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NOTES ON n-VALUED POST ALGEBRAS

by

Manuel Abad

1. HISTORICAL INTRODUCTION AND SUMMARY OF RESULTS.

In 1920, E.Post [16] defined the most important operations of n-
valued logic as a generalization of the usual 2-valued calcutus,
and discussed some of their properties by means of tables of va-
lues. Earlier a special concept of 3-valued logic was introduced
by Lukasiewicz [9].

Rosenbloom [18] in 1942, studied Post algebras from an algebraic
standpoint, giving the abstract algebraic properties of the sys-
tems independently of their interpretation as logics, and he ga-
ve the first postulate-set for Post algebras. However, Rosen-
bloom's system of axioms was a very difficult one and this com-
plexity hindered the development of the theory until Epstein's
paper [7], appeared in 1960. Epstein [7] and Traczyk [21] sim-
ptified Rosenbloom axiom system by making use of a greater number
of operations and of the existence of an underlying Boolean al-
gebra of a given Post algebra, and they proved the equational de-
finability of the class of Post algebras. Since then several pa-~-
pers-on-Post algebras, as well as their generalizations and appli-
cations not only in logic but in other branches of mathematics,
have been published (See Traczyk [22], Chang and Horn [5],
Dwinger [6], Rouseau [19], Cignoli [4], Rasiowa [17], Monteiro
[147).

On the other hand, Halmos [8] introduced in 1955 the monadic alge-
bras with the aim of developing an algebraic version of the logi-
cal operation of quantification, and in 1970 L.Monteiro {131 in-
troduced the notion of three-valued monadic Lukasiewicz algebra



which is a generslization of monadic Boolean algebras, If the uh -
derlying Lukasiewicz algebra s centered, this theory coincides
with that of three-valued monadic Post algebras, which have been
developed by L . Monteiro in [14].

As a natural generalization, in this note we are concerned with
various aspects of n-valued monadic Post algebras. We give a brief
exposition of the basic properties of n-valued monadic Post alge-
bras, the theory of monadic deductive systems and representation
theorem. Also we investigate free n-valued monadic Post algebras
with a set & of generators, for G finite.

2. n-VALUED MONADIC POST ALGEBRAS,

In this section we first recall some definitions and also summa-
rize those properties of n-valued Post algebras that we will need
in the future. In the second place we introduce the notion of n-

valued monadic Post algebra and we establish some of its basic
properties,

The following definition is due to T.Traczyk [21]:

DEFINITION 1. Let n be a fixed integer > 2. An n-valued Post al-

gebra is a system QP,O,l,A,v,el,.,.,en_2> such that <P,0,1,A,v>

is a distributive lattice with zero 0 and unit 1, and SRR
are n-2 elements of P such that

P1) 0=eo<\:el<”.-<~en*2<\en_l = 1

P2) If B(P) denotes the Boolean algebra of all complemented ele-
ments of P, for any x € P, there exist elements bl""’bn~1 be -

longing to B(P) such that x = (blhel) v(b2 Aez) Vo, Vbn~1

P3) If b € B(P) and b Aej @:ejw1 for some j (1 < j < n-1), then
b = 0,
The elements €os€1s---58 ¢ are distinct and unique [7].
: n-1
On the other hand, it can be proved by puttirg di = ¥ bj s
j=1i



1 <1 <n-1, that every element x of the Post algebra P can be
written also in the form

x = {d v v d

rey)viovd

Ael)v(d

1 2

with d, € B(P), 1 €1 <n-1 , and d. »d., = ... > d .
i 1 2 n-1
This representation is unique {([7], [21]).
If we denote di = Si(x) and if b' is the Boolean complement of an

element b € B(P), then Epstein [7] proved that the operator

n-1
~x = v (e, A (D__(x))')
i=1
verifies
ML) ~~x = x

M2) ~(x vy) = ~xa-~y

Also, if we write si(x) = Dn»i(x) (1 <1 <n-1) then the follo-
wing properties are satisfied:
L1} si(x vy) = s.X vs.y

1
L2) s.Xxv~s.x = 1
1 1

L3) s.5.x = §.x
i73
Ld) s, ~x = ~g X
1 n=-1
L5) s.x <s.x < ... < 8§

1 2 n-1%
L6) The Moisil determination principle:
If s;x = s,y for i = 1,2,...,n-1, then X=y,
[0 if 1+j <n

and in addition s.e. = (1)
i
] 1 if i+i =

Moreover, the two following properties are known to be true in
any n=valued Post algebra:

~X VvV § x o= 1 , and s$.xAa~5.x% =0,
n-1 i 1

Now we re-write from Cignoli's paper the following theorem which
characterizes the n-valued Post algebras.



THEOREM 2. P is an n-valued Post algebra if and only if P is an
n-valued Lukasiewicz algebra and P has n-2-elements e
which satisfy (1).

AR LS
The proof can be found in [4].

DEFINITION 3. By an n-valued monadic Post algebra 1s understood &
system <P,3> such that P is an n-valued Post algebra and 3 is a
unary operation defined on P and satisfying the following condi-
tions:

) 30 =0

) X < 3x

E2) 3(xA 3y) = 3xA 3y
) Is.x = 5. 3x

(See H.Bass [2], P.Halmos [8]1, L.Monteiro [13]1, [15]).

As usual, the operator 3 on an n-valued monadic Post algebra is
called an existential quantifier, and via the equation
¥x = ~3 ~x the concept of a universal quantifier is defined.

We know that any n-element chain (e.g. of real numbers)

e, < e < .. < e is an n-valued Post algebra. We shall denote

-1
by P, the particular n-valued Post algebra of all fractions

e, = J/n_1 , 0 <J <n-1, considered as a sublattice of the real

numbers [4] , with

(3 = n-1-j
( /n-l) /n~1
g ) 0 if i+j <n
s.[9/ =
it 'n-1 1 if i+j > n

H

The n-valued Post algebra of all sequences x (xl,,..,xk), with

X, € Pn and with pointwise defined operations will be denoted by

Pk, and P* = (pk
n n

K n,H) the n-valued monadic Post algebra where

3(x1,x2,...,xk) = (a,a,...,a) , a = max{xl,xz,...,xk}.

Certain elementary consequences of the definition are contained in
the following lemma.



LEMMA 4. In any n-valued monadic Post algebra the following pro-
perties hold:

1y 3t =1 5 2) 33x

i

Ix 3 3} If x <y then Ix < 3y

4) ~xv s ax =1 3 B) 3xvs ~X = 1,
)3 n

-1 -1

i

Proof. For 1), put x 1 in E1) [8}. For 2), put x = 1 in E2) and

apply E4), 3(1 a3y) = 31a3y , then 33y = 3y.

If x <y then 3x < 3y. Since y < 31y, we have x < 3y, then
X A3y = x, and by E2) 3(x a3y) = 3x A3y =3x. Then 3}). From

1= ~xvs X< ~xvs 53X it follows 4). Finally, since

X < 3x, then 1 = x VS g ~MX S 3XvS X, and we have 5},

-1 -1

DEFINITION 5. An element k of an n-valued monadic Post algebra P
is said to be a constant if 3k = k.

Let K{P) be the set of constants of P. Clearly, K(P) is the range
of the quantifier 3 , that is, K(P) = 3(P). Furthermore, 0 and 1
belong to K(P).

Throughout the following statements it is assumed that P is an n-
valued monadic Post algebra and 3 is a quantifier on P.

LEMMA 6. If s,x € K(P), 1 <1 <n-1, then x € K(P).

Proof. If s.x € K(P), 1 <1 <n-1, then 13 s;x = syx , 1 <1 <n-l,

and by E3), s.3x = s;x , 1 <1i <n-1, then by L6), 3x = x.

Therefore x € K,

COROLLARY 7. The elements e ,,e,,...,e__, belong to K(P).

Proof. Since siej = 0 or siej =1 for every 1 and j, and since
0 € K(P) and 1 € K(P), it follows from the above lemma that

ej € K(P), 1 €j <n-2.

This corollary together with next theorem shows that K(P) is a
Post subalgebra of P.



THEOREM 8. K(P) is closed under the formation cf 4 , ~ and S, -

Proof. If x and y are in K(P), then x = 3x and y = 3y. Thus
xay = 3xa 3y = 3(xa3y) = 3(xay). This proves that K(P) is
closed under the formation of infima.

If x € K(P), then 3 x = x and we can write 0 = 30 =

Hi

3(six A ~six) = E(SiXA sn_ifvx) = a(si IX A S ~x) o=

n-i

= 3(3s;xAs ~x) = 38;x Al ~X =3 S XAS LA ~X.

=i n-i n-i

But in a Post algebra, if as~b =0 then b < ~a, Then $.x =

= 5,3x%x = IS X < ~s L FTVX. Therefore
.3 ~% S ~S X = .o~ L ~X = . d~X.
Speg 3 VX S ~S.X =S L~X <3S L ~X TS L 3~
Consequently Speq 37X =S L ~X for i =1,..,,n~-1, and for
the Moisil determination principle, we have 3~x = ~x and the-

refore ~x & K(P). This proves that K(P) is closed under ~.
Finally, if x € K(P), i.e. 3x = x, then s;3x = s.x for

i =1,...,n=1 and by E3), 13 S;X = S.X, SO that s;x € K(P}.

This completes the proof of the theorem,
COROLLARY 9. If x and y are in K(P), then xvy belongs to K(P).

The following two formulae hold in any n-valued monadic Post al-
gebra and are stated formally for convenience of reference. The
proofs can be found in [13].

3I(xvy) = 3xv a3y ; 3~ 3Ix = ~ 3 X
Also, it is well known that if B(P) is the center of P, that is,
the set of all complemented elements of P, and if Ki =
= {x € P: S;% = x} we have the following result proved by G.
Moisil in [10] and R.Cignoli in [4]:

Ky = Ky = ooo= K= B(P)

Then we have

LEMMA 10. If x & B(P), then 3x € B(P),



Proof. 1f x is in B{(P), then s.x = x for all 4, 1 €1 < n-1, and
consequently Is.x = 3x. By E3), s; 3 x = Ix for all i,

1 1 <n-1, and therefore 31x & B(P).
CORQLLARY 11. The system <B(P),3> is a monadic Boolean algebra.

LEMMA 12. If B(P) S K(PY, then 3x = x for all x of P.

(This quantifier is called discrete).

Proof. If x isin P, s;x is in B{P} for all i, 1 €1 <€ n-1, and
since B(P) € K(P) it follows that s.X € K(P) for all i,

1 €1 <n-1, and from lemma 6, x € K{(P), Then 3x = x,

As a consequence of this lemma it follows that the discrete
quantifier is the only one which can be defined on the Post alge-
bra P_. Indeed, S(Pn} = {0,1} and then B(Pn) [ K(Pn).

3. MONADIC HOMOMORPHISMS.

Let <P,3> and <P',3> be two n-valued monadic Post algebras with

distinghished elements € 1€ e ,8

and e;,e‘,...,e‘ respec-

n~1 n-1
tively. A mapping h: P — P' is said to be a monadic homomorphism
if h is a Post homomorphism preserving the 3 operation. In other
words, h is a monadic homomorphism if and only if for all x,y € P
h(xvy) = hi(x)vh(y)
h( ~x) ~h(x)

sih(x)

H

:

h(s;x)
h(ei} = ei , 0= <n-1
h(3x) = 3 h(x)

By a monadic deductive system in an n-valued monadic Post algebra

<P,3> is understood a filter D € P such that if x belongs to D
then v x and $ 1 X belong to. D.

It can be proved in the usual way that all homomorphic images of



an n-valued monadic Post algebra P can be found up to isomorphism
by the congruences assectated to monadic deductive systems of P.
In other words, if D is a monadic deductive system of P and we
define x = y (mod D) if and only if there exists an element d in

D such that xAd = yad, then = is a congruence relation on the
algebra P, Conversely, suppose = s a congruence relation in P,
then D = {x; x = 1} s a monadic deductive system of P. Then the
ordered set of all congruences of P is isomorphic to the set of all
monadic deductive systems of P, The set P/D of all equivalence
classes, algebrized in the natural fashion, becomes an n-valued mo
nadic Post algebra, and the mapping x = |x] carrying each x in P
into its equivalence class in P/D, is an epimorphism from P onto
P/D (see [3])., This result can be derived from the fact that n~-va-
Tued monadic Post algebra is equationally definable.

When P has only trivial congruences, P is called simple. Then it
is clear that an n-valued monadic Post algebra P is simple if and
only if {1} is the only proper monadic deductive system of P, and
D is a maximal monadic deductive system of P if and only if P/D
is simple.

In addition we have:

THEOREM 13. If P dis an n-valued monadic Post algebra then the
following are equivalent:

i) P is simple

ii) K(P) is a simple n-valued Post algebra
iii) B(P) is a simple monadic Boolean algebra
iv) K(P) n B(P) is a simple Boolean algebra
v) P is subdirectly irreducible.

Proof. It is not difficult to prove that there is a one-to-one
correspondence between monadic deductive systems in P, deductive
systems in K(P), monadic filters in B(P) and filters in

K(P) n B(P). So that, the conditions i), ii), iii) and iv) are
gequivalent.

Clearly, if P is simple P is subdirectly drreducible.

Now, let us suppose P is not subdirectly irreducible. Then there



exists a set. of monadic deductive systems DY such. that DY # {1}
and N Dy = {1}. Then the corresponding filters Dy N K{P)} n B(P)
give a set of filters 4n the Boolean algebra K(P) n B{(P) with

DY N K(P) nB(P) # {1} and mDY N K(P) nB(P) = {1}. So

K(P) n B(P) is not subdirectly irreducible and then K{(P) n B(P)
is not simple., Conseguently P is not simple, a contradiction.
This. completes the proof of the theorem,

THEOREM 14. Every n-valued monadic Post algebra is a subdirect
product of simple algebras.

Proof. This follows from the above Theorem by Birkhoff's Theorem
[31.

The following theorem is an important characterization of simple
n-valued monadic Post algebras.

THEQREM 15, An n-valued monadic Post algebra P is simple if and
only df K(P) = {O’ﬁl”°°”en~2’l}‘

Proof. We always have {0,91,-.e,en_2,1} C K(P).

Suppose K(P) = {O,el,...,en_Zgl}, Since none of the elements
€ys...se_ _, is complemented (see [71) it follows that

K(P) NnB(P) = {0,1}, hence from Theorem 13, P is simple.

Fer the gonverse, suppose P is simple, Then by Theorem 13 K(P) is
a simple n-valued Post algebra. But Pa is the only simple n-va-

Tued Post algebra (See [4]1). Therefore K(P) and P, are isomorphic
algebras, hence K(P) = {Qgel,..,,eﬂ_z,l},

Some of the above results can be improved in the case P is a fi-
nite algebra,

Let us remark that in every n-valued monadic Post algebra P, the
principal filter generated by a, F(a), is a monadic deductive
system if and only if a belongs to K(P) N B(P).

If P is finite, every filter is principal and then it follows
that the family of monadic deductive systems of P is the family



of principal filters Fla), with a € K{P}) rn B(P). In addition, it
is clear, that F(a) is a maximal monadic deductive system if and
only if a is an atom of the Boolean algebra K(P) n B(P).

If bl’bz""’bs are the atoms of K(P) n B(P) then the algebras

S. = P/ s ' i € s, are simple, and we know that P is iso-

8
morphic to a subalgebra of I

) § ., where the isomorphism ¢ s gi-
1= 1

ven by o¢(x) = (¢_{(x)) P ~+ S_ being the natural homo-
Y Y

1sygs Py
morphism,

If P is finite, ¢ is also surjective. Indeed, if y = (yy)lsyss
5

F for each Y et x € P b [
/ (b.) 4 1 % e such that

belongs to II
i=1

¢Y(XY) = yy, Then x = jll (xY AbY) is such that ¢Y(x) = Yy

hence ¢(x) = y.

Then we have the following theorem:

THEOREM 16. Any finite n-valued monadic Post algebra P (with mo-

re than one element) is jsomorphic to the direct product
8

p . ;
Ygl /F(by) , wWhere bl,‘..,bS is the set of all atoms of the Boo-

lean algebra K{(P) n B(P).

To end this section, we are going to point out some properties of
finitely generated n-valued monadic Post algebras that we shall
need in the following section.

If G € P we shall note S$S(G) the subalgebra of P generated by G,

and SP(G) the subalgebra of P as n-valued Post algebra generated
by G.

LEMMA 17. If P is a simple n-valued monadic Post algebra and G a
generating set of P (that is S(G) = P) then SP(G) = P,

Proof. From Theorem 15 we have that K(P) = {0’91"“’en-2’1} and

therefore K(P) € SP(G), then SP(G) is a subalgebra which contains
G. This implies S(G) C SP(G). Hence SP(G) = P.

10



As a consequence, if P is a simple n-valued monadic Post algebra,
G C P, G finite of cardinal N[G] = r and S{(G) = P, then P is fi-

T
nite. In fact, n < N[{P] < n® _ This follows from the fact that P
is a homomorphic image of the free n-valued Post algebra on r ge-

T
nerators which has n® elements (See [4] ).

I1f P is an n-valued monadic Post algebra with a finite set G of r
generators and M is a maximal monadic deductive system of P, then

P/M is also r-finitely generated and from above remark,
T
n o< N[P/M] < n® . So P/M is isomorphic as n-valued Post algebra,
P -
/M) -
= {OQel,,,.,engl,l}, therefore p/M is isomorphic,as n-valued mo-
k

nadie¢ Post algebra,to P* = <P .3x
o,k n

to Pi, 1 €k <n®. Besides, P/M is simple and then K(

r

, 1l €k <n Then from Theo-

nr [0

rem 14, P is isomorphic to a subalgebra of kgl (P; k)

oy is the number of times which the axis P;

. Where

. appears in the de-

composition of P as a subdirect product of simple algebras.
Let us see that o is finite.

If Mk is the set of maximal monadic deductive systems M of P such
p R . N c ~
that /M is isomorphic to Pn,k . it is clear that oy = N[Mk].

Let Epi(P,P; k) be the set of all epimorphisms from P onto P; L

F(G.P; The mapping

k) the set of all functions from G into Pg =

h — Ker h carrying each h € Epé(P,P; ) into its kernel in M

k
is clearly surjective, and the mapping h - hlG carrying each
h € Epi(P,P; k) into its restriction to G is injective, being
that if h]G S h‘]G then {x € P: h{x) = h'(x)} is a subalgebra of

P which contains G.

. = i (P * * w©
Then o N IM ) < N[Epi(! ,Pn‘k)] @N[F(G,Pn‘k)] <
nr Ock
Therefore, P = H (P* ) and we have proved
k=1 0.k

THEQREM 18. Every finitely generated n-valued monadic Post alge-

11



gebra is finite.

We shall use this Theorem in the sequel.

4. FREE n-VALUED MONADIC POST ALGEBRA.

We devote this section to the study.of the most general n-valued
monadic Post algebra, that is, the free algebra. We shall obtain
its algebraic structure when we take for a generating set a fini-
te set G, following for the construction a technique due to L.Mon-
teiro [12]. We recall the definition:

DEFINITION 19. Given a set G of cardinality ¢ > 0, an n-valued mo-
nadic Post algebra Fn(c) is said to be a free algebra over a class

of similar algebras generated by G if the following conditions are
satisfied:

i) 6 & F_(c) and the subalgebra generated by G is Fn(c)

i1) Every mapping f of G into an arbitrary n-valued monadic Post
algebra P can be extended to a homomorphism h from Fn(c) into P.

The homomorphism h of the definition is . uniquely determined by f.
Moreover, since the n-valued monadic Post algebras are equational-
ly definable, it is known from a Theorem of G. Birkhoff [3] that
Fn(c) exists and it is unique up to isomorphism.

From now on, we shall concentrate our study on the free n-valued
monadic Post algebra on a finite set G of r generators and we
shall denote by G = {91’92"”"9r} the generating set of Fn(r).

It follows from Theorem 18 that Fn(r) is finite. So Fn(r) can be
written

F(ry = nm Falr)y,
‘ MeM M

where M is the (finite) family of all maximal monadic deductive
systems of F_(r).

We know that Fn(r)/M is isomorphic to P*

r
Tk for some -k, L' k n",

12



then if we put Mk = {M € M:Fn(r)/M is isomorphic to P; k} , we

X

n
h M= U M , M M, = if i i, and b yttin
ave L i ; 2 ] yp g

a, = N[Mk] , We can write

So we must to calculate ay

First we have the following result:

LEMMA 20. If G is a free generating set of Fn(r) and if Pn(r) =
= SP(G) is the Post subalgebra of Fn(r) generated by G, then G is

a free generating set of the n-valued Post algebra Pn(r).

Proof. If A is any n-valued Post algebra and f is a mapping from
G into A, consider the n-valued monadic Post algebra A* = <A, 3>
where 3 1s the discrete guantifier on A. Since Fn(r) is the free

n-valued monadic Post algebra there exists a homomorphism h from
Fn{r) into A* extending f. The restriction h' of h to Pn(r) is

a Post homomorphism from Pn(r) into A extending f.

Now we are going to determine the numbers o, . For this purpose we

denote, for 1 <k <n", Epi(Fn(r),P; k) the set of all epimor-

. . k
phisms from F_(r) onto P* Epi(P_(r),P)

n,k’

epimorphisms from Pn(r) onto PE, Aut(P; k)

“the set of all (Post)
the set of all auto-

morphisms of PE K Then we have

NIEpi(F (r),P*
LEMMA 21. o, = n - n,k
N[Aut(Pn’k)]

)]

Proof. We know that the mapping h — s(h) = Ker h carrying each
h & Epi(Fn(r),P; k) into its kernel in Mk is surjective.

On the other hand, it is easy to see that if M = Ker h € Mk ,

)}. Consequently we have the

..l o .
then s (M) = {a oh: o E Aut(Png

13



Lemma .

We also have

LEMMA 22. NI[Epi(F_(r),PX )1 = NIEpi(P_(r),PM)1.

n n,k

Proof. Let h & Epi(Fn(r),P* and h' the restriction of h to

n,k)
P (r). Then it follows from Lemma 17 that h‘(Pn(r)) = SP{h'(G)) =

8

k
= = S = = * = -
= SP(h(G)) = S(h(G)) = h(F (r)) = P;,k and P* = P- as Post al
gebra, then h' belongs to Epi(Pn(r),Pﬁ).

Conversely, if h' € Epi(Pn(r),Pi), let f be the restriction of h'

to G. Then f is & mapping from G into P; and therefore, f can

ok

be extended to a homomorphism hf from Fn(r) into P; It is easy

sk

to see that hf belongs to Epi(Fn(r),P* ), and that its restric-

n,k
tion to Pn(r) coincides with h'.

If Epi(B(Pn(r))gB(PE)) is the set of all Boolean epimorphisms
from the center B(Pn(r)) of Pn(r) into the center B(P:) of PE,

we have:

LEMMA 23. NIEpi(P (r),PS)] = NIEpi(B(P_(r)),B(PX))].

n

Proof. Suppose h, belongs to Epi(B(P (r)),B(PX)). If x e P_(r)

n

then x = (d

A ez)v R dn-l , With di & B(Pn(r)),

Voo
V
o

1 <4 <€<n-1, d1 > d2 R n-1 and this representation is uni-

i

que. If we put h{ei) e. € PE for i = 0,1,...,n-1, where the

1

elements e@,el,...,enm1 have been denoted by the same letters in
both algebras for convenience reasons only, and

hix) = (hl(dl) re Jvi{h (d,)re. ) v ...v hl(d ) . h is a homo-

1 1 2) 2>
morphism from Pn(r) onto Pi extending hl {See {221).

n-1

Conversely, if h e Epi{Pn(r),PE) then it s clear that

hlB(Pn(r)) € Epi<B<Pn(?)),B(P:)). This is a one-to-one correspon-

14



dence.
Let us observe that the free n-valued Post algebra on r genera-

tors is isomorphic to the direct product of n* copies of P, and
then it is clear that E(Pn(r)) is isomorphic to the Boolean alge-

bra with n® atoms Bnr, the elements a, = (0,...,1,...,0),
1
1 <i<n", being the atoms of B(Pp(r)).
In a similar way B(PE) is isomorphic to the Boolean algebra with

k atoms Bk.

Therefore [20]

NIEpi(B(P_(r)).B(PS))] = NIEpi(B _,B

n

Finally, it is clear that N[Aut(P* )] = N[Aut(Pi)] =
- N[Aut(B(P‘;))] = N[Aut(B, )] = k!

By this sequence of Lemmas and remarks it follows that

0ok n r
%“""*;‘“(N 1 <k <n
and consequently nt
nr N <k )
Folr) = kgl (Pr )
Finally, o
nl” (nr) 2 k(k )
- ky 'k _ k=1
NIF (r)] = T (n") = n
n k=1
r T T
n r s T, n -1 T,
But  J k(] ) = J L 5. S ) f =
k . r ; r
k=1 k=1 ki{n"-k) k=1 {(k-1)! (n"-k)!
r lflr"l <nr l), n -1 ( Y 1),
= n + nr }: » nr[l 3 n
k=1 (k-1)! (nF-k)! k=1 (k-1)! (n¥-k)!

and making t = k-1 we have

15



nrwz r L
nfi1 + ¥ (n ;1)' =n"[l + J (“t‘1)3 %
t=0 t! (n*-1-t)" t=0
nf-1 T T
=afr 7 (" {1)] = p¥.2® -1
t=0
T nr—l
and then N[Fn(r)] = pln-2 ]

In the case n = 3, the formula F3(r) coincides with that obtained
by L.Monteiro in [14].

Recibido: Marzo 1986
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ON FREE L-ALGEBRAS™

by

Manuel Abad and Luiz Monteiro

ABSTRACT. In [4] A.Horn proved that the free L-algebra FL{n) with a fi-
nite generating set of cardinal n, is finite. He determined its number
of elements by logical methods.

In this paper we prove these results by an algebraic method, following
a path analogous to that of L .Monteiro in [12]. We also give a formula
to compute the number of elements of the set II{n) of all prime elements
of FL{n), and obtain the ordered structure of f(n).

We prove that FL{n) is a direct product of two distributive lattices
with 0 and 1, A, and AZQ where A2 - {0} 1is isomorphic to Al.

L. DISTRIBUTIVE LATTICES.

We devote this section to give some definitions and known results on or-
dered sets and distributive lattices.

1.1. DEFINITION. Given an ordered set (X,<), we say that an element
b € X covers an element a € X if a < b, but a < x < b for no.x & X.

If x € X, the set S(x) = {y € X: x <y} is called the upper section de-

termined by x. Similarty, I{x) = {z € X: z < x} is the lower section de-
termined by x.

1.2. LEMMA. In any ordered set X, the following conditions are equiva-
Tent:

* The most essential results of the present paper were submitted to
VIL Simposio Latino Americano de Légica Matemdtica (July 28 to
August 3,1985) in a talk given at the University of Campinas, Brazil,
by L.Monteiro. An Abstract of this work will be printed in the Jour-
nal of Symbolic Logic as part of the summary of that meeting.



T1) I{x) is a chain, for every x e X.

T2) For every pair of incomparable elements X X, € X, S(xo) n S(xl) = .

1.3. LEMMA. Let X be a finite ordered set in which the condition T1 is
verified, If ml,mz,...,mt are the minimal elements of X. then X is the

cardinal sum [2, p.55] of the sets S(mi), 1 <9 <t. We note X = % S{m_ ).
i=1 *

t
Proof. Clearly S(mi) £ @ for 1 €41 <t, and U S(mi) o
i=1
If x € X, there exists a minimal element mi such that m. << X. Then
S{m. ).
121305

t

X € S(mi), We have then X = U

Since the elements mes 1 €41 €t, are incomparable, from 1.2
<

S(mi) N S(mj) = @ for i#j. 1 it 1< <t.

Finally. if p € S(mi), q € S(mj). i#j. then p and g are incomparable.
Endeed. if p < q then g € S(mi) and therefore q & S(mi) N S(mj), which

is a contradiction. Similarly if g < p.

The sets S(mi). 1 €1 <t. are the connected components of the ordered
set X. For this notion. see A.Monteiro [11, p.53].

If R is a distributuve lattice. let the ordered set of its prime ele-
ments be denoted by II(R). and let P(R) stand for the set of all prime
filters of R, and F(x) = {y € R: x <y} for the principal filter genera-
ted by x. If R is finite. every filter of R is principal. and we have
that P € P(R) if and only if P = F(p) with p € N(R),

It is well known that given a finite ordered set X, there exists a fini-
te distributive lattice R such that I(R) = X, and if R' and R" are dis-
tributive lattices such that M(R') = M(R"). then R!' = R" [1].

In what follows the number of elements of a finite set Y will be noted
by N[Y], and R'e R" will be the ordinal sum of the distributive Jatti-
ces R' and R"™ {2, p.198].

1.4, LEMMA. Let X be a finite ordered set with least element p, and with

more than one element. Let PpsPys- P the elements of X which cover Pys

t
and suppose that S(pi) M S(pj) = @ for ifj. T b, 1 <ot If Ri



is the distributive lattice such that T{R.) & S(pi}3 I <1< t, then

1
t
R = {0}e (TERi) is a distributive lattice such that M(R) = X. We have
13
t
NIRT = TT NIR.T + 1.
i=1

1.5. EXAMPLES,

a) Let X be the ordered set of the figure:

Py a b
S(P1) =1

¥
.
e/
—
[’

X S(pz) = {pz , a, b}.
pO

Then Ry, R, and R.are the following distributive lattices:

(1,n

b » C (1,b) (0,1

- (0,¢)

(1,0




b) Consider the following set Y, then Ry, R, and R have the Hasse dia-
grams indicated in the next figure.

(0,1

(1,0




Observe that in the example b}, the condition T1 fails to hold.

1.6. DEFINITION. Every ordered set with least element which verifies T1
is called a tree. If X is an ordered set which is a cardinal sum of
trees, X is called a forest [10, p.871.

As an example, the ordered set X of 1.5 a) is a tree.

2. L-ALGEBRAS.

2.1. DEFINITION. A Heyting algebra [7,11,15] is a system (A,a,v.,=,0,1)
where A is a nonempty set, 0, 1 are two elements of A and A, v, = are
binary operations defined on A such that the following conditions are
verified:

HO) a A~ 0 =0.
H1) a = a = 1,
H2)  (a =1b) a b
H3) a a (a = b)
H&) a = (b A c)
H5) {a v b) = ¢

i

b.

a A b,

(a = b) A (a =c¢c).
(a =c) a(b=2¢c).

i

H

H

For short, we say that A is a Heyting algebra.

It is well known that any Heyting algebra is.a distributive lattice with
least element 0 and greatest element 1.

If X is a subset of a Heyting algebra A, the (Heyting) subalgebra of A
generated by X will be noted SH(X).

2.2. DEFINITION., An L-algebra [4. 11] 1is a Heyting algebra A such that
(a =b) v (b=a) =1, for a,b € A.

Any chain A with least element 0 and greatest element 1 is an L-algebra
if we define x =y = 1 if x <y and x =y =y if x >y.
Let n be a non negative integer. Let Cn be the chain with n+2 elements
= I
a, = gyr o0 | 0, o vointl.
The least element of C_ is a, = 0 and the greatest element is a =1,
n 0 n+l

Then Cn is an L-algebra. It is clear that any subset X of Cn such that

0 and 1 belong to X, is a subalgebra of Ch-



2.3. For n fixed, let us note C;(n), 0 <i < n, the following subalgebras
of C_: Ci(n)={ao = O,al,...,ai,l}.

n

In particular, Co(n) = 40,1} Cn(n) = Cn.

In this work we identify isomorphic L-algebras.

2.4. LEMMA. If A is a chain with lTeast element 0 and greatest element 1,
and X is part of A, then SH(X) = X u {0,1}.

2.5. THEOREM. In any Heyting algebra the following conditions are equiva-~-

(L) (a =b) v (b=a)=1.

(L1) avb=({a=b)=0>0b)a((b=a)=a).
(L2) (a A b) =c=1(a=c)v (b=c).

(L3) a = (bvec)=+(a=b)v(a=c).

See M.Ward [15] and A.Monteiro [8.9].

2.6. THEOREM. A Heyting algebra is an L-algebra if and only if one of the
following conditions is verified:

C') Every proper filter which contains a prime filter is a prime filter.
C") The family of prime filters which contain a prime filter is a chain.

5] , 6. p.1591 . [10. p.82-841 . [11. p.1181 . [3.4.14].

2.7. THEOREM. Let A.be a Heyting algebra and P a prime filter of A. Then
A/P is a chain if and only if the family of all proper filters of A con-
taining P is a chain. [11, p.118].

2.8. THEOREM. Let A be a Heyting algebra and P a prime filter of A. Then
A/P is a chain if and only if A is an L-algebra.

The sufficient condition was proved by A.Horn [3].

2.9. THEOREM. A non trivial Heyting algebra A (i.e. with more than one

element) is an L-algebra if and only if A is isomorphic to a subalgebra
of a direct product of chains. [8,9,3].

In the proof of the necessary condition of 2.9 it isg considered the di-

rect product T = TT A/P. A is isomorphic to a subalgebra A* of T.
Pe P(4A)



If A is a finite L-algebra, since P € P(A) if and only if P = F(p), with
p € IN{A}, from 2.6 we have:

2.10. LEMMA. If p € I(A), I(p) = {q € M(A): q < p} is a chain.

2.11. DEFINITION. Let X be a finite ordered set. We say that p & X is of
level i, i positive integer, if the maximun "length" of chains in X ha-
ving p for greatest element is 1.

In the set ¥ of the example 1.5.b, is of level 1 and ¢ is of level 4.

Po
2.12. REMARK. If A is a finite L-algebra then p € II{A) is of level i in
M(A), i positive integer, if and only if N[I(p)] = i.

This is equivalent to say that A/F(p) = Ci*l(n)'

3. FREE L-ALGEBRAS.

Let FL(n) be the free L-algebra with a finite set of free generators of
cardinal n > 0. For the sake of simplicity we will write P(n) instead
of P(FL(n)) and II{n) instead of H(FL(n)).

From 2.9, FL{(n) is isomorphic to a subalgebra of the direct product

TT{FL(n)/P: P € P(n)}. We want to prove that every quotient algebra

FL{n}/P, with P € P(n), is finite and also that P(n) is finite. From
this we will have that FL{n) is finite. This result was obtained by

A.Horn [4} by other method.

3.1. LEMMA. If A is an L-algebra, G a generating set of A of power n,
and P € P(A), then N[A/P] < n+2.

Proof. If h is the natural homomorphism from A onto A/P, h{(G) is a gene-
rating set of A/P. Since A/P is a chain, we have A/P = h(A) = SH(h(G))=
= h{G) U {0,1}. Then NIA/P] = N[h{G) U {0,1}] < NTh{G)}] + 2 < n+2.

3.2. COROLLARY. If P € P(n), then FL(n)/P is a finite L-algebra.

3.3. REMARK. In the conditions of lemma 3.1, if P is a prime filter of
A, the family of filters containing P has at most n+2 elements, and the
family of prime filters containing P has at most n+l elements.



,PO = A} o, where T <€t < n, and

A we will denote the family of all fil-

o
1
©
M
.-
0
N
-
N
<
u

ters containing P.

It is well known that the natural homomorphism h from A onto A/P = Ct(n)
is defined in the following way:

1 if x. e P = p
) - ) o1

[a.=~.ig~ if xep, -p 0<i<t

i+1 ?

i

If P € P{n) then from 2.8 and 3.1 we can state that A/P Ci(n) for so-
i<n,

If Pi(n) = {P € P{n): FL{n}/P = Ci(n)} , 0<i<n, then it is clear

I
that P(n) = 190 Pi(n) and that pj(n) N Pk(n) = @ for j#¢k, 0 €3 <n,

0 €k <n.
3.4, LEMMA. Every Pi(n), 0 €13 «n, is a nonempty finite set.

Proof. Let F;{n), 0 < i <n, be the set of all functions f from the set
G of free generators of FL(n) into Ci(n) such that SH(f(G)) = Ci(n).

Since i < n, it is clear that every Fi(n) is ‘nonempty (see 3.8). If

f e Fi(n), f can be extended to a unique homomorphism f from FL{n) into
C,(n). Observe that Ci(n) = SH(F(G)) = SH(F(G)) = F(FL(n)), then F is an
epimorphism from FL{n) onto Ci(n). If Ker(f) is the kernel of ¥, it is
well known that Ker(f) € P(n) and FL(n)/Ker(f) = Ci(n), therefore

Ker(f) e Pi(n). Thus, for each i, 0 < 1 € n, we have a function wi from

H

Fi(n) into Pi(n) defined by ¢i(f) Ker(f), where f € ¥.(n).

L
lLet us see that wi is ontg. For P & Pi(n), consider h the natural homo-

morphism from FL(n) onto FL{n)/P

#

Ci(n), and f = h[G the restriction of
h to G. Then SH{f(G)) = SH{h(G)) = h(SH(G)) = h(FL(n)) = Ci(n), and the-
refore f & Fi(n). Let f be the extension of f.

Since flg = f = hl.. then f = h and therefore y. (f) = Ker(f) = Ker(h) =
= P,



Since F;(n) is finite for every i. 0 <i <n, then Py(n) is finite, and
we ‘have

3.5. LEMMA. P(n) is a finite set,

3.6. THEOREM. FL{n) is finite,

We have in addition that the function Wi, 0 <1 <«<n, is one-~to-one.
Endeed, if f,,f, € F (n) verify Ker(?l) = Ker(f,) then, from results of
universal algebra, there is an automorphism a of C;(n) such that

aoF, = f,. But the only automorphism of C,(n) is o = Id., then ¥, = f,
and then f, = f,.

Then we have that N[Pi(n)] = N[Fi(n)], 0 <4 =n, and therefore:

3.7. LEMMA. NIP(n)] = ¥ NIP.(m)] =

#.o~1

0N[Fi(n)].

3.8. REMARK. The functions f from G into C;(n), 0 < i <n, such that
SH(f(G)) = C;(n), that is, such that f(G) V {0,1} = C;(n), are those

which verify some of the following conditions:
1) f(G) = {al,az,...,ai} = X, ; 2) f(6) = X; v {0} ;
3) f(G)

H
>

U {1}
Note that X. =@ +if i=0.

If NS{a,b) is the number of functions from a set with a elements onto a
set with b elements. then:

TnEG) - ) if a b

0 if a <b

Then we can state that:
NIF, (n)]

N [F‘O(n)}

i

NS(n,i) + 2NS{n,i+1) + NS(n,i+2) , 0 <1 <n. In pérticuiar,

#

NS(n,0) + 2NS(n,1) + NS(n,2) = 2%, and NIF (n)] = nt.
It is easy to see that N[P(1l)] = 3 and that if n =2,

n
NiP(n)] = 3 + 4 § NS(n,s).
§=2



As we have stated inm section 1, any finite distributive lattice is de~
termined, up to isomorphism, by the ordered set of its prime elements.
Then the algebra FL{n) is known if we describe the ordered set I{n).

n

Consider the set F(n) = _LbFi(n). If f € ¥(n), there is a unique i such
l'—_.“

that f & Fi(n), If we put Y(f) = wi(f) we have a one-to-one mapping

from F{(n) onto P{(n).

Since Ker(f) is a prime filter of FL(n), then Ker(F) = F(pf) with

P € f(n). If we define ¢(f) = p, we obtain a bijection between F{n) and
I(n). Then each element of I{n) can be represented by an element of ¥(n),
that is., a function f from 6 into Ci(n), 0 <1 <n, such that SH{f{G)) =
= C.(n)

1,

3.9. REMARK. If py € I{n) is of Jevel i, 1 < i < n+l, then from 3.1

FL(n)/F(pf} = Ci~1(n)t and this is equivalent to say that F(pf)ePi_lUﬂ.
L \ . . |

But Vi fi_l(n) 4~Pi_1(n) is a bijection, then f wi_l(F(pf)) =

€ Fi~1(n)' Therefore SHIFf{G)) = Ci~1(n)” that s, f(6) w {0,1} = Ci_“n).

3.10. LEMMA. For Pe € Tinj) to be of level 1 it 1is necessary and suffi-

cient that f(g) € {0.1} for all g € G.

Proof. It follows inmediately from 3.9,

As a consequence. the set fI(n) has 2" minimal eYements, i.e
of JTevel 1. as we had seen in 3.8.

i, elements

In a similar way we have:

3.11. LEMMA. For pe € M(n) to be of level i, 2 < i < n+l, it is necessary

and sufficient that f(G) C Ci~l(n) and that a

118y € f(G).

i~1

3.12. REMARK. If f.e Qt(n), the extension homomorphism F and the natural
homomorphism h from FL(n) into FL(n)/Ker(F) verify h = F. Then if

C(Ker(F)) = {Ker(F) = Pt+1’Pt*""P1*P0 = FL(n)} (see 3.3), we have

10



1 if x € Ker(f)

—hi

(x) =

i n+1 i T Ui+l

3.13. LEMMA. If p,q € M(n), q covers p if and only if the following con-
ditions are verified:

(1) F(q) ¢ F(p)
(2) F(p) eP _(n) , 0
(3) Fla) eP__.(n) , 0

A

t

3

n-1

£+1 st <n-l
Proof. Necessary condition. If g covers p, then p < q-and then

(1) F{gq) ¢ F{p) , and p < p' < gq for no p' € MI{n), that is

(i) F(q) € P c F(p) for no P € P(n). Since F(p) € P(n) then F(t) € P_(n),
with 0 €t <n. If t=n then the family of prime filters containing F(q)

would have n+2 elements, whi¢h is a contradiction {see 3.3). Therefore
Fip) & Pt(n), 0 <t < n-1, and from (i) it follows (3}).

Sufficient condition. Let p,q € I(n) be such that (1), (2) and (3) are
verified. From (1) it follows that p < q. If we suppose that there is
p' € N{n) such that p < p' < q then we have F(q) ¢ F(p') C F(p), and

from (2) we have F(q) € Pt+2(n) which contradicts (3).

3.14. THEOREM. Let f,h € F(n) be. Then for v(h) = p_ = q covers ¢(f) =

(n),

h
Pe =P it is necessary and sufficient that f & Ft(n), heF

H

t+1
0 <t <n-l, and the following conditions are verified:

1) f(g)
11)

H

aj if and only if h(g) = aj , 05 = t.

1 if and only if h(g) = 1 or h(g)

#

a

—ty
o~
oy
S
H

t+1°
ii1)  There exists g € G such that f(g) # h(g).

Proof. Necessary condition. From 3.13 g covers p if and only if F(gq) C

C F{p). and f € Ft(n), h e Ft+l(n), 0 €t < n-l, Since SH(f(G)) = Ct(n),

then f(6) U {0,1} = Cﬁ(n), If t=0 then f(6) £ {0,1} otherwise

a ,8 ,a e hi(G).

128y, .08 € f(G). In a similar way L A L L

11



Since Pt+2 = F(ph) CPyy = F(pf} ' Pt C vvs C P2 cP cP,= FL(n) we
have
1 if x e Flp,)
Fx) =
; P, 0<j<t
aj if x € Pj p3+l 3
1 if x e F(p)
h{x}) =
) i ; , +
aj if x € Pj Pj+1A, 0 <j < t+l
Then F(x) = h(x) = ay 0€j<t, if and only if x € Pj - Pj+1
F({x) = h(x) =1 if and only if x € F(ph)
f(x) = 1 and h{x) = a if and only if x € F(pf) - F(ph).

t+1
Particularly, if g € G:

flg) = a;
1 if and only if h{(g) =

if and only if h(g) = a
I1)

oy
o,
©3
R
i

1 or h(g) = a
In addition, III) there is g € G such that f(g) #
= h(g) for all g € G, then f=h and therefore Py =
Sufficient condition. Let f,h € F{(n) be such that
0 <t <n-1 and verifying I, II and III.

From f & Ft(n) and h €F
FL(n)/F(p, ) = C
F(p,) € Flp,).

t+1

e+l

#

Consider F(pf) , ¢ P

Flp,)

Pc+1 C Pt c .. 1 € PO =

and

#

Qt+2 CQy C oo

FL(n)

, 0 €t

t+1°

hig).
Ph'
f e Ft(n), h er

Endeed, if f(g) =

t+1(")’

{n) we have FL(n)/F(pf) e Ct(n) and
(n), 0 <t <n-1, Then from 3.13, we must prove that

C Ql cQ, = FLin)

the chains of prime filters containing F(pf) and F(ph) respectively and

consider the following sets:

Cowz = Quyp NPy
Ct+1 ® (Qt+1 Qt+2) n Pt+1

12



i

Then z € Gy P and onlky 16 Rz} 1 and flz) =1

2
if and only if W(z)

i

I and Flz) =1

a, and f(z) = a., 03 <t.

z€C,

7 € Cj if and only if W(z)

i}

i

Observe that CO {QG - Ql) 0 (PO . Pl) = {FL{n) - Ql) o {(FL{n) - Pl) =

Ce, nCP, = C(Q, u P,

]

We have that Ct is a filtter, C. is an ideal and Cj, 0 <j<t, are no-

+2 0

nempty sets, being that 3, € h(FL(n)}, a; € f(FL(n)), 0 j<t, Cott

is also nonempty. Endeed, from III, there exists g € G such that
f(g) # h{g), and then we have, from I and II, that h(g) = a,_,, and
f{g) = 1, that is, ¢ € Coppe

It is clear that the sets ., 0 € j < t+2, are pairwise disjoint. Obser-~

J
ve that Ct+2 U Ct+l = Qt+2 N Pt+l’ and so it is a filter. Using these
. + .
remarks it is a routine matter to show that the set § = ?Ug Ci is a sub-
l@

algebra of FL(n). This proof is long but computational, so it will be
omitted.

Let us see that G CS. If g € G, h(g) € {0 = ao,al,...,at,at+1,1}.
If hig) = 1, g e Q,,, and from II, f(g) = 1, that is, g e Pevr Then
9€Qyy; NPy = Ciyp €5

If h(g) = a0 9 € Qt+1 ~ Qt+2 and from II, f(g) = 1, that is

9 € Pt+l' 509 € (Qt+l E Qt+2) n P:+1 B Ct+1 €s.

If hig) = 3, 0 <j <t, then g € Qj - Q and from I, f(g) = 3, that

i+l
is, o= P . T 1 . - P = L, €8S,
is, g € PJ PJH hen g &€ (Q3 Q3+1) 2l (PJ P3+1) CJ cs
Therefore, 6 © S. We then have S = FL{n).
t+2
Then we can write F(ph) = Qt+2 = Qt+2 mFL(n) = Qt+2 N (igo Ci) =
t+2 '
= M@ NG =0, 0, =, NPy = Flag) nFlpy).

That is, F(ph) = F(ph) N F(pf), and therefore F(ph) C F(pf).
If F(ph) s F(pf) then Ker(R) = Ker(F) and then h = F and h = f, which

contradicts III. Therefore F(ph) C F(pf).
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By virtue of 3.10, there exists a one-to-one correspondence between the
set of minimal elements of II{n) and the set of functions f from G into
{0,1} C Cn(n).

Since the ordered set Il{n) verifies the condition Tl of 1.2, then the
set F(n), with the order relation induced by ¥, also verifies the con-
dition T1. Then, from 1.3, the connected components of F(n) are the sec-
tions S(f), with f minimal, that is, the connected components of ¥F(n)
are the sets S{f), where f: 6 ~ {0,1} € Cn(n).

In the figures (pages 17 and 18) we give the Hasse diagram of II(n), for
no=1,2,3.

Let Kj(n) be, 0 < j <n, the family of connected components S(f) such
that NIF~1(1)] = j.

It is clear that N[Kj(n)} = (2).

From theorem 3.14, if S{(f) e Kj(n) then h € S(f) covers f if and only
if h e}?l(n) and

I) h(g) = 0 if and only if f(g) = 0@

B

I1}) hig) e {al,l} if and only if f(g) 1

i

IIT1) There exists g € G such that h(g) a

x
So there are 23 - 1 functions h covering f, (%), 1 €t < 3, of which
verify N[hTHa )] = t.

Let h be in the above conditions, that is, h covers f and N[h"l(al)] =1,

Then N[h™1(1)] = j-t and N[h~1(0)]

H

n-j. If flz G+ {0,1} ¢ Cn(n) is
the function defined by

i
Y

[ 1 if hig)

f,(g) =
! 1 0 if hig)

#

a, or hig) = 0

f, is clearly a minimal elementof F(n}), and S(fl) & K, {n). Let us see

j-t
that (*): S{h) and S(fl) are isomarphic.
First observe that if u e S(f), then u & Fi(n), where 0 < 1 < j.

We define a: S(h) - S(fl) by mean of: if u € S(h), a(u) = v, where

14



( 0 if u{(g) =0
|
v(g) = ﬁ 1 if u(g) =1
|

a. o= 1Tk g o u(g) =a., 1< <

Clearly o is one~to-one and onto.

If u,u' € S(h) and u covers u', then u' €F. ,(n), u € F (n), with
0 <i<3j, and verify I, Il and III. Then it is clear that

a(u) €F,_,(n), a(u') € F;_,(n) and verify I, IT and III.

Therefore alu) covers a{u'), and o is an isomorphism.

It is clear that N[Ko(n)] = 1 and if K € Ko(n) then N[K] = 1.

For a given j, 1 < j <n, all the connected components of Kj(n) have

the same -number of elements. Then if K & Kj(n) we write N(n,i) = NIKI.

Then if Kj(n),= {Kl’Kz""’K }

M
n n n
N[(SJ) K] = K NIK.] = kX N(n,d) = (M) N(n.j)
i=1 1 i£1 i izl " J "ot
] .
But from (*), N(n,j) = (%) N(n,j-t) + 1
t=1
<§> i
= n J -
Therefore N[i:f1 K, 1 (j)[tzl (1) N(n.j t) + 11.
n i .
Then N[F(n)] = N[T(n)l =1 +[ J (ML T () Nn,j-t) + 111.
je1 3¢z b

Let us denote Rj(n), 0 <3j =n, the distributive lattice such that
H(Rj(n)) = K, where K € Kj(n),
Then RO(n) is a chain with two elements, and if K € Kj(n), 1< j<n,

since K verifies the conditions of lemma 1.4, and taking into account
(#), we can state that

i-1 3y
R.(n) = {0} o [ TT R (n) by
h=0

15



In particular

Since

16

i

R (n)

FL(n)

n-1

j=0

#

i

1

n-1

{0y o [ TT R,
j=0 3

(
(n) 1.
then

n~1 (n)

(, ;
[TT R.(n) 31 x(f0)e TT Ry (n) I,

j=0

Recibido: Junio 1986



HASSE DIAGRAM OF w (1). {
@
gvg e
’ (al) ®
‘l g
.(0) (1) ¢ 0
Ko (1) K, (1) Ro (1) Ry(1) FL(1) = Ry(1) x Ry(1)
HASSE DIAGRAM OF w(2). (aZ'al) ' (a]_’az)
(alto) (O’al) (1131) (a ,l)
®
(0,0) (1,0) (0,1) (1,1)
Ko (2) K (2) K,(2)
' rll I
I
| |
. .
#\ \ﬁ?\ ~
[ ]
Ry (2) Ry (2) R, (2)
& b

FL(2) = Ry(2) x [Ry(2)1°% x R,(2)
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