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ON INVERSE EIGENVALUE PROBLEMS FOR A SECOND-ORDER DIFFERENTIAL
EQUATION WITH PARAMETER CONTAINED IN THE BOUNDARY CONDITIONS (*)

by A.Benedek and R.Panzone

SUMMARY. We prove some theorems for a two-point boundary value pro-
blem with boundary conditions linearly dependent on the eigenvalue pa

rameter which are extensions of well-known results due to Borg, Levin
son and Hochstadt-Lieberman.

1. INTRODUCTION. We consider the differential equation on 0 < x < 7

Q) u" + (A-Qu = 0 R Q € Ll(O,n) and real,

with the boundary conditions

(o) y(0) cosa + y'(0) sinao = 0 , 0 <o <7

’

(8] -(By(m)-8,y' (1) = A(B}y(m)-84y' (1)) , o = Bl6,-B,65 > 0.

Let us denote with A(Q,(a),[ B8]) the set of eigenvalues of the problem
(Q), (a),[8].

THEOREM 1, a) If A(Q,(a),[8]) N A(Q,(a),[v]) = @ then Q is the only
function in Ll(O,ﬂ) such that (Q) has these spectrums with the indi-
cated boundary conditions.

b) If AQ,(a),[B]) N A(Q,(w),[B8]) = @ then the same result holds,
(cf. [Bl,[L]).

(*) Presented in September 1979 at the annual meeting of the Unidn Ma
temdtica Argentina.



THEOREM 2. Assume now that Q(xX) = Q(7-x). If [8] denotes the boundary
condition at x=0 "symmetrie" to [B]:

[ 8] -(8,y(0)+8,y' (0)) = A(8]y(0)+83y' (0))

then Q is the only function in Ll(O,ﬂ) such that (Q),[E],[B] has the
spectrum A(Q,[8],[8]), (cf. [B],[L]).

To prove these theorems we shall make use of results of Titchmarsh's
book [T] which are stated there for Q continuous but do hold also
for Q summable. Also we shall borrow many results proved in Fulton's
paper [F] which hold for the two-point boundary value problem (Q),
(a),[8]. In [F] Q is assumed continuous but if t denotes the operator
tu:= -u"+Qu and the differential equation (Q) Tu = Au is understood
as usual to be verified almost everywhere, u and u' absolutely conti-
nuous, then all the results in [F] are still valid. J.Walter in [ W]
has given an operator-theoretic formulation &f that irregular bounda-
ry problem which is used by Fulton.

It assumes the form
-Fg(x)+Q(x)F1cx)] . [Fl(x)]

A(F) := [ =
-R(F )

Fa

with domain D(A) C H:
D(A) = {F e H | F,(x),Fj(x) absolutely continuous in [0,7], <F €
e L2(0,m), F,(a) cosa + Fi(a) sina = 0, F, = R'(F )},
L2(0,7) @ C (c£.[Fl, (2.1)-(2.5)),

where H

2 K 2 2
IEl, = j0|F1| dx + IF2| /o , and

R' (u)
(1)
R (u)

Rg(u)

R, (W)

gp-u(m) - gy.u'(m) ,

Bl.u(ﬂ) - Bz.u'(n)

Except for the proof that A is densely defined in H we leave to the
reader the verification that even without changing the definition of



D(A) the results of [F] hold for Q € L! with the obvious changes of
"a.e." instead of "everywhere".

The classical boundary problem: ty = uy,(a),R(y) = 0 has, for certain

¥, a nontrivial solution Yo which necessarily verifies R'(yo) # 0.
Then Y = [R,¥3 )J € D(A). Consider the problem tz = vz, (a),R'(z) = 0.
0

Let us denote with zg @ linear combination of its eigenfunctions such
F . .
that HZO—F1+cy0H2 < ¢ where F = [F;] € H, is given and c = FZ/R'(yo).
z
Therefore if Z = [00] then Z € D(A) and IIF-(cY+Z)JIH = HFl-cy0-20H2<ie.

In consequence, D(A) = H.

We shall also use results of Guichal's thesis [G]. Here too the theo-
rems were proved under the hypothesis of Q continuous but they hold
for Q summable with the obvious modifications.

The following result will be proved:

~

THEOREM 3. Assume Q and Q <n Ll(O,ﬂ) and Q = a a.e. in (%,ﬂ). If
AQ,(a),[8]) = AQ,(e),[8]) then Q = Q a.e. in (0,m), (cf.[HL]).

We observe that the hypothesis A(Q, (a),[8]) N A(Q,(a),[y]) = @ when

[ 8] is replaced by (8) and [v] by (y), 0 < a,B,y <7 , is equivalent
to B#y , or what is the same, to sin(g-y) # 0. In fact, if Ye is a
nontrivial solution of (Q),(a),(B) and yY one of (Q),(a),(y), same i,
then Yg = cyY, c#0. Therefore Ya satisfies (B8) and (y), which implies
sin(8-y) = 0.

2. PROOF OF THEOREM 1. a) Let ¢(x,1), x(x,r) be two solutions of (Q)

defined by ¢(0,A) = sina, ¢'(0,1) = -cosa, X(m,r) = Béx * By
X'(m,2) = BiA + B,.

The wronskian w(A) = W(¢,X):

(2) W) = (B]a+81)0(m,0)-(832%8,)0" (T,1) = ARL(6) + R,(8) ,



will be called the characteristic function of the boundary value pro-
blem. Next we adapt the proof in [L] to our situation.

LEMMA 1. The characteristic function is uniquely determined by the

spectrum and the boundary conditions (a),[8].

First we recall that (2) is an entire function with simple real zeroes
which define the spectrum, ([F], p.296). To fix ideas we shall restrict
ourselves to case 1 of [F]: «#0 , 85#0. In this case:

w(r) = B85 sina s3 sinms + 0(|s|2 e|t|"), where s = /A = o+it, ([F]
p.299). Therefore w(2) is an entire function of order 1/2 and since
n-3/2 <s, = /I; < n-1/2 for sufficiently large n, ([Fl, p.300),
Hadamard's factorization theorem asserts that w(x) = C P(Ar) where P(1),

’

the canonical product, is of genus 0 and C is a constant. For s = it
and t — « we have:

3
Bé sing t” shrt > C.

P(-t2)

Since P is known, w(A) is determined. QED.

If 5 (= Ll is used instead of Q we shall write E and ; instead of ¢
and X. If [y] denotes the boundary condition:
Y] -Gy -vy' (M) = Ay -vyy' (@) 5 viv,-vpvy >0,

we have:

LEMMA 2. A(Q:((’-),[B]) N A(Q,(O‘)’[Y])=¢9 A(Q:(“),[B]) = A(a:(o‘),[ B1)
and A(Q’(O‘),[Y]) = A(Q»(O‘),{Y]) imply that for any >‘n € A(Q,(O‘)s[ 81),

$(x,1 ) (x,1 )
(3) C_ = =

n . ~
Xx(x,2 ) X(x,x )

In fact, assume that C, (#0) is defined by the first equality and call
En = E(x,xn)/Y(x,xn). Now observe that because of the hypothesis and
lemma 1 the characteristic function for (Q),(a),[y] and that one for



(6),(a),[y] coincide.

Let us denote it by wy(x).we(x) is defined analogously . 1If
Weg) = 05 W () = A RY(R (8 = T A RUDHR (D] =

= CalAgRIOGO*R, G0) = (€ /C) ORI(*R (80) = (€ /C) w. (),

where the equality of the brackets is obtained by direct calculation.
Since wY(An) # 0, Cn/Cn = 1 follows. QED.

To continue with the proof we collect some results. In case 1 of [FI],

2 [tlm

wB(A) = B, s3 sints sina + o(|s| ) (p.299) and the eigenfrequen-

cies s verify s, = (n-1) + 0(1/n), (p.300). Besides Cp, = 1/kq
((3.9), p.296) and because of formulae (3.13) and (3.14) of [F]
o (x,2 ) }

wi (A )/k_ = le(.,a )% where o(x,r ) =
B"n n n’ H n Ré(q)(.,)\n))

a) will follow from:

PROPOSITION 1. Assume that a is another function in Ll(O,n) for which
A(Q, (o) ,[8]) = A(Q,(a),[8]) and (3) holds. Then Q = Q a.e..

Firstly we have: wé(kn)/kn = Hg(.,xn)ﬂé where

~ ¢(x’>‘n) .

¢(x,xn) = ~ since LA does not depend on Q.
RL (4.5 ,))

Besides from [T], §1.7, we know that $(x,A) = sena cos sx + O[

eltli

|s|
uniformly for x € [0,7] and from [F], p.304, that x(x,r) =

= B, s? cos s(m-x) + O(]|s| eltl(”_x)), also uniformly for x € [0,n].
The same estimates hold for 3 and X.
f
Assume now that [ J € D(A), and define for w(r) = wB(A):
R: (f)
B



H(x,s?) = H(x,n) = X(Xa2) jx T £(e) de
w(i) 0

Next we assume |s| = n-1/2. Using the estimates mentioned above we
see that in case 1 of [F] the last integral is equal to

. . |t]x -
sing SINSX ¢(y) + Ole (s+xe™8Itly, (111, p.28), for & a sma11 po-
- _

sitive quantity. Therefore:

@ et - 1) Sl sin s g L oqrl)

. O[e'lt|x].0[elt|x]((S . xe_6|t|)-

B s

We obtain for r, the circle of radius (n—1/2)2, and y = /T , that

[ HEma = | Heos?s as - £G) [ sinst s sins (2xe)
T Y ¥ .

L1+ o(rap) ds + off x e7tlEligy)de

Y

and as in [L], pp.28-29, it follows that

(5) J H(x,s%)sds = 7if(x)+0(D)+ LX) J SRS {Bet) (10 (rap) ds ¢
Y Y

1
+ 0(8 v ETE:T777)'

If 6§ = S — we get:
/n-1/2

| Bex,sysas - mige = oy o[ eltl2Gmds)y oy
Y /n Y

uniformly on compact sets of (0,7) and boundedly in the closed interval
[0,7/]. If instead of H(x,A) we consider

(6) Ken) = £ [T S (e

w())



we obtain, with o(1) as before,

1% o jF(H+K)dA = £(x) + o(1).

Then from (3) and (7) it follows (in L2):

0 (x,1) JOI(a,xn)f(s)da

(8) £(x) =] ) wn(XJ-JOEn(E)f(a)ds

|
Cn.w (An)

where wn(x) = ¢(X,An)/H¢(.,An)HH , etc..

(8) holds in all other cases which are handled in the same way. For
example if a=0 and Bé#o we are in case 2 of [F]. In this case

1

s, =N - 5+ O(%) and w(r) = Bé s? Cos sm + O(ls]e!tlﬂ). Therefore

on y, the circle of radius n, the first bracket in (4) is now equal

cos s(m-x) cos sx £(x)

2
COs sm ]

to: » (observe that the hypothesis

f
[ '(f)J e D(A), R' = Ré » implies £(0) = 0 if sin o = 0). The ordina-
R

ry expansion f = § v, (¥ ,f ) follows from (8) when Q = 5.

A particular case of (8) is
1T~ P~
(9) 0 = 4, (- [ v, () [ Tu(0hv (0t = - T (Fpu, 2v, +
m 0 m#n

+ (1 - ("I;n’q)n >)‘pn
It defines a null series.

Since (A-a_ )¥ = 0 it follows that Ay R'(wn)+R(wn) 0. Then, if
R'"(v,) = 0 we would have R(v,) = 0, and also yy(m) = v (™) = 0, con-
tradiction. In consequence, R'(v,) # 0 ¥V n, and (3.28) of [F] defines
a nontrivial null series. The coefficientes of any other null series
are proportional to those of this one ([G], ch.V, p.51, or [BP]).
This implies that



(10) (povy ) = h R'Gu) , mfn 5 =TR(h Ly ) = h R'(p).

But from [F], (3.13), R'(wm) = p/(kaQmH)
and in consequence:

pCm/” <1>ml|H = ,:>Cm/ll<1>mllH ,

(1) R'(v,) = R'(y) ¥ m.

Taking into account (10) and (11) we obtain:

(12) (V¥ > = h R'(yp ), m#n 5 -1y ,v ) =h R'(y ).
The dual expansion of (8) is

(13) £(x) = [ ¥ (%) jo b (DE(t)dt

The preceding argument applied to this expansion provides the follo-
wing set of relations:

~

(14) (o, 0 =B R'(y) , min 5 -1y ,P )

1t

h R'(v) ,
which together with (12) imply ¥ m,n: h_/R'(y ) = Em/R'($;).

From this it follows that

(15) ho=h  , (V4. ) =(¥.,. > , Y mn.

n n m n m

From (8) (or [F] (3.30)) we know that
V() = T () v, )

This together with (9) and (15) imply y, = Jn VY n. Taking into account
that these are eigenfunctions for the same eigenvalue AL awn = Qv
a.e. which implies a =Q a.e. QED.

b) Next we show that (3) holds even under the hypothesis of part b).
Part b) will then follow from proposition 1. Observe that

0 <a,0w <7, a#w. We shall distinguish the characteristic functions
by the indexes o and w only since they do not depend on Q or a. If
?(x,x) denotes the solution of (a) such that ?(O,A) = sin w, ;'(0,A)=



~ o~

= -CcO0S w we have: ww(x) = X' - ' x.

Therefore, recalling that En = ;(x,xn)/z(x,xn) we get:

(16) w, (1) = sin(a-0)/C_.

But the same argument applied to (Q) instead of (6) shows that
wm(xn) = sin(a-w)/Cn. Then Cn =C Vn QED.

3. PROOF OF THEOREM 2. The characteristic function w(A) of problem
(Q),[E],[B] is, by definition, given by W(¢,x), where
$(0,1) = 32+lﬁé » ¢'(0,2) = '(31+13i) » X(m,2) = 32+A85 s X'(m,A) =

= 81+A8i. Since ¢(7-x,1) and X(x,A) verify the differential equation
(Q) and the same initial conditions at x=m, we have ¢ (m-x,2) = X(x,Ar).
Therefore, w(r) = -(¢(X,2).¢'(T-X,A)+¢' (x,1).6(7-Xx,1)) =

= c2a0 ()W, (M), wi(A) = 4(F,0), w,(A) = ¢' (3,0). w, and w, are,

2
respectively, the characteristic functions of the eigenvalue problems

on % <X <Tm:
D (@, (0,081, ((0) =yP*® ;5 2) @,@,6, (P =y G=0.

In consequence, w, and W, have no zeroes in common and all their ze-
roes are simple. Because of the above relation w(A) is an entire
function of order < 1/2 and of genus 0 with asymptotic expansion not
dependent on Q. So, as in Lemma 1, w(A) is uniquely characterized by
the spectrum and the boundary conditions. The problem is to .determine
from w(x) alone which of its zeroes are zeroes of W, and which ones
are zeroes of wW,. If this is done, Theorem 1 implies that Q is unique
ly determined by w on [#/2,7] and therefore on [0,7].

Because of the symmetry of the problem an eigenfunction ¢ (x,1,) satis
fies the relation: ¢(x,An) = Cn.¢(ﬂ-x,xn) = Cn.x(x,An), and
also : ¢'(x,An) = -Cn¢'(n-x,An). Then, Cn =1 1if ¢'(n/2,An) =0

and Cn = -1 if ¢(ﬂ/2,xn) = 0. So, the sign of Cn determines whether



A, is a zero of W, oT W,. Since the function w is real on the real
axis and since its zeroes are real and simple, it will be sufficient
to prove that

{

- s 1]
(17) Cn sign w (An)
to have a criterium to separate the zeroes. We have

Oa0) - 40028 R = € IVX (T2, 10 (T, 00) W (X(0,0,) ,4(0,00)) =

C_L(ByA_*8,)0" (m,1)-(B]A *8 )0 (m,2)+x (0,2 ) (B]A+g) +

+

X' (0,1 ) (B5A+8,)] = C_[-w(M)+(a -2). (850" (7,1)-814(m,2)

x(o,xn)s'l-x' (O,An)Bé}] .

Therefore, if we call Ré (p) = ¢(O)Bi+¢'(0)8§ , (cf.(1)), then we
obtain:

m 1
j0¢(x,xn)¢(x,x)dx = C w3/ (a-2)) - RECO(,A))- Re(X(ey2 )]
which, for » — A tends to

m
2 = 1 - 1 - R
j0|¢(x,xn)| ax = Clw' () = RIG6(-,20)- REXC,a )]

But since R3(4(.,2)) = Co , Ré(x(.,xn)) = p/C_ , we obtain:

(18) 0 < J0|¢(x,xn)|2dx £ (C2+Mp = C_.w'(r). QED.

The preceding classification of the zeroes of w(i) as zeroes of W,
or w, shows, since w'(An) changes sign alternately, that the zeroes
of W, and W, interlace. Since for wl(A ) = 0, ¢(x,A,) has an odd num-
ber of zeroes in (0,7) and for wz(xn)

0, ¢(x,An) has an even number
of zeroes in (0,7), we have proved: '

PROPOSITION. Under the hypothesis of Theorem 2 the number of zeroes

10



of ¢(x,kn) in (0,7) changes in an odd number when N increases in one.

This proposition - which can be used to classify the zeroes instead
of (17) - is consequence of the symmetry of the problem and it does
not hold in the general case. In fact, assume ¢A(x) = ¢(x,2) is de-
fined as in §2 for the problem (Q),(a),[B8]. It can be shown that
¢i(”)/¢x(") decreases from +» to -« when A increases between to conse
cutive zeroes of ¢A(w) , w and p'. A is an eigenvalue for that
problem iff ¢ (7)/¢, (7) = (A8i+81)/(keé+62). Therefore, if

'Bz/eé € (u,u') then two eigenvalues of (Q),(a),[B8] belong to this

interval and the corresponding eigenfunctions have the same number of
zeroes on (0,w).

4. PROOF OF THEOREM 3. Next we exhibit the main steps of a proof of
theorem 3 following the pattern given in [H-L] which the reader
should consult for more details. We shall restrict ourselves to case
1 of [F] and use the notation and some results of §2 of this paper.

From the differential equations (Q) and (6) and the boundary condi-
tion at x=0 we obtain: -I(w,x)¢'(n,x) + 3'(w,x)¢(n,x) =

TrN ~
= J (Q-Q (x)¢(x,2)¢(x,r)dx. If we call H(A) the left hand side of
0

this equality then from the hypothesis it follows that:

~

w/2 .
(19) fo (@-Q¢3dx = H(A) , ¥ .

H(1) is an entire function, null at the zeroes of w(A) and such that

H(Ax) = 0(e"|t|). Let us also see that the entire function

(20) n(A) = H(A)/w(r) = 0(1//]x]).

~

/2 ~
(This estimation will imply n(A) = 0 and therefore f (Q-Q)¢¢dx = 0.
0

From the last identity Q=a a.e. follows as can be seen in [H-L],

11



pp.679-680).

Let us denote with F a closed disk with center at the origin of ra-

dius R great enough, A the region in the complement of the disk such
that |Im z| > 1/2 and B, a square with center at z = n with sides of

length 1. Since |sin(o+it)|2 = sin%s + sh®t, on A: In(A) | =

= [HO)/wr) | = 0(1)[e|t|n/|Bésina.SBSinns|]= O(eﬂltl/lx|3/2.sh[t|ﬂ)=
= o)A,

On the other hand, on 3B : |s3.sinﬂs| > e.|s|3 , € > 0, since the

eigenfrequencies satisfy:sn = (n+1) + 0(1/n), and R is adequately

great. Therefore, |n(A)| < M(e:).[sl_3 on dB_, and in consequence on
Bn. Since this estimation holds under translations of the form

s — s+1, we finally get: n(A) = O(|A|—3/2). For other cases the
less generous result (20) is obtained. QED.

12
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