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INTROCDUCTION,

Many-valued logics were introduced by J.lLukasiewicz,
who defined a three-valued propositional calculus in
1821, Later, the same author considered propositional
calculi with finitely many, and even denumerably many,
truth-values [9] . We recall that if we denote by Tn
the set of all fractions k/n-1 , where k = 0,1,...,n-1
and by v(p) QTn the truth-value of a proposition p,
then the truth-value of the n-valued implication
defined by Lukasiewicz (n an integer 2 2) is given by:

v(ip=> g) = min (1, 1-v(p)+v(q))
At the same time, E.L.Post [22] alsoc studied many-valued
propositional calculi, but different of those of
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Lukasiewicz.,
In 1940 G.Moisil [1I] introduced the notion of three-

valued Lukasiewicz algebra, with the main purpose of

obtaining an algebraic characterization of the matrices
of the three-valued Lukasieuwicz propositional calculus,
and in 1942 P.C.Rosenbloom [}j] introduced the Post

algebras of order n with an analogous purpose with

respect to the Post n-valued propositional calculus.
Later, Moisil [12] generalized the notion of three-
valued Lukasieuwicz algebra, defining the n-valued

Lukasiewicz algebras. But A.Rose (in a personal

comunication to the author) observed that these algebras
are not matrices of the n-valued propositional calculus
of Lukasieuwicz if n2 5. For, if we consider the subset
Angz‘Tn formed by the fractions i/n-1, uwhere i = 0,1,
n-2,n-1, it follous that:

min (1, 1-(n-2/n-1)+(1/n-1)) = 2/n-1 ¢An if n > 5,
Therefore An is not closed under the Lukasiewicz n-
valued implication, although it is closed under all the
operations of the n-valued Lukasiewicz algebras (see

example 1.6 bglou). For this reason we have called

Moisil algebras of order n the algebras that Moisil

called n-valued Lukasiewicz algebras (see definition
1.2 belou),

In any case, these algebras have an interest of their



3
own. For example, among Moisil's motivations in studying
them (see, for example, ﬂ@] ) was their possible
application to the study of switching circuits, and from
this point of view the implication operator is of
secondary importance, and certain modal operators of the
Moisil algebra play a central role.

The aim of this paper is to study Moisil algebras of
order n from an algebraic standpoint. Our main objective
is the characterization of the free algebras with a
finite set of generators, and to this end we need a
detailed study of the structure of Moisil algebras.

In general, we have followed a path analogous to that
of A,Monteiro in his lectures on three-valued Lukasieuicz
algebras [19] .

The main new result of section 1 is an equational
characterization of Moisil algebras of order n. In
sections 2 and 3 we study the congruences and homomor-
phisms, showing that the Moisil algebras of order n are
semi-simple (Corollary 3,14). In section 4 we analyze
the structure of the ordered set of prime filters of
Moisil algebras of order n and in section 5 we charac-
terize the simple algebras, obtaining a new proof of a
Moisil's representation theorem. In section 6 we
consider some properties of finite algebras that we

apply in section 7 to the determination of the free
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algebras., Finally, in section 8 we establish the connec-
tion betueen Moisil and Post algebras,

Some results concerning the representation of Moisil
algebras, both by numerical continuous functions on a
Boolean space and by topological spaces will be published

elsewhere.

1.PRELIMINARIES.,

1.1.DEFINITION, A De Morgan algebra is a system

<A,1,V,A,-> such that <A,1,V,A> is a distributive

lattice with unit 1 and - is a unary operation defined

on A fulfilling the conditions:

M1l) - - x = x nd M2) =(x Vy) = <xp =y

W]

If - also satisfies the condition:

K) XN =x & y VU -y

the system <:A,1,U,n,j;> is called a Kleene algebra,

These notions have been studied by G.Moisil BQ} N
Kalman [8] , Bialinicky-Birula and Rasiowa [1] , [2],
[3] and A.Monteiro [17] , [18] . We follou the termi-
nology introduced by the last author,

It is easy to check that in any De Morgan algebra the
following properties hold:

—_—

M 3) x< vy if and only if -x < -y,

M4) =(xN y) = =x VU -y,

M5) -1 =20 1is the zero of the lattice <:A,U,ﬂ:> .



5

1.2.DEFINITICN, A Moisil algebra of order n (n an integer

> 2) is a system <fA,1,u,n,-,sl,...,sn_l;> such that

<iA,l,VJ\,€> is a De Morgan algebra and s, (1 £42i 4n-1)

are unary operations defined on A fulfilling the

conditions:

L 1) si(x Vy) = s.x V s,

i
L 2) 5% \ -S;X = 1

L 3) Siij = ij

L 4) s;-x = =s__.X

L 5) 51X £ SpX = see = S X

L 6) If s;x = s;y for i = 1,2,...,n-1, then x = y.

We shall deal with Mcisil algebras of order n, where
n is a fixed integer & 2, and which uwe shall usually
denote by the letters A,A',A",

This notion was introduceded by G.Moisil in [12] ,
, R4, [s) )

and recently by C.Sicoe ( [24] , [25] , [26] , [27 ).

1,3.LEMMA. The following properties are true in any

developed later by the same author ( [13]

Moisil algebra of order n:

L 7) Si(x Ny) = s;x N s;y
L 8) s.x N ~s.x =0
i i

L 9) x<y if and only if s;x < s;y for i =1,...,n-1.

L 10) x < s

L 11) s



L 12) s;1 =1, 5,0 =0 for i =1,2,...,n-1,

1
—

L 13) -x Vs ;X

- £ i -
L 14) xn -s;x N s;y<y (1£1i<=n 2).
PROOF. All these results, except L 14), are well knouwn.
To prove L 14), let z = x N -s;x N s, ,y. It is easy to

_ . e
see that sjz =0 f:sjy if 1< j=<1i, and that sjz =< 8,44V

é’sjy if i+l £ j £ n-1, Using L 9) uwe obtain [ 14).

1,4, THEGCREM, A system <:A,l,v,ﬂ,~,sl,...,Sn_£>r is a

Moisil algebra of order n if and only if <<A91,U,ﬂ,{>

is a De Morgan algebra and s (1L £ i = n-1) are unary

gperations defined on A that fulfill the propertises

L 1) - L S5), L 10) and L 14).

PROOF. We need to prove that in a De Morgan algebra with

operators s, satisfying L 1) - L 5), L 10) and L 14) the
condition L 6) holds.
First of 2l1ll, we can prove by induction on k that:
k
V. . _
(l> i=1 ((-Siy v Y) n (Qi_:_ly v Y)) =Y v Sl+ly 2
where 1 < k < n-2,.
Suppose now that X,y are such that S:X = 8;Y for
i =1,2,...,n=-1, If we substitute in L 14) s;Xx by s;y
for i = 1,2,...,n-3, and s .1Y by Sho1% if 1 = n-2, we

have:

(2) y = (X v y) n ("Siy v y) I (Si+ly v Y)

fOI‘ i = 1’2300-9[.]—3, aﬂd



(3) x N =s_  _ox N s x £y

From L 10) and the equality Sh.pX = S oY (3) yields:
(4) y = (x Vy) N (=s oy Vy)

From (2) and (4) we obtain:
(5) y=(><\/y)f\(:\;/i((—siy\/y)f\

N (Si+ly v Y)) v (‘Sn_zy Y Y)

and from (5) and (1) it follouws that y = x Uy, i.e.,
y Z X. Interchanging x with y in the above proof, we

obtain that x> y, and therefore x = vy,

1.5.REMARK, Theorem 1.4 gives an equational characteri-

zation of Moisil algebras of order n.

For, De Morgan algebras are equationally definable,axioms
L 1) - L 4) are equations and L 5), L 10) and L 14)
may be written in the form:

L 5) s;x Vs, x = s

1 i+l

X = 8

x for 1 = 1,2,...,n=2.
L 10) x Vv s..1
L 14) (xn -s;x N Si+lY) Vy =y, for i = 1,...,n=-2,
We remark that C.Sicoe ([26], [27] bhas given shorter

characterizations of Moisil algebras, but using always

L 6) as an axiom.

1.6 ,EXAMPLE., Let Ln be the set of the fractions j/n-1,

with j = 0,1,...,n-1, considered as a sublattice of the
real numbers, and with -(j/n-1) = n-1-j/n-1, and

s;(i/n=1) = 0 if i+j < n, and s;(i/n-1) = 1 if i+j = n.
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It is easy to check that Ln is a Moisil algebra of order

n (cf [13]),

We shall denote by B(A) the set of all bomplemented
elements of A, Since A is a distributive lattice, it
follows that B(A) is a sublattice of A which is a Boolean
algebra, and moreover from L 2) it follows that if
bf B(A), -b is the Boolean complement of b, and there-
fore, B(A) is a De Morgan subalgebra of A.

From L 12),L 10),L 3),L 7) and L 2) it follows that
Sh-1 is a Boolean multiplicative closure (in the sense
of [57]) defined on A, and therefore we have that:

(1.7) s . x = /\)Lb:?,' B(A) ¢+ x < b |

n-1 - J
(1.8) x £ B(A) if and only if S 1% = X
- o~ . _ ( -
If K, = .{x R ox = 85X | then from L 3) and (1.8) we

have the following result, proved by G.Moisil ( 13 ,p
123) in a different way:

1.9, THEOREM. Ky = Ky = wuu = K _; = B(A).

It follous that any Boolean algebra is a Mgisil
algebra of order n, if we define -x as the complement
of x and S;X = X for all i, On the other hand, any
Moisil algebra of order 2 is a Boolean algebra if we

define the complement of x as -x.



2. WEAK IMPLICATION AND DEDUCTIVE SYSTEMS,

We define a new binary operation, called ueak

implication and denote it by ——> as follous:

(2.1) x ——> y =5 =X Uy

The weak implication was defined and studied by A.
Monteiro ﬁgj(see also @D]) in the case n = 3, and we
shall extend some of his results for n > 3.

2.2, THEOREM. The weak implication has the following

properties:
Wi1l) x —> (y—> x) =1

W2) x —> (y —> z) = (x

>y) > (x—> z)
3) x —> (y nz) = (x—>y) N (x —> z)

4) x —> (y —> z) = (x Ny) —> =z

5) (xVy)—> z=(x —> y) 0 (y —> z)

W
W

W

We) (x —> y)—> x = x
W

W

W

7) 1 ————> X = X

8) If x 2y, then x —> y =1

9) x =y if and only if s, X >siy for i = 1,..4,n=1,
Wig) x —> s;x = 1.

2, 3.DEFINITIONS, A set D < A 1is a deductive system if

1) 1 ¢ D and 2) (Modus Ponens) If x and x —> vy belong

to D, then y £ D. D is proper if D £Z A. The deductive

system generated by a set H € A, D(H), is the set

theoretical intersection of all the deductive systems

containing H.
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2,4, DEFINITIONS, If H< A is non void, we say that t is

a consequence of H if there is a finite set {hl"“’hZ(
- J
“oH such that:
A N N —_ -
(hy N by ces h,) >t =1

We denote by C(H) the set of all consequences of H, and

we set C(@) = {l{ .

From W 4) it follows that:

2.5.,LEMMA. t is a consequence of H (£ @) if and only if

there exists a finite set ghl”"’hkk ‘.. H such that:

hy —> (h2—-\ cee (hk~—%> t) vo. ) =1

2.6, THEOREM, If H < A, then D(H) = C(H).

s

PROOF. It is easy to see that C(f) = 1¢ , therefore

D(g) = c(@#). If H £ @, the proof can be done in the
following steps:

1) C(H) is a deductive system. Since H # #, from W 8) uwe

obtain that 1 ¢ C(H). Suppose that x and x —> vy belong

to C(H). There are clcments hy seeeshy shy ,eayhy
1 r J1 Js

belonging to H such that:

(l) (hi /\ ooon hi )——éx :l
1
and: t
(2)  (he N eei DB ) (x—>y) = 1
‘Jl ‘JS

Setting hi: h.

i f\ o-.[\ hi and hj: h [\ ooo[\ hj ’

1 T J1 S
from (1), (2) and W 8) we obtain:
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(3) hy==>(h; —>x) =1
and
(4) h, ——> (hj > (x >y)) =1
and applying W 4) to (3) and (4) ue have:
(5) (hjl\ hi)~—~%>x =1
and
(6) (h, N hy) —> (x —>y) =1
Setting h = hj N hy, from U 2), (5) and (6) uwe obtain:
(7) (h—>x) —>(h—>y) =1
and from (6), (7) and W 7) it follows that:
h—>y =1

which is an abbreviation of:

(h, N oo N b, ) N(h,
1 Tr J1

therefore y » C(H).

/\ ool'n h ) ;y:l
"]S

2) H = C(H). For, if h ¢ H, by W 8) it follous that

h—>h =1, so h ¢t C(H).
3) If D is a deductive system containing H,then C(H) < D.

Let x » C(H). By lemma 2.5 there are clements hyseeeshy
belonging to H = D such that:
(8) hy=—=>(hy,—> ..o (hy—>x) oo ) =1

Since 1t D, we have by modus ponens that x » D.

-

2.7.DEDUCTICN THEQREM,  If H 2 A and x - A, then:

D(HU /x ) =C(HU :x ) = y - A ¢ x -—Dy C(H)i

-

PROOF. Let D' = 'y , A : x —>y ¢ C(H) .

3
S
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1) D' is a deductive system. From U 8) it follouws that

x=—3>1 =1, hence 1 7, D'. Suppose that y and y ———>z
belong to D', i.e. suppose that we have:

(1) X >y % C(H)

and

(2) x —>(y —>z) ¢ C(H)

(2) and W 3) imply:

(3) (x >y) —> (x —>z) {, C(H)

and since C(H) = D(H) is a deductive system, from (1)

and (3) we obtain that x —>z 7 C(H), so z ¢ D'.

2) HU [x* < D'.. x £ D' because by W 8), x —>x = 1,

3

On the other hand, if h 7, H, from W 1) it follouws that

X —>h t C(H), and therefore h ¢ D',

3) If D is a deductive system containing H U {x{ ythen
O'< D. By hypothesis we have:

——

(4) H- D and (5) X

i

The former implies:
(41) C(H) = D(H) =D

Suppose nou that y . D', i.e. that:

(6) x —> y ¢ C(H)
From {(4') and (6) we obtain:
(7) | X ——3y £D

and since D is a deductive system, (5) and (7) imply

that y ¢ D.
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From 1), 2) and 3) it follows that D' = D(H U :x:) =

= C(H U 1x").

'y A X

-

It

2.8.COROLLARY., If x# A, then D(ix?) >y:13

From properties W 1), W 3), W 7) and U 8) it is easy

to prove that:

2.9.LEMMA, Every deductive system of A is a filter,

But the converse is not true if n 2 3. We are going

to characterize the filters that are deductive systems.

2,10.DEFINITION. A filter F of a didtributive lattice L

with 0 a~d 1 is called a Stone filter if for any x i F,

there exists b ¢ Fn B(L) such that b « x, where B(L) is

the set of all complemented elements of L.

The notion of a Stone filter was introduced by A.

Monteiro ( {161 , p 152) and also studied in {57 ,under
the name of B-filter,

It is easy to see {({57,p 1169) that if F is a Stone
filter of L, then F¥ = Fn B(L) is a filter of the

Boolean algebra B(L), and moreover:

(2.11) F = ix "L : b <«x for some b ¢ F¥ !

i

Conversely, if F¥ is a filter of the Boolean algebra
B(L), then the set F defined by (2.11) is a Stone filter
of L and F* = F n B(L). Therefore we have:

3.12,LEMMA, Let L be a distributive lattice with 0 and

1. The map F ———>F* is an isomorphism betueen the set
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of Stone filters of L ordered by inclussion and the set

of filters of B(L), also ordered by inclussion.

From the theorem 1,9 and property L 11) we can prove
that:

2.13.LEMMA, In order that a filter F of a Moisil algebra

A of order n be a Stone filter it is necessary and

sufficient that if x £ F, then s;x o F.

The notion of a Stone filter in Moisil algebras uas
introduced by G.Moisil ({13] , p 127) under the name of

strong dual ideal, in the form indicated in the above

lemma,
The next theorem, establishing the equivalence betuween
Stone filters and deductive systems, was first proved

by A.Monteiro [19] for the case n = 3,

o

2,14.THEOREM. In order that D <. A be a deductive system

it is necessary and sufficient that D be a Stone filter.

PROOF. The necessity of the condition follous at once
from lemma 2.9 and property W 10). To prove the suffi-
cience, let D be a Stone filterof A. By definition,
1 * D. Suppose that x and x —>y belong to D. Then 8y X
and sl(x —>vy) belong to D, But L 1), L 3) and L 4)
imply that:

sl(x-n-%>y) = sl(sn_l-x Vy) = -s;x U sy

and from L 2) we obtain:
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syx N sl(xmm{>y) = s;x N s,y £o
Since by L 11) syx N s,y < vy, it follous that y r D.

2.15.COROLLARY. The map D-~—>D%* = DN B(A) is an

isomorphism from the set of all deductive systems of A

onto the set of all filters of B(A), with both sets

ordered by inclussion,

Applying 2 well known result of M.H.Stone (see,for

exampleygﬂj, p 129) to the above corollary, we ochtain:

2.16.COROLLARY. The set of all deductive systems of A,

ordered by inclussion, is a complete Brouwerian algebra.

We remark that C.Sicoe ({24] ,Th.17) proved, by a
direct calculetion, that the set of deductive systems of

A is a distributive lattice.

2017.DEFINITIGN_a A deductive system M is called maximal

if 1) M is proper, ard 2) If D is a prper deductive

system of A such that M <D, then M = D.

From coraollary 3.15 it follows at once that:

2.18.CORCLLARY. A deductive system M of A is maximal if

and only if M¥* is a maximal (= prime) filter of the

Boolean algebra B(A).

Recall that a minimal prime filter of a lattice L is

a minimal element of the set of all prime filters of L

ordered by inclussion.
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Since Sh-1 is a Boolean multiplicative closure on A,
and Sy = -sS,_1~s wWe can apply to 51 the dual results of
those of L5J s and therefore from lemma 2.5 and theorem
3.5 of [5] we obtain the following theorem, first proved

by A.Monteiro [19] in case n = 3:

2,19, THEOREM. M is a maximal deductive system of A i

—

and only if M is a minimal prime filter of A.

The following result is a conseqguence of Corocllary
2.15:

2,20, THEDOREM. The set theoretical intersection of all

maximal deductive systems of A is the deductive system

formed by the element 1.

If we define irreducible deductive system and

completely irreducible deductive system in the natural

fashion, from corollary 2.15 and theorem 2.19 ue also

obtain:

2.21 ., THEOREM. The notions of irreducible deductive system,

completuly irreducible deductive system, maximal de-

ductive system, and minimal prime filter are all

equivalent,

3. HOMOMORPHISMS AND QUOTIENT ALGEBRAS.

3,1.DEFINITION, If A,A' are Moisil algebras of order N

an_homomorphism h from A into A' is a map h:A —> A
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fulfilling the conditions:

H1) h(x Vy) =nh(x)V h(y)

H2) hi{x N y)=nh(x)N h(y)

H 3) h(-x) = ~h(x)

H4) his;x) = s;h(x) (i =1,2,...,n-1)

H 5) 1

o
—~~
Q
~
H
[ow}
w
oy
~~
—
~—
i

A _one-to-one and onto homomorphism is called an isao-

*)

morphism.

5.2,REMARK. Some of the conditions H j) that appear in

the above dcfinition are redundant, since they can be
obtained from the others. For instance, H 2) can be
deduced from H 1) and H 3), using M 1) and M 2)., Apalo-
gously, from H 3) and M 5) it follows that h(l) = 1
implies that h(0) = 0. Finally, from L 3), H 1), H 3)
and H 4) we obtain:

h(1) = h(-x Vv sn_lx) = -h(x) V sn_lh(x) =1
On the other hand, it is obvious that:

H 6) h{x —>y) = hi(x) —>h(y)

3,3,DEFINITION, The kernel of an homomorphism h:A —> A"

is the set:

»;Aﬁ :‘.{
X 1 h(x) lJ

Ker h =

*) It can be proved that the monomorphisms of the cate-
gory of Moisil algebras of order n arec just the one-to-
one homomorphisms, but there are examples of epimorphisms
that are not onto homomorphisms,.
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Je4,THEOREM., If h:A —3 A' is an homomorphism, then Ker h

is a deductive system of A and h(x) < h(y) if and only

et

if S X ~~{>siy . Ker h for i = 1,s..,n-1,

ROOF. From H 6) it follows that for any deductive

system D' of A', h—l(D') is 2 deductive system of A. The
second part follows from W 9) and H 6),
From the above theorem it is gasy to prove that:

3.5.LEMMA. Let h':A —>A' and h":A —> A" be onto

homomorphisms, If Ker h' <€ Ker h'", then there exists a

unigue (onto) homomorphism h:A' -—> A" such that h"=hh',

3.6.THEOREM. Let h':A —3A' and h":A —> A" be onto

homomorphisms., If Ker h' = Ker h', then AR' and A" are

isomorphic.

Ue are going to determine all the homomorphic images
of A by mean of a construction on A. First of all we
recall the following definition ({13] , p 127):

3.7.DEFINITION., If D is a deductive system of R, wWe say

that the elements x and y are congruent modulo b, and

we write x =y (D), if there exists an element d : D
such that x AN d =y nd,
It is easy to see that = is a congruence relation

on the algebra A, and since the notion of Moisil algebra
of order n is equationally definable, it follous (Ldj,

Chapter VI) that the set A/D of all congruence classes,
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algebrized in the natural fashion, is a Moisil algebra
of order n, called the quotient algebra of A by D.
Moreover, if we denote by x/D the congruence class
containing x, the map h(x) = x/D is an homomorphism from
A onto A/D, called the natural homomorphism, and Ker h =
= D,

From the above remarks, theorem 3.4 and theorem 3.6
We obtain:

3.8, THEGREM. If h:A ~--2»A' is an aonto hcmomorphism, then

A' is isomorphic with A/Ker h.

3.9.COROLLARY., x =y (D) if and only if s;X —-3s;y D
and S;Y - wsix o D for i =1,2,...,n-1.

Moreover, we have:

3.10, THEOREM. The ordered set of all congruences of the

algebra A is isomorphic with the set of all deductive

systems of A, ordered by inclussion.

We recall that an algebra S is simple if the only
congruences on S are the trivial ones ( 4 ,Chapter VI),
therefore from the last theorem it follouws that:

3.11.THEOREM. A Moisil algebra S of order n is simple ie

and only if {l; is the only proper deductive system of §.

3.12.COROLLARY. If M is a maximal deductive system of A,

then A/M is simple.

Analogously, from ( 4 ,Chapter VI, p 138) we obtain:
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3.13.THECREM. In order that A be isomorphic to a subdi-

rect prgduct of a family fAj; ) of algsbras, it

is neccessary and sufficient that there exists a family

P50 500
D, = /1Y . and 2) A. = A/D. for all j. J.
i3 L ___“ml j / 5 LR Eas J

of deductive systems of A such that: 1)

The next corollary was first proved by A.Monteiro {lq
for the case n = 3:

3.14.,CORDLLARY. Any Moisil algebre of ofderrn (with more

than one_element) is a subdirect product of a femily of

simple algebras.

PROOF. It is a consequence of theorems 3.13, 2.20 and
corollary 3.12.

Our next objective will be the determination of
simple Moisil algebras of order n. To this end we shall
need to study the structure of the set of prime filters

of Mocisil algebras.
4, PRIME FILTERS.

4,1.LEMMA, If U is an ultrafilter (= prime filter) of

B(A), then the sets:

U, = Jx oA s s;x » U , i=1,..0,n-1

are prime filters of A, and morecver the following

relations hoid:

(4.2) u = u; N 8(A) (1 =i % n-1)

and
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] - [ [
(4.3) Uy = Uy, = oo U

4.4,LENMA, Let P be a prime filter of A and P* = PN B(A).

Then P* is an ultrafilter of B(A), and:

(4.5) P¥ . P L PX

a.S.LEMMA. Let P and P¥ be as in the above lemma. If

1 = i< n-2 ] cOp¥* * -
1 n-<, then either P <. Pi or pi+l P.

PROCF. Assume that the thesis is not true, i.e.,assume

that:
) ; a * .
(1) Py P¥ and (2) S
(1) implies that there exists an x . A such that:
(3) x ¢ P and (4) 5% -, px

and since P* is an ultrafilter of B(A), (4) is equivalent
to:
(47) =8y X p*¥ P
(2) implies that there exists an y - A such that:
- P px =
(5) y -~ P and (6) Si+ly*-p = P
From (3), (4') and (6) it follows that:

(7) x N -5 X N s )

417 o
Since P is a filter, from (7) and L 14) it follous that

[}

y * P, in contradiction with (5).

4,7.THEOREM. For any prime filter P of A, there exists

a unigue ultrafilter P* of B(R) and an i, 1 £ i < n-1

such that P = Pf.

PROOF. Let P* = Pn B(A). We know that P¥* is a prime
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1 a n o % & o * =) 1 -
filter of B(AR) and that PY¥ € P - PX .. Let i,
=max ‘i :P¥ . p ‘', If i, = n-1, then P = P* .. If
. i 0 n-1
iD s Nn=-2, we haves
* * 1
(1) P¥ . P and (2) P¥ 11 E P
0 0
Recalling lemma 4.6, (2) implies:
. *
(3) P - pio
and from (1) and (3) it follous that P¥ = P.
0

The uniqueness of P¥ follows from (4.2).

4,8,COROLLARY. Any prime filter P of A belongs to one

and only one maximal chain of prime filters, and this

chain has at most n-1 glemunts.

4,9,COROLLARY. The set of prime filtcrs of a Moisil

algebra of order n, ordered by inclussion, is the

cardinal sum of totally ordecred sets, each of them

having at most n-1 clements.

From theorems 2.14 and 4,17 uwe also obtain:

4.,10.COROLLARY. M is a maximal dcductive system of A if

and only if there cxists a (unique) ultrafiltor P¥* of

B(A) such that M = P¥,

Corollaries 4,8 and 4.9 have been proved by A.
Monteiro AlQ; for the case n = 3, but using the proper-
ties of prime filtcrs in Klcene algebras,

Since Moisil algebras are De Morgan algebras, we can

define for any prime filter P of A the Bialynicki-
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Birula and Rasiowa transformation EZJ by mean of the
formula:

(4.11) g(P) = C -P
where C designs the set theoretical complement and
-p :-{-x X g P} .

Since any prime filter P of A is of the form PT,
where P¥ is an ultrafilter of B(A), the following
theorem characterizes the transformationAg in the case
of Moisil algebras of order n:

4,12, THEOREM. If U is an ultrafilter of B(A), then

Q(Ul) = U ..

n-1i
PROOF. The following conditions are equivalent: 1)
x £9(U,) , 2) Q/U,S)—xﬁ/ui,d)s-xgu
5) - ¢/U 6) s qoiX €U, and 7) x € U _se

4.13.,COROLLARY. Any Moisil algebra A of order n is a

Kleene algebra,

PROGCF. If P is a prime filter of A, there exists an
ultrafilter P* of B(A) such that P = P¥ for some i
(1 £ 1 £n-1), and by the above theorem, g(P) = g(D?) =
= P*_.. Therefore by (4.3) it follows that either
g(P) < P or P& g(P), and the last condition is necessary
and sufficiept in order that a De Morgan algebra be a
Kleene algebra (see {37 and [18])

We remark that corollary 4.13 was proved by C.Sicoe

@5],{&6} by a direct calculation. It was proved earlier
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by A.Monteiro [19] for the case n = 3.
5,5IMPLE ALGEBRASQMUISIL'S REPRESENTATION THECREM,

Let ws.introduce the following notations: SgX = )
and S X = 1 for all x ¢« A, and if U is an ultrafilter of
B(A), UD = Qj and Uﬂ: A,

Taking into account L 3) and the corresponding

definitiofs, it follows that:

5.1,LEMMA, “Lety U be an ultrafilter of B(A). Then for
J=1,2,...,n-1 we have: |

1) x = Uj if and only if syx = 1 (Ul)

2) X e Uj if _and only if s % =

9.2, THEOREM., If M is a maximal deductive system of A,

then there exists a unigue haomomorphism h:A > Ln such

that Ker h = M, and moreover h is given by the formula:

(5.3) h(x) = n-j/n-1 if and only if x ¢ m§ - m§_l

whers j = 1,2,,..,n and M* = M n B(A).

PROOF., The proof that formula (5.3) defines a homomor-
phism from A into Ln is leng but computational, so it
will be omitted. On the other hand, if h:A —>L_ i3 an
homomorphism, then, since h is in particular a lattice
homomorphism into a chain, it follows that M = Ker h is
a prime Stone filter, and therefore, a maximal deductive
system of A, From the definition of the s in Ln ard

lemma 5.1, it follows that h is defined by (5.3).
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5.4.,COROLLARY, There is a one-to-one correspondence

between the maximal deductive systems of a Moisil algebra

A of order n and the homomorphisms from A into Ln'

From theorems 3.8 and 5.2 we obtain:

5.5,CORCLLARY, If M is a maximal deductive system of A,

then A/M is isomorphic to a subalgebra of L.

5,6 ,COROLLARY, The simple Moisil algebras of order n

are just the subalgebras of Ln‘

PROGOF. From theorem 3.11 it follous that the subalgebras
of Ln are simple. On the other hand, if S is simple,
then {l} is a maximal deductive system of S, hence
S = 5/{1! is isomorphic to a subalgebra of L.

From corollaries 3.14 and 5.6 it follouws that:

5.7.THECREM. Any Mpisil alqgebra of order n (with more

than one element) is isomorphic to a subdirect product

of a family of subalgebras of Ln'

The above theorem contains the following:

MOISIL'S REPRESENTATION THEOREM ([13], p 134). Any

Moisil algebra of order n (with more than one element)

is isomorphic to a subalgebra of a direct product of

of algebras Ln'

We know that any maximal deductive system M of A is
the first element of a chain of prime filters of A, with

at most n-1 elements:
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We say that M is of order k (2 = k = n) if the correspond-
ing chain of prime filters has k-1 distinct elements.

For instance, M is of order 2 if and only if we have
that:

- - M¥ = = M*
M =M MZ T eee = Mn

* =
1
and M is of order n if and only if m¥ £ M§ for i # j
(1 <i,5 <n-1).

From theorem 5.2 and corollary 5.5 we obtain:

5.8.THEOREM. A maximal deductive system M of A is of

order k (2<k=n) if and only if A/M is isomorphic to a

k-element subalgebra of Ln.

To end this section, we are going to point out some
properties of the subalgcbras of Ln that we shall need
in scction 7.

5.9.LENMMA, If A and A' are subalgebras of Ln such that

A £ A' as subsets of Lr’ then A and A'" cannot be iso-
1

morphic as Moisil algebras of order n.

PROOF. The result is trivial if A and A' have a different
number of elements. Suppose that A and A' have the same

number m of elements (2 « m < n). Then we have:

) . _ . _ L
A= 10, 1l/n 1, ..., 1m_2/n 1, 15

and -
At = {0, dy/n=1y eeny g p/nml, 1



with 0 = i < = < 4o <’lm-2 < dnp T

C < jl < eee £ jm—2 <1jm_l = n-1l, The only lattice
isomorphism that we can define from A onto A' is given
by h(is/n—l) = js/n—l, s = 0,l,e0s,m=1, Since A £ A",
there exists s such that i_ £ jg+ We can assume that

i, < g, therefore st(Js/n—l) =.1 and Sjs(ls/n-l) = 0,

hence h(s. (iS/n—l)) £ s. (h(is/n-l)) and h cannot be

Jq Jq

an homomorphism,

We are going to enumerate the number of subalgebras

Assume first that n is an cven number, and let A be
a subalgebra of Ln' Since the conditions i/n-1§ A and
-(i/n=1) = (n=1-i)/n-1 £ A are equivalent, it follous
that A is determined by the elements of the form i/n-1
with 0 £i < n-2/2 belonging to A, and since 0 belongs
to any subalgebra, it follows that the number of 2k-el-
ement subalgebras of Ln (1< k €n/2) is equal to the
number of combinations that wc can form with k-1 ele-
ments chosen among 1/n-1, 2/n-1, ..., (n-2)/n-1. There-
fore we have:

5,10, THEOREM. If n is even and if 1 £ k < n/2, then the

number of 2k-element subalgebras of Ln is (n;%{Q)

5, 11.CORCLLARY. If n is even, the number of subalgebras
2(”'2/2).

f L_ is
E— n_
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Assume now that n is odd, and let z = (n-1/2)/n-1.
Since z is the only element of Ln such that -z = z, it
follows that A is a subalgebra of Ln with an odd number
of elements if and only if z f A. Therefore, we obtain
a subalgebra with 2k+l1 elements adding z to a subalgebra
with 2k elements (1 < k < n-1/2). As in the case n even,
it follous that the number of subalgebras with 2k ele-
ments is egual to the number of combinations that we can
form with k-1 elements chosen among 1/n-1, 2/n-1, ...,
(n=3/2)/n-1. From these remarks we obtain:

5,12, THEOREM. If n is odd and 1 £ k < n-1/2, then the

number of 2k-element subalgebras of Ln is equal to the

number of 2k+l-element subalgebras aof Ln and equal to

K?—3/%)
k=1 °

5.13,COROLLARY. If n is_odd, the number of subalgebras

P L is 2(n-1/2)
nm

6.,FINITE ALGEBRAS.

" The aim of this section is to improve some of the
previous results in the case that A has a finite number
of elements. We shall denote by A a Moisil algebra of
order n with a finite number of elements, and by (x)
the principal filter generated by the glement X.

Since A is finite, all the filters of A are principal,
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and therefore the deductive systems of A are just the
principal filters generated by the complemented elements
of A. In particular, the maximal deductive systems are
the principal filters generated by the atoms of the
Boolean algebra B(A).

First of all, and following a suggestion of A.Monteiro,
we are going to determine the structure of the quotient
algebra A/(b) in terms of A and the element b B(A).

For any b in B(A), we set A= X A : xf b .Since
Ab is an ideal, it follows that Ab is a sublattice of A,
the zero of Ab being 0 and the unit of Ab being b.More-
over, since b £ B(A) it follous that A, is closed under
the operations SyseeesS 1> and if we define ~x =
= -x N b, it is easy to check that Ab is also closed

under ~ ,

6.1, THECREM, <Ab,b,\l,/\, ~ ,sl,...,sn_l> is a Moisil
algebra of order n isomorphic to the quotient algebra
A/(b).

PROOF, For any x in A we define h(x) = x A b. It is well

known that h is a lattice homomorphism from A onto Ab.
Futhermore, h(six) = s;x N b= s.;xA s;b = si(x N b) =
= sih(x) (1< i < n=-1), and ~ash(x) = =h(x) N b =

-(x N b)AN b ==xA b =h(-x), so h is an homomorphism
from A onto the similar algebra Ab’ and, since Moisil

algebras of order n are equationally defipable, this
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implies that Ab is a Moisil algebra of order n.
Moreover, h(x) = b if and only if x < b, uhich shous
that Ker h = (b), and from theorem 3.8 it follous that

A, is isomorphic to A/(b).

6.2, THECREM. If bl’bZ’"°"br are complemented elements

2 U -se Vb =1 2nd 2) byf b=

= 0 if i £ j; then A is isomorphic to the product algebre

of A such that: 1) b; Vb

PROCF. If x is in A and 1 < j <r, set Xj = x N bj‘ It

is well known that the map x —> (Xl’XZ""’Xr) is a

lattice isomorphism from A into Ab X «oo X Ab , and it
1 T

is easy to check that it is a2lso a Moisil algecbra iso-

morphism,

6.3.COROLLARY. Let fa.,a,,...52_{ be the set of atoms of
171272 Ty

the Boolean algebra B(A), Then A is isomorphic to the

product algcbra Aa X Aa X o5 Aa .
1 2 T

Since the maximal deductive systems of A are just the
Y

principal filters generated by the atoms of B(A), ue
have the following improvement of theorem 5.7 (cf [13],
p 132):

6.4, THEQOREM, Any finite Moisil algebra A of order n

(with more than one slement) is isomorphic to the

t is
rj =
T

direct product A/Ml X wo-e R/mr, whers éml’MZ""’m

1

the set of all maximal deductive systems of A, and
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the number of atoms of B(A).

We remark that the above theorem can also be obtained
from theorem 5,7 (as was done in the author's doctoral
thesis), but the above derivation has the advantage of

avoiding transfinite inductilon.
7. FREE ALGEBRAS.

The aim of this section is to determine the structure
of the Moisil algcbras of order n with r free generators
(r finite cardinal > 0). We shall apply a technigue
used by L.Monteiro ( (211 , p 20) to determine the
structure of the free three-valued Heyting algebras,
and also used by A.Monteiro (unpublished) to determine
the structure of the Moisil algebras of order 3 with a
finite set of frce gencrators,. We begin by recalling the
follouing:

7,1 .DEFINITION. If ¢ is @ cardinal number > 0, then b

a freec Moisil algebra of order n with ¢ free generators

%)

W}

mean any Moisil algebra Fn(c) of order n such that:

1) Fn(c) has 2 sect of gencerators G of power c, and 2)

any map f from G into a Moisil algebra A of order n can

be extended toc a homomorphism hf from Fn(c) into A.
Since the notion of Moisil elgebre of order n is
equationally definable, by a well knowun theorem of G,

Birkhoff ([4],Chapter V1) it follows that:



32

7.2.,THECREM.. For any cardinal c » 0 there exists Fn(c)

and it is unique up to isomorphisms, Morecver, the

homomorphism hF that appears in definition 7.1 1s unique.

In particuler, there is a one-~to-one corresﬁondence
between the set of all functions from G into Ln and the
set of all homomorphisms from Fn(c) into Ln’ and there-
fore by corollary 5.4 we obtain the following theorem,
which allows us to apply the mentioned technlique of L.
Monteiro:

7.3, THEOREM, If G is a sct of free generators of Fn(c),

theﬁ Ehe application that maps cach function F:G—~%}Ln

into the deductive system MF = Ker hf establishes a one-

to-one correspondence between the scet of all functions

from G into‘Ln and the sct of a2ll maximal deductive

systems of Fn(c).

7.4,COROLLARY, ;ﬁir is a finite cardinal » 0, then

F (r) is finite.

PROOF. Let G be a set of free gencrators of Fn(r).

Since G has r elements and Ln n elements, there are nt
functions from G into Ln’ and by the thecorem, it follous
that Fn(r) has n' maximal deductive systems. Therefore,
from the proofs of theorem 3.13 and corollary 3.14 ue
cbtain that Fn(r) is isomorphic to a subdirect product
of a finite family of subalgcbras of L_, so Fn(r) is

finite.
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We shall need the following results:

75, LENMMAL If h:A ——>A' is an homgomorphism and if G is

a set of generators of A, then h(G) is a set of genera-

tors of f(A),

7.6.THEOREM, Let G be a set of free generators of Fn(c),

f:G —~¥>Ln a function and A a subalgebra of Ln’ In order

that Fn(c)/M be isomorphic to A it is necassary and

f‘
sufficient that the following conditions hold: 1) f(G)<Z

< A, and 2) f(G) #&A' for any maximal proper subalgebra
At of R,

From now on, we shall deal with free Moisil algebras
of order n with r free generators, where r is a finite
cardinal > 0., We shall denote by G = igl’QZ""’gr §
a set of frec gencrators of Fn(r), and by H(n,r) the

sct of all functions frem G into L . Since Fn(r) is

finite, we can apply thecrem 6,4 to obtain the following,

where = indicates isomorphism:
JT -
(7.7) Fo(r) = e Hin, ) Fo(r) /Mg

Assume that n is an even number, If H, denctes the

k
set of all functions from G into L such that Fn(r)/mf

is isomorphic to a 2k-element subalgebra of Ln (i.e.

such that MF is of order 2k) we have that::
n/2
H{n,r) = égi Hy and H, N H

Therefore, from (7.7) it follows that:

Kt T g if k £ k'.
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n/ -
(7.8)  F (r) = 7T (TU F (x)/Mg)
Kl F§H,
. . n-2/2
If Apgr 1= 1,2,...,8k :(\k—{ are the subalgebras

2

of L_ with 2k elements (cf theorem 5.10), and He; =

- ) . F _ ol iE 3 .
= LF £ He .n(r)/l"lF = R then it is clear that:

L
J

L . e s 4 i
Hk = ;Ti Hki and Hki n Hki,_ﬂ if 1 £ i

x

Therefore, if N(X) denotes the number of elements of the

finite set X, we have:

(7.9)  N(H,) =Ziil N(H ;) (s = @;?{2 )
\.

We are going to calculate N(Hki)' To this end, we fix
an i such that 1 < i £~sk, and to simplify, uwe uwrite Ak
instead of Aki' As in the proof of theorem 5.10 we can

see that the number of subalgebras of A, with 2k-2

k

glements (i.e. the number of proper maximal subalgebras

k-1
denoted by AQJ, jJ=1,2,40.,k-1.

of Ak) is QZK—Z)/%> = k=1, These subalgebras uwill be

k

themselves in just two elements, the set theoretical

Since the subalgebres Aéj differ from A, and among

interssction of h subalgebras A&j (1 = h =£k-1) is a

(2k-2h)-clement subalgebra of Ao

i_ 3 . = { i
Let G = LF £ H(n,r) @ £(G) = A Ly and ij =
J
:

vy

- { £ H(n,r) : £(G) < A . From theorem 7.6 it

‘ -
‘ k]
follows that:
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g k=15
Ho. = Go -~ (U Gi.
ki Kk o K j
and therefore:
i k-1 4
(7.10) N(Hki) = N(G, ) - N( ;:é ij)

Since we are supposing that i is fixed, we may write Gk

and G . instead of G and Gl.. It is well known that:
kJ k kJ

k-l .
N(L{-ij) :22?:} (-1)1-1 EZ: N(Gy 5 N...NG
J:

)
1€ jj<ena<j; Sk=1 M1 KJ;

1

v

Since G, . N...NG - %uFE:H(n,r) . F(G)< A

K j K j N...0A

i{
1 i 1 il
and since A N ... NA . is a (2k-2i)-element subalge-

kjl kJi -
it follous that N(Gkj Neoeo N ij_) = (2k=2i) .

1 i

kJ kJ

bra of Ak’

Therefore we have:

k-1 .
NC L 6 ) = 2f Tl DT (k-1)T
bs]

and from (7.10) we obtain:
T k=1 i (k=1 .
(7.11) W(H,) = 25 TR0 (J) (k=3)% = a(r,k)
Since N<Hki) does not depend on i, from (7.9) it follous

that:
a2y new) = (277 e

In this way we have obtained the following:

7.13.THEOREM, Let n be an _even number and let Akj’ j =

1,2,004, <En;32/%> be the 2k-glement subalgebras of L_,

k = 1,2,...,0/2. If we Set:
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a(rk)_ZZ (1)l<‘<l) (k-1)T

then the following holds:

-2)/2
F (r) - n/2 ( (fngfi/ 4 (x,k))
it = kJ‘}l j=1 i

where A° denctes the product of s algebras isomorphic

to A.

7.14.COROLLARY, If n is even, then:

/2
N(F (z)) = E}i (2k)2(Fsk) (}”;fi/2>

Assume now that n is odd. We denote by AS an s-element
subalgebra of Ln, and by HS the set of all functions
from G into L, such that M. is of order s (2< s <n).

As before, from (7.7) it follouws that:

n
(7.15) F_(r) = T1 (F{}Hsrn(r)/mf)

s=2

If s is sven, s = 2k (1= k € (n-1)/2), there are (cf
theorem 5,12) (Fn 3)/%) subalgebras of L_ with s ele-
ments. On the other hand, all the subalgebras of As have
an even number of elements, and the number of subalgebras;
of As with s-2 = 2k-2 elements is k-1, and as before we

can prove that:

(7.16) N(Hy ) = (F“;fi/2> a(r,k)
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If s is odd, s = 2k+l (1 = k = (n-1)/2), there are

(theorem 5.12) <§n—3>/4\ subalgebras of L_ with s cle-

k-1 ./ )
) i n-3)/2
ments, which we denote by Asi’ i = 1’2’°’“’ts: ( k—i/ >'
= j £ T ° = A . ( - = g °
If Hgg Lf‘cH(n,*) : Fn(r)/mf Rgi § then we have

— t
- S )
(7.15) N(HS) = 2 io1 N(Hsi,

We fix an i such that 1 = 1 fits, and we write Ak

instead of Asi: '(2k+l)i”
Ak has only one subalgebra with 2k elements (i.e. the

subalgebra obtained by eliminating from A the only z

k
such that z = -z), which we shall denote by ﬂkO’ It is

easy to check that the number of subalgebras of Ak with

2k-1 elements is <ﬁ:% - k-1, and they will be denoted
by Ak*’ j=1,2,...,k=-1, Therefore Ak contains k maximal
J

proper subalgebras, namely, AkO’le’°’°’Ak(k-l)°
Observe that if 1 f:j1-< e <0y < k-1, 1 < i <= k-1,
then the following formulae hold:

(7.18) N ( n ... 7 a4 ; ) = 2k+1-2i

AL
Ky i

) = 2k-2i
1 kg

7.19 N{A NA . N ..o MTA

Set G = J f eH(n,r) : F(G) <A, = A { and
k = P ERn,T) = =M= Mokt g

i ) — )
Gy = | fEH(n, o) = F(B) < Ay } s J = 0,1,000,k=1.

From theocrem 7.6 it follouws that:
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) kel .
1 1
Hes = Plok+1)i = Bk - %:g EDS
and hence we obtain:
i kel 3
(7.20) N(H(2k+l>i) = N(G ) - N( g“g ij)
J:

To simplify the notation the index i will be omitted,

because 1t was fixed, YWe have that:

k=1
N(Q;ijJ) 2: 121 (- 1) ZE:: N(G, . N...NG
J:

Y -
0 []éjl(...<ji £k-l kJ; kJ;

1

k-1
=Y (- 1)* § N(G, : Nes.NG, . ) + N(G, o) +
i=1 1€ < g =k-1 M1 kJj kO

A k i~-1 E
+ ) ( 1) - N(GkD ij Neo.NG

< 3 < 1 —
l._Jl(...-Jiffk 1 1

kji-l)

and from (7.18) and (7.19) it follous that:

k-1 .
NG, )= T V'k l( 1)i-1 fol>(2k+1-2i)r + (2k)°7 4
j=0 !

+ Tihent (50D ezt

L“l=2
D GOk (f;{>(2k+l-21)r + ¥ KLt (F;l (2k-21)F.

1=0

From (7.20) it then follouws that:

i (k-1 . ;
NCH(ot1)1)= = Kot <\i ((2k+1-2i)"~(2k=-21)T)
Since N(H(2k+l)i) does not depend on i, and since

there are (zﬂ;?i{%> subalgebras with 2k+1 elements, from
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(7.17) we obtain:

N(H (2q1)) =<}n&?i/%>z:§;é(-l)i<%;%>((2k+l-2i)r—(2k—2i)r).

S50 we have proven the following:

7,21 .THECQREM. Let n be an odd number and A and

(2k)j

A(2k+l)j’ J = 1’2’.'.,<3n;fi/%> be the subalgebras of

Ln with 2k and 2k+1 elements respectively, k = 1,2,...

L ] (n"l)/Zo .‘I_F we Set:

a(r,k) => b (-n)? (k'l.'l)(Zk—Zi)r
o(r,k) =y 515 (D (M) (2kar-2i)”

c(r,k) = b(r,k) - a(r,k)

then the following holds:

ﬂn-S)/Z
(n-1)/2 N krl > a(r,k) c(r,k)
fle) =TT | 32% Bays X Alartn);) )
7.22,CORCLLARY. If n is odd, then:

(n-1)/2 Q“‘?’)/z)a(r,k) ("2 e k)
N(F(2)) =TT (2k) \ K-l (2k+1 N K1

k=1

We remark that in case n = 2, theorem 7.13 reduces to
the familiar formula for the free Boolean algebra with r
generators, and when n = 3, theorem 7.21 gives a formula
obtained earlier by A.Monteiro for the free three-valucd

Lukasiewicz algebra with r generators (unpublished),
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8. POST ALGEBRAS.

The notion of Post algebra of order n was introduced
by P.C.Rosenbloon [23] and developed later by G.Epstein
[77], T.Traczyk [29] , [30], [31] and P.Dwinger [6] . The

following definition is due to Traczyk [29]

8.1.DEFINITICN, A Post algebra of order n (n an_integer

2 2) is a system <<A,O,1,V,ﬂ,el,...,en_£> such that

<<A,O,1,V,ﬂt> is a distributive lattice with zero 0O and

unit 1, and Cyseees® are n-2 elements of A that
N —

-2
fulfill the conditions:

P1) 0 = ¢ < = =1

0 ®he2 = Bpo1 T

P 2) For any x in A, there are elements by,...,b_ 4

= 8y =

belonging to B(A) such that:

P3) If b{f B(A) and b N ejff e51 for some j
(1< j <€ n-1), then b = 0.

e shall denotc simply by A a Post algebra of order n.

It is well knoun ([7], [29)) that in a Post algebra of
order n any element x admits @ unique representation in

the form:

(8.2) x = (dy h e) Voo V (do_p N e o) Vid

€

here d; £ B(A) and dy 2 dy 2 «e0 2 d; 1

We denote by Dl<x)’02(x)"”’Dn-l(x) the uniquely
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determined Boolean coefficients of the representation
(8.2) of x.

Epstein [7] proved that thc operator:

n-1
(8.3) B = (g a (0, ()1

. i i
i=1

where b' denotecs the Boolean complement of an element
b {B(A), satisfies M 1) and M 2), so any Post algebra
is a De Morgan algebra if we define -x = Ga(x).
Moreover, if we define the operatorss:
(8.4) s;x =D ;(x)  (1=1i=n-1)
then the s, satisfy L 1) - L 6) ([7], [29] ), and ue

have also:

0 if i=j < n
(8.5)

w
}_.l
8]
1
O
3
i
o)
N
[w]
.
~—
N
e e

1 if i4j 2 n

Therefore any Post algesbra of order n is a Moisil
algebra of the same order. The follouing theorem estab-
lishes the precisc relation betueen Post and Moisil

algebras:

8,6, THEOREM, A is a Post algcbra of order n if and only

if: 1) A is a Moisil algebra of corder n, and_2) A has

_, that satisfy the condition (B.5).

PROUF, From the above remarks it follows that any Post

n-2 glements Bloevest

algebra of order n fulfills conditions 1) and 2).

Conversely, suppose that A is a Meoisil algsebra of
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order n with elements e;,...,e__, satisfying (8.5). Ue
set ey=0 and 8h_1= 1. From (8.5) and L 9) it follows that

8y €81 < «ax <8 5, < &, and using L 6), that any x

in A cab be written in the form:

X = (Sn-lx n el) V... U (s2 N DH-Z) V s, x
Finally, if b £ B(A) and b N 25 £ 1y then b N o =
= Sn-jej—l 0, so b f’-sn_jej = -1 = 0,

8.7,COROLLARY, Let A,A' be Moisil algebras of order n

and h:A -€>A' an _homomorphism, If A is a Post algebra

of order n, then A' is also a Post algebra of order n.

If A is a Post algebra of order n and if U is an
ultrafilter of B(A), from 2) of theorem 8.6 it follous
f { s — - -
that e £ dj and e g Uj—l (j = 1,2,0.0.,n-1).There
fore Uj—l # Ujy and from corollary 4.8 we obtain the
following theorem, that has been proven earlier by

Epstein [7] and Traczyk [29]:

8.8.THEOREM, Any prime filter of a Post algebra of order

n_belongs to one and only one maximeal chain of prime

filters, and this chain has exactly n-1 elements.

The following question arises naturally:

8,9.PROBLEM, If all the maximal chains of prime filters

of a Mgisil algetra A of order n have exactly n-1 ele-

ments, is then A a Post algebra of order n ?
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We remark thet Ln is a Post algebra of order n, and
that Ln does not have proper Post subalgebras. Using
the same technique as in the case of Moisil algebras,ue
can prove the following theorem, that does Hot seem to
be in the literaturc:

8.10.THECREM. Let r be & finite cardinal > 0. Then the

free Post algsbra of order n with r free generators is

the direct product of n' copies of Ln’ and_in particular,
r
it has n" elements.

We have obtained some other results concerning Post

and Mocisil algebras, for example, that the injective

Moisil algehras of order n are just the complete Post

algebras of the same order n. The details will be

published elsewhere,

Instituto de Matemdtica
Universidad Nacional del Sur

Bahia Bianca - Argentina,
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