algebras B/M with

Then, isomorphic algebras being identified, from 1) and 2) we have that
there exists only a finite number of algebras B/M, M € M(B).

Let 51,52,...,Sf be fixed algebras pairwise non isomorphic such that each

algebra s is at least isomorphic to one of the algebras B/M, M € M(B)
and such that every algebra B/M, M € M(B) 1is isomorphic to si, 1 < j < f.

. . f . . .
If M3 = {M € M(B): B/M = 53} then M(B) = .ul M3 and M* n M3 = @ if i # j.
J =

Then in order to prove that M(B) is finite it is sufficient to prove that
M3 is finite for every j.

Let EPI(B,Sj) be the set of all homomorphisms from B onto s and let
F*(G,Sj) stand for the set of all functions f: G - SJ such that S(f(G)) =
- s3. We have that F*(g,s9) ¢ (s9)°

Let r be the function from EPI(B,SJ) into F*(G,S3) defined by r(h) = hjes
for h € EPI(B,Sd). It is easy to see that r is one-to-one, and then

. . - G
|[EPT(B,SI)| < [F*(6,57)] < ](ST)7]| < =.

Besides, the function s: EPI(B,Sj) > MI defined by s(h) = Ker(h) is onto.
Endeed, if M € M3 Tet Oy be the isomorphism between A/M and Sj and

hM: B - B/M the canonical homomorphism. Then the function h = Oy © hM has
kernel M, that is s(h) = M,

so {M3| < JEPI(B,ST)| and then M(B) is finite.
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We have then proved that if B is finitely generated then B is finite. More

precisely, if AUT(Sj) is the set of all automorphisms of sJ then

| = lepr(s,sH|
|AUT(S?) |
Endeed if H € EPI(B,SI) and h € AUT(ST) then (h oH) € EPI(B,ST) and
s{hoH) = s(H). If Hi»H, € EPI(B,Sj) and Ker(Hl) = Ker(Hz) then there
exists h € AUT(Sj) such that H, = h °H2’ then s_l(M) = {hoH: h € AUT(Sj)}

where M € M(B) verifies B/M = sd,

4. FREE ALGEBRAS
We start this section by recalling the following well-known definition:

4.1. DEFINITION. Given a cardinal number ¢ > 0, we shall say that £ is an
algebra with c free generators if:

Ll) There is a subset G of £, of power c, such that S(G) = £.

L2) Given an algebra B and an application f from G into B, there is a homo-
morphism f, necessarily unique, from £ into B such that f is an exten-
sion of f.

If it is so, we shall say that G is a set of free generators of £. An al-
gebra is said to be free if it has a set of free generators. We shall no-
te £ = L(c). Since the monadic symmetric algebras are defined by equations,
we can state, by a G.Birkhoff theorem of universal algebra [5], the exis-
tence and uniqueness, up to isomorphisms, of L{(c). In view of the preceding
paragraph, we can state that L(n) is finite, for every natural number n > 0.
Furthermore if K(n) = K{(L(n)), I(n) = I(L(n}), A1= A(K(n) N I(n}) NnA(K(n)) ;

A, = A(K(n) n I{n)) - A(K(n)) , then L(n) = Pl(n) xPZ(n) where

P,(n) = M L(n)/F(a) 5 P(n) = N L(n)/F(a). "
as:A1 2 ae:A2

We know that if a € A1 then L(n)/F(a) is a finite simple algebra of type I,
(4™ '
[L{n)/F(a)| <2 and then (see 2.3)
L(n)/F(a) = B* , 1<r<4 , 0<2t<r.

r,2t
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If a €A, L{n)/F{(a) is a finite simple algebra of type II,

) and L/F(a) = B** , 2 <2t <4,

(4
IL(n) /F(a)] <2 1

Hence

(n) (n)
a o
P (n) T (B* 1 ™% 5 P (n) | | [Br*] 2°

lryn o2 2¢2e¢4?t 2t
0<2t<r
where
RO [EPI(L(n),B] , )] ma o ]EPI(L(niLB;:)I
’ AUT(B% , )] |AUT(837) |
A) Computation of ai?%t , 1l <r <4, 0<2t <vr.

Al) Computation of AUT(B: ) s 1 <r < 4" , 0 <2t <'r.

* - t 1 '
By lemma 2.3.5 lAUT(Br,zt)I = 2-.(r-2t)l. .t

A2) Computation of [EPI(L(n),BY , )| , 1 <r <4%, 0<2t<r.

We are going to prove that the symmetric subalgebra of L(n) generated by G,
noted SS{(G), is the symmetric algebra with n free generators S(n).

‘Let C be a symmetric algebra and f an application from G into C. We define
an existential quantifier on C by means of Ix = x, x € C. Then TIx = 3Tx,
and therefore (C,3) is an algebra. Then f can be extended to a homomorphism
h from L(n) into C. It is clear that the restriction of h to SS(G) is an
S-homomorphism from SS(G) into C extending f. So SS(G) = S{(n).

If BY ,, » 1 <r <4, 0<2t<r, isa finite simple algebra of type I

we denote by S-EPI(S(n),B: 2t) the set of all S-epimorphisms from S(n)

onto B* .
r,2t

* - %*
4.2. LEMMA. |EPI(L(n),B} , )| = |S-EPI(S(n),B% , )|.

PROOF. Let B be a finite simple algebra of type I and H € EPI(L(n),B). We
know that S{n) = SS(G). If we consider the function &(H) = Hls(n) it is

clear that h = H|s(n) is an S-homomorphism from S(n) into B. By lemma 3.1
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S(H(G)) = H(L(n))
then B = SS(H(G))
If Hl,H2 € EPI(L(n),B) are such that ¢(H1) = ¢(H2) then H1IG = HZIG.

Since L(n) is a free algebra this function can be extended to a unique ho-
momorphism from L{n) into B, so Hy = H

B and from lemma 3.2 SS(H(G)) = B. Since S(n) = SS(G)
SS(h(G)) = h(S(n)), therefore h € S-EPI(S(n),B).

1

5
If h € S-EPI(S(n),B), let H be the extension of the function f = HIG to

L(n). Then H(L(n)) = S(H(G)) = SS(H(G)) = SS(f(G)) = SS(h(G)) = h(S(n)) =

= B. Thus H € EPI(L(n),B) and ®(H) = Hls(n)' Since h and H coincide

| s(n)
h

on G then Hls(n) = h. -

4.3. COROLLARY. B: ,¢ 1s a homomorphic image of L(n) if and only if

1 <r <47, 0 <2t <4"-2™ and 0 < r-2t <27,

PROOF. From 4.2, B: 2t is a homomorphic image of L(n) if and only if the

*

symmetric algebra Br’2t

is a homomorphic image of the symmetric algebra
S(n). Since S(n) has 4™ atoms, 4%-2™ non invariant atoms and 2" invariant

atoms ([2]) then the symmetric algebra B: ia a homomorphic image of the

2t
symmetric algebra S(n) if and only if ([3]), 1 <r <4™ , 0 < 2t < 4"-2"

and 0 < r-2t < 2°.

From our results in [3] we have

|S-EPI(S(n),B* _ )| = 2% . v .V
r,2t 40-(a"-2™) re2e 4%-2"
2
where 1 <r <4" , 0 <2t <4™-2" |, 0 < pr-2t < 27,
Therefore
2t v .V -
2% r-2¢ L . N LWL
r,2t ' ’
2%, (r-2t)! .t r-2t t

1 <r <4, 0 <2t <4"-2" |, 0 < pr-2t <27,

If n =1, we have 1 <r <4, 0 €2t < 2, 0 <r-2t <2, and then
1)y _ (1) (1) (1) (1)
= 2 . = , = . = R = .
al,o a2,0 a2,2 1 a3,2 2 aa,z 1. Then
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_ * 2 * * * 2 *
Pl(l) = (B ) XBZ,OXBZ,ZX(B3,2) XB4,2'
Hence [P, (1)] = 216 - 65.536. The Hasse diagrams of these factors as well as
the operations T and 3 are indicated in Figure 4, (page 24).
n+l

B) Computation of agz), 2 <2t <4

The numbers agz) will be determined in a different way from that used in
the determination of a(n) .
r,2t

Let M(2n) denote the monadic algebra with a set

G = {91’929-~-agn!gn+lagn+2,'--’gzn}

of 2n free generators.

Let t: G - G be defined by

9,0 ntl < i < 2n.

Then t can be extended to a unique M-homomorphism T from M(2n) into M(2n).
From G = t(G) = T(G) € T(M(2n)) € M(2n) and T(M(2n)) being an M-subalgebra
of the monadic algebra M(2n) it follows that T(M(2n)) = M(2n), that is T
is onto. Since M(2n) is finite we have that T is one-to-one.

It is clear that M = {x € M(2n): TTx = x} is an M-subalgebra of M(2n) con-
taining G and then M = M(2n). Thus TTx

x for every x € M(2n).

Therefore we have that (M(2n),T} is an algebra.

We shall prove that H = {gl,gz,...,gn} is a set of free generators of the

algebra M(2n). This is a consequence of the resu]ts.of Abad and figallo
[1], but we include here a demostration for the sake of completeness.

From H € S(H) and S(H) being an S-subalgebra, for h € H, Th € S(H), that
is TH € S(H). Then G = H U TH € S(H) and since S(H) is an M-subalgebra of
M(2n), then M(2n) = SM(G) € S(H). Thus S(H) = M(2n).

If B is an algebra and f is a function from H into B we define

F(g.) = f(g.) for i =1,2,...,n

,1
—
w
)
+
-
-
-
-+
—
v
S
-
o
il
=

n

1,2,...,n.
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Then F is a function from G into B such that FIH = f and therefore F can
be extended to an M-homomorphism Hp: M(2n) > B.

It is easy to see that the set S = {x € M(2n): H(Tx) = TH.(x)} is a sub-

algebra of the algebra M(2n) containing H, and then § M(2n), that is

HF(Tx) = THF(x) for every x in M(2n).

Then we have the following theorem:

4.4. THEOREM. (M(2n),T) is the algebra with n free generators.

That is, L{(n) = M(2n) and therefore K(L(n)) = K(M(2n)). Then (see [13])

2n
2n ,(2°7-~1)
IL(n)] = 2t% -2 I,

M (2211) _ 4n .
oreover K(Ln)) has 2 -1 =27 -1 atoms. In particular

|L(1)] = 232 = 4.294.967.296.

We are going to determine the decomposition of L(n) as a direct product
of simple algebras, which is a more precise result that 4.4.

(n) n+l
2t ‘

To this end we only have to compute te . numbers a s 2 <2t <4

This is equivalent to determine the elements a € A2 such that

[L(n)/F(a)]| = 22t 2 <2t < 421 From L(n)/F(a) =10,al, this is equiva-
lent to determine the elements a € A2 which are supremum of 2t atoms,

n+l

2 <2t <4 , of the algebra L(n) = M(2n).

Since K{n) = K(L(n)) = K(M(2n)) we know from our resu]tsP[4] that if
b € A(K(n)), then: |

1) 1 < |A(b)| <2%" = 4™, and

. .4
2) there exist ( ) atoms of K(n) such that |A(b)] = r, 1 <r <47,
r

If Ar(K(n)) = {b € A(K(n)): [A(b)| = r}, 1

A

r < 4%, then A(K(n)) is the
disjoint union of the sets Ar(K(n)), 1 <r <4". By 2.2.11 we know that
A2 = {a € A(K(n)) nI(n)): a = bvTb, b € A(K(n)), b#Tb}, and the elements
b,Tb belong to A(K(n)) - A(K(n) n I(n)).

Since for b € A(K(n)) we have 1 < |[A(b)] < 4™ then the elements of A2 are -

supremum of at most 2.4™ atoms of the algebra L(n). Since A n(K(n)) has
4
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only one element, this element is an invariant, so the elements of Az

are supremum of at most 2.(4"-1) atoms of L(n).

It is easy to see that the set {a € A2: [A(a)| = 2r} and

{(b,Tb): b € A_(K(n)) - A, 2 <2r < 2.(4™-1), have the same cardinality.

Therefore
a0 = 7 TAK) AL ] = 1A (K(N))-(A_(K(n)) nA)| =
= 3 LA = [A(K(n) n A =
n
- %[<4) - : o{M 1, 2 <2r <2.(4m).
r 0<2t<r ’
If n=1, we have 2 < 2r < 2.(41-1) = 6, then

(1) _ 1./4 (1) . (1) 1[4 (1) (1) - .
@ 0= ?[(1)'“1,01 S 2‘[(2)'(“2,0 tappll =2
(1) 1./4 (L)
6 §[<3)'°‘3,2]

_ pk* *ky 2 * %
Then Pz(l) = 82 X (B4 )< x 86 .

i
—
.

Hence Pz(l) = 216, The Hasse diagrams of these factors as well as the opera-

tions T and 3 are indicated in figures 5 and 6 (pages 27 and 28). -
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