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ON THE MATHEMATICAL MODEL OF A VIBRATING MECHANICAL DEVICE

by

Agnes Benedek and Rafael Panzone

ABSTRACT. The main objective of this paper is to exhibit as in

[ 6] the null series of an ordinary differential irregular problem
and the role played by them in the solution of the original par-
tial differential problem, which involves, in this case, the one-
dimensional wave equation.

1. Assume we have a circular shaft of constant diameter with
disks at the extremes. Torsional vibrations will be produced if
opposite twisting couples at the ends of the shaft are suddenly
removed. Then the disks will rotate in opposite directions, (cf.
[5], pp.9-13). If the circular cross sections of the shaft during
torsional vibratiéns remain plane and their radii remain

straight then the angle of twist 6 = 8(x,t) at the cross section
at x will satisfy the wave equation under the following initial
and boundary conditions (cf. [5], pp. 318-323):

9—3—=a 38 0o<x<4& , 0<t
5t 35X
2
£%-p 28 X =0 )t
ot X 0 x
(1) s
2 Y
__ag=-c 26 x = £ !‘ I
at? 53X
Fig. 1 |
6(x,0) = £(x) N
| 8¢ (x,0)= g(x) g



We shall study the mathematical model described by (1) assuming
a,b,c > 0 and f and g of bounded variation on [0,1]. After separa
tion of variables: 6 = u(x).T(t), and we arrive at the following
differential problem:

u" - au = 0.
(2) Zm.Au(0) = u'(0)
En.au(2) = -u'(®) , m=a’/bt , n=a%/ck 0o<x<¢L,
1t 2 -
(3) T" - a"\T = 0 R 0 <t
For A = -62/22 we have the eigenfunctions:

(4) uB(x) = cos %5 - mB sin'%i , e(B) =0 , =0,

(5) 2(8) = (m+n)g - (mn g% - 1)tg 8 =
mB 1
-1
cos 8 ng cos B + sin B ng sin B - cos B
. 2 2,,2

Correspondingly A ~ -n“n°/% and

AB cos E%E + BB sin E%E for 8 >0
(6) T (1) =

A0 + tB0 for g =0

We can expect to express a solution of (1) in the form:

(7) (x,t) = g Tg(t) ug(x)

Then, the coefficients A, , B, must verify:

B B



8 (x,0) = ) Ag uB(x) = f(x)
(8Y a B
et(X,O) = BgoBB T uB(x) + Bouo(x) = g(x)

For a detailed treatment of expansions (8), cf. [3], Ch.VI; there
it is. shown that

2 _
lugly = 2
(9)
lugt? = & 126(1+n%6%)+ (1-n262) sin 28 + 2me(cos 28-1)].
48
2. Let us write P(A) = &m.x, Q(A) = -1, P(A) = £n.r, Q(0) = 1.,

Then the differential problem (2) becomes:

y' - Ay =0
(Z') 1 P(A) y(0) + Q) y'(0) = 0
POV y(®) + Q) y'(®) = 0

~

where 1 = deg P = p>q =deg Q =0, 1 = deg P = 5 > a = deg a = 0.
From [ 3] ,Th. 4, Ch. III, it follows that the Orr series b of any
funetion in LZ(IO,ZI) converges to 0 at x=0 and at x=£. If zj(x) =
= x/&, z5(x) =(£-x)/2, the expansion in eigenfunctions of (2')
given by:

c(x) = —— u,(x) =) D, (z,) u,(x) ,
z g B(uB,uB) B X g B 1 B X

L
B(u,v) = jo u(x) v(x) dx + £m.u(0) v(0) + Ln.u(L) v(£) ,

D

By the Orr series of a function we understand a certain L2—
expansion in eigenfunctions obtained by the method of residues,
(cf. Appendix , [6]).



converges to zj(x) uniformly in [0,2], ([2]). (Observe that uB(x)

is not, in general, a periodic function of period £:
uB(x+£) = uB(x) cos B + u'B(x)(Z/B) sin B)
Because of [3], Th.3, Ch. III, the Orr series of zi(x):

z,(x) = g cg(z;) ug(x)

converges uniformly to zi(x) on compact sets of (0,£). Then

(10) g (Dg(z3)-cg(z))ug(x) = g ng (v (X)), vg = u/lugl,

is a null series i.e., {nB(zi)} e 22 and (10) converges to 0 in

L2

of (0,£)). Since for i=1, (10) converges to 0 at x=0 and to 1 at
x=£, and for i=2 it converges to 1 at x=0 and to 0 at x=£, it fol-

(in this case it also converges to 0 uniformly in compact sets

lows that {nB(zl)} and {ns(zz)} are linearly independent elements

of £%. From [3] ,Ch. V, we know that the dimension of the subspace
. . 2 .
of null series in £° is equal to:

g = degrees of freedom = [ 2D V2(2q+1)] + [ 2P v2(2q+1)] = 2

Therefore, that subspace is generated by {{n(zi) :1i=1,2}. This
implies that given f and g we. have two degrees of freedom in the
choice of the coefficients of each L2- expansion in (8).

Then, there exist 4 parameters whose selection determines the coef
ficients in (8). In this case the parameters are the values of £
and g at 0 and £. In fact, the sets of coefficients of the expan-
sions of an L2— function f are of the form:

{Cﬁ(f)} + r.{nB(zl)} + s.{nB(zz)} = {YB(f)} ,

and } YB(f) UB(X) = f(x) in L2, = r at x=£, = s at x=0 ,
B



. £(x+0) ; £(x-0) £or x (0,2) if f is of bounded variation in

a neighbourhood of x.

One of our purposes is to see how the indetermination in the ex-
pansions of the initial conditions (8) appears in the solutions
of problem (1). But first let us see the following proposition.

PROPOSITION 1. i) If § A u, is a null series and x * at € (0,4)

B B
B

agt =
then.g Ag cos =p= uB(x) = 0.
ii) If Bju, + ) Bg %ﬁ ug is a null series and x *at € (0,%)

B#0
then Byt.ug(x) + ; B, sin Q%E uB(x) = 0.

B#0

PROOF. From (4) it follows that cos EIE . us(x) =

= % [ue(x+at) + uB(x-at)] and this im-

. 4
plies i). On the other hand, 7 ta
RN
X+at e N\
2u, ) sin 248 - 8 77 0 () gy, 7N
, x-at et AN
7/ ."‘.;...".. \\
- X
Then, a ) B, sin 2%3 uB(x) = 0| xof xeat 4
870 ’ Fig. 2
aB x+at x+at
= —i%f uB(y)dy-%J [ ] B, Z2u,l dy .
B#0 2 x-at x-at B£0 QED.

In consequence, if A = {(x,t); t >0, x +at € (0,£)} then o(x,t)
for (x,t) € A will not depend upon the choice of the parameters
<f(0), £(1), g(0), g(1) in the expansions (8). This is explained
by the fact that if x € (0,£), t > 0, (x,t) € A, then the pertur-
bations at 0 and £ did not arrive at the point x at the instant t.



3. Next lemma is a result from the folklore of distribution theo-
ry. We call D(A) the space of test functions in the open set A
and D'(A) the space of distributions in A.

LEMMA 1. Let R be a region in the plane such that its intersec-
tion with any straight line parallel to one of the axes €, n, 1s
an interval. Let u be a distribution, u € D'(R), such that

2
a " u 0

3E£In
Se€D'(E), Te D'(F), E = projg R, F = projn R , and

. Then, there exist distributions S and T such that

(11) u=S5_®1 +1_ &T

PROOF. Let R be an open rectangle, RCR , R=1 x J, and o € D(I),
B € D(J), both of integral one. Assume that ¢(g£,n) € D(R). Using
the nomenclature of [4] we define:

W(gsn) = So(gfn) - OL(E) . 1€(‘P) - 17{
-B(n).1 () + a(E) B(n) (1, ® 1.)(¥) ATTTTTT T T TIEAN
“'n 3 n ' " R \\
Ve
- P ./_ \
It holds: J v(g,y) dy = 0 = 7] /;* 557_ \
—e /
/ d \
‘oo _ Fl 9| / | g | R
= J ¥ (x,n) dx , that is , | R, | | ‘
- 00 | F—
N
n E -,z__,.\\_ A4 -J ,,
vien) = [ @y [ seoyax e e, N
- 00 - o0 \ E’l |
\\
32 71______.__\::1\——-—’//}
V€ 5gam DR Fig. 3

Now define in I the distribution S and in J the distribution T by:
S(x) = u(x(g) . 8(n)) ;5 T(x) =ua(g) . «x(n)).
Taking into account that u(y) = u(azw/agan) = 0 we get

(12) u(v) = Ug ®Tn)(*P) + (Sg®1n)(¢’) + c(1€®1n)(¢), c =-u(a.B).



In consequence, the lemma is '"locally'" true if we take care of
incorporating the last summand into any of the others. S and T
depend on « and B but if these functions are replaced by o' and g
respectively, the new S' and T' differ from the former ones only
in additive constants. In fact, from

1 @ - ' 1 = ® +
Sg 1n + 1€®T} + C 1£®1n Sg 1n 1€®Tn + C 1€®1n

one gets, if o = o' and therefore T = T', that S' = S + (c-c')1£.
Now, let us call Si and Ti the distributions associated to

. - 1 1 =
T I x g 121,28, €D (1), T, €D (). IE T = I AT, £ p

then there exists a rectangle R = I x J s J D J1 U Jz. Since T1

and T2 can be related to a T obtained with a function o with sup-
port in I, one sees that Tl - T2 is equal to a constant wherever
it is defined.

If we cover F with a family of intervals Jr such that in each of

oT
them 571 is defined and in the intersection of two of these in-
' aT oT
r _ s . .
tervals Jr s JS » 3y T 3y h01d§f then there exists a unique

distribution of D'(F) equal to in Jr, V.r. Let T be one

—r
ay
of its primitives. In an analogous way we obtain a distribution
S € D' (E).

Since u - Sg 81n - 1g
and then equal to C(1g ®1n).

®'Tn is locally constant, it is a constant,

QED.

REMARK. Now it is easy to see that

S ® ® =S ®
g 1n ¥ 16 Tn SE 1n ¥ 16

if and only if there exists a constant C such ‘that

® T
n

S =5 + T =T -
g g ¢ ’ n n " C



We shall apply the preceding proposi

tion to a region R = REn CExF, 7
. [
= =) = oo . 1 Flg'4 \‘
E= (-»,1) , F = (0,°) ; Rgn is the \\\ :
) I
image of , o<x<1°° N +
= : 0 <1,0<t<w} " \\{
&W—-HXJL < x , Q\ . \d\
by the mapping: AN //{
\ /
E =x -t s n=Xx+t \\\ d {
A
I
where the jacobian ae,n) 2. \\ g 1 §
3(x,t) £ 0 [:
Let us call t the operator defined by 7
(r W) (x,1) = w(x-t,x+t)  if y = y(E,n) € DR, ).
If P € D'(ny) then we define:
(13) Py ()= P2t y).
. -1 3P - o 3P = —op(d(zw)y - . 3y _ 3y
Then:. (v7 (gp) (¥) = 2 3¢ (vy) = -2p(A{TY)y = -2p(c (3L - 2y
-1 3 3 3 3 -1
=T RGE- D Gy - ETPIW
and therefore,
2 2 )
(14) L R TP R Gy T )
at an o€ 9X an ag
(14) implies that
2 2 2
S -0 = 2 (7L,
3t X 3gdn
_ 52 52
If —3 - —3J)6 = 0 then from the preceding lemma:
at X
-1, .
T e=S,e1 +1,8T withS€E€D'(E), TED (F). If v € DR )



oo

[a W)

£ ).

1
(15) 04, 00) = Sg(J I Tn(j_m‘p(%l , 5 55

0

If T were a function we would have (cf. (13)):

o

® 1
"‘1 ‘p - g+ -g g —_ +
1,0 67 ) = [ Tman [ oS - ] reene e ar,

Xt

In consequence, if S and T are functions, from (15) we see that 6

is of the form b, = S(x-t) + T(x+t).

In the general case: S € D'(E), T € D'(F), we shall write

(16) ex,t - Sx—t * Tx+t
4, By 0, o We shall understand the distribution S+T, i.e., the
restriction of 6, . t0o 0 <x < 1. If o(x,y) = ¢(¢,n) then
3 . 30y _ g ([ 3¢ Etn  n-g, dn y _
Ge Sx-0 ) = -5, B = -s. (| R, mEH P -
- X dny o g o[ e 2 dn
- sg(Jo % (x,t) 90y - sg(joca 24y (g,n) S0 -
_ * 3¢ dn ® 3 dn
0 0
= s (Jm 2 e, ng dny s ([Tedny s )
£y 98 ’ z A P x-t " 7
where S'_ . := (') _- Therefore:
395 38 9T oT
-——x_t = - .Lt = __}{.+_t = X+t=
7)== = "5c¢ » 5% Sx-t * T3t Teyre * Tox Tete-

In consequence we formulate the <nitial conditions of the problem



on the interval (0,1) in the following way:

(18) o, 4 = S*T = £(x) in D'((0,1)) ; (3

x,0 : =T'-8' = g(x)

x,0
in D'((0,1)).

(18) determines S and T in (0,1) in the sense that if S, T, also
verify (18) then S =135+ C, T=1T - C, C a constant. In fact, this
follows from 2T' = f' + g = 2T , 28" = f' - g = 281, (And also
from the remark to Lemma 1).

Then a solution O r » if it exists, must be found among the dis-

tributions of the form (16) which satisfy (18) in (0,1).

From (17) we obtain

2
30 _ _?__9_ = " " - 1 1
3t2 b 5 S X-t + T x+t b(s x-t *T x+t)
(19)
826 L]
ey _ " " 1 {
3t2 e 8% S x-t T x+t c(s x-t T x+t)'

Since our main objective is to analyze qualitatively problem (1),
in what follows we shall restrict ourselves to the cqse a = b =
=c=4L=1,

By definition, the restrictions to x=0 of the first distribution
in (19) and to x=1.of the second one, are:

g + Tvlt _ S'_t _ T'!t c D'((O <t < °°))

(20)

S e S e P T P T ED0<E <)),

where P_t(¢) t= Plp(-t)) and Pt := P. Analogously

Plep @) 1= Plo(t-1)), P, (#) i= P(o(-t+1)).

So we shall formulate the boundary conditions of the problem as

10



g + Tl't - (S'_ + T't) =0 in D'((O,‘”))

t

(zn
g + S + TV + T =0 in D'((0,«)).

1-t 1-t 1+t 1+t
and by a solution of problem (1) in the distribution sense we mean

,t a8 given in (16): ex,t = Sx—t + Tx+t, with S

and T verifying (18) and (21).

a distribution eY

5. EXISTENCE OF SOLUTION. We know that each summad in (7) satis-

fies the wave equation and that we can choose coefficients AB and

BB in such a way that (8) is verified in L2(0,1). This implies

(A, lugl} e 2%, (s B hu b} € 2%, (c£.011, §1, formula (8)).

B

Then, from TB(t) uB(x) = (AB HuBH cos Bt + B HuBH sin Bt) VB(X)

B

if B#0, we see that ZTB u, converges in Lz((0,1) x (0,T)) to a so-

B
lution of the wave equation. That is, there exists in

D'((0,1) x (0,=)) a function, represented by the series, solution
of the wave equation.

Let us call

1 1 x ¥
S = Vi ) AB uB(x) -5 [} BB B JO ug dy + Bo JO u, dyl
(22)
1 1 X x
T =5 ) AB uB(x) t [y BB B JO ug dy + By JO u, dyl

We shall show that these expresions define a distribution
S € D'((-»,1)) and a distribution T € D'((0,«)) such that

0 = S + T
X

% .t Xt is a solution of problem (1) in the distribu-

+t

tion sense. Let us prove these facts.

First observe that for any real z and B great enough ,

z+1 2 1/2
B > (J IuB(y)l dy) > B/2, as it follows from (4). If
Z

11



+ oo
¢ € D((-»,+=)) then J sin By ¢(y) dy is rapidly decaying at

infinity. Therefore, from {AB B} € 2% and

= cos Bx _ .
Agug = (Ag 8)( 5 sin Bx) we see that (IBIEN Ag ug, ¢ )

converges as N — « and this implies that ) AB uB(x) defines a
distribution belonging to D' (-»,+=),

Let ) T be a convergent series of distributions and T, 2. primi-
tiverof T . If 1 is a primitive of T = | T, then t = } t_ holds
whenever for a function ¢y €D of non null integral:

t(0g) = [ t_(py), (cf. [4], IT, §4).

The series ) BB B uB(x) + B0 uo(x) converges in L2(0,1) to g and
8

X X
therefore B u,dy + ) B, B u,(y)dy converges uniformly to
0 0 0 8 B 0 B

X 1
J g(y) dy. Taking v, € D(0,1), J vo(y) dy # 0, and applying the
0 0

X

proposition mentioned above, one sees that Bo J u, dy +
0

X
+ ] BB B J Ug dy defines a distribution in D'(-w=,+x),
B 0

From the results of the preceding paragraph we get, if O ¢ =

=S, ¢ * Ti4e» @and S € D'(-»,1), T € D' (0,») are the distribu-

tions that we have just found, that

] 9 . 06 .

—= - —=]8 = 0. Besides ¢ = S +T-=f —_ = T'-S' = g,
(atZ ax2) X,t x,0 4 (at x,0 g
Since

1 1 X+t X+t
Ox,t = 7 MAgug(x-t)+u, (x+t)) + 7|]B,8 j gy ¥ Boj tuo(y)dy],
x— x—

12



from (4), as in the proof of proposition 1, it follows that
Ot © ) Ts(t) uB(x), and therefore that 6 _ . is a function.

On the other we have

S'_ =3 I A u (-t) - 3] Bee.u (-t) - § By ug(-t)

1} - _1__ " _ - _1_ ! -
S £ =3 ) AB u B( t) > ) BBB.u B( t)
Analogous expressions are obtained for T't and T"t. Taking into

account that u"B = -Bz.uB , after replacing ug

expressions obtained from (4) we see that S and T satisfy the

and u'B by their

first equation in (21). Recalling that the eigenvalue equation is

28 - (82-1) tg B = 0, it follows in a similar fashion that S and
T satisfy the second equation in (21). Thus, it is proved that

0, ¢ = ) TB Ug 18 a function, solution of (1) in the distribu-
3

tion sense.

REMARKS. 1. Observe that the set that really entered into consi-
ration until now is

R={(x,t): 60 <x<1,0<t<=}\ {(0,0),(1,0)}.

2, If £ and g are also continuous on (0,1) then the series (8)
and (22) converge uniformly on closed subintervals, (cf.(10), §2
and [3], Th. 3, Ch. III).

6. UNIQUENESS. If o and 6 are two solutions of problem (1) in the
distribution sense then we can assume S - S = 0 =T - T on the
unit interval. Therefore, to see how many solutions exist in the
distribution semse, it is necessary and sufficient to find %ow
many pairs S, T, null on (0,1) verifying (21) exist. Let S, T be
such a pair. If T is known on (n,n+1), then from the first equa-

13



tion in (21) it follows that S is known on (- (n+1),-n) except for
a summand of the form a_ + b_ et (cf. [4], Ch. V, §6). From the

second equation in (21) it is seen that if S is known on
(-(n+1),-n) then T is known on (n+2,n+3) except for a summand of

-t

the form An + Bn e . Therefore, on intervals (k,k+1), k € Z, con-

tained in (-«,1) for S and in (0,») for T, these distributions
coincide with functions [S] and [T] respectively which together
with their derivatives have limits at the end points k and k+1.

;

Fig. 5

In consequence S and T are determined uniquely on (-»,1)\Z and
(0,2)\Z respectively, if their jumps and those of their first
derivatives are known at the integers in (-~,1) and (0,x).

Therefore:
N
5 B (3)
T=1[T] + J q, » 49, = ) Yoo 8o , T =0on (0,1),
n=1 j=o ™M
(23) M
v " (i)
S=108l+ ] p__, P_, =1 B_. § 3 , S =0 on (0,1)
n=0 j=0 "3 ~H

If c, (Cn) is the jump of [T] ([S]) at x=n (x=-n), we have:

(24) [TI' =77 + Y c 6, 5 [S1' =181 +7]cC s
1 0

-n

since [[T].'] = [T'] , (cf. [4], Ch. II, §2).
And, if dn (Dn) is the jump of [T'] ([S']) at x=n (x=-n), it fol-

lows that:

14



(25) [T)" = 1T + ey op+ 1 d, 8,5 [81M =187 +]cg el +
1 0

n -n

It is- easy to verify that (G_n(j))_t = (-1)5,5n(j) ,

ORI L U I RS PRI &
since R_ (#) = R(¥) , ¥(x) = ¢(-x) 5 R, , (¥) = R(n)
n(x) = ¢(* (x-1)).
Making use of these formulae and of (21), (24) and (25) we obtain:

{ Cn(S'—n)—t * % Dn(a—n)—t * z “n G'H v % dn 6n -

o0 [++] (-] M

. (j+2)

-1 % c (6_)_ .+ % c 8.1+ nzl { Jzosnj(a_n ) *+

N M N

n . © n . n .
(i+2), _ (i+1) (3+1), _

+ jZO Ya; Sa } n£1 { g an(a_n ), + g Yai Sn } =0,
0 <t< o,

Then, necessarily Mn = Nn , n=1,2,3,... , and

(26) % (Dn + dn -C - cn)an + % (cn - C + B

[-<]

- - 1t - - 1"t
+ Z (BnO Bnl * Yno Ynl)‘sn * E( Bnl * 8n2 * Ya1 Yn2)6n +

1
® Mn (Mn+2)
P DBy D Py )8 = 0
1 > n *“n

Repeating this process but using the second relation in (21) we
get
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g (Cn * Dn)(s-n)l-t * g Cn(sln)l-t * g (Cn + d )(6 )1+t
®© © Mn Mn
(3+2) (ij+1)
* e, (6, *1 0T 8 _.(s_ Jye v L B (8 ), ]+
5 n’ 1+t 0 j=0 nj 1-¢t §=0 nj - - 1-t
o Nn Nn
(3+2) (i+1) -
+ 10 (a7 "D * L 50877 ) =0, 0<t <,
2 j=0 =0
Therefore
Z (Cn * Dn)61+n * Z (Cn * dn)sn—l ) z Cn 6i+n * Z Cn 65—1 *
0 2 0 2
w M
)3t (G | (5+2)
* Z .z an -1 (6n+1 n+1 )+
n=0 j=0
-4 Nn
j+1) (J+2) =
£ ] T vy BUTD L sy
n=2 j=0 nj n-1
That is, always in the interval (0,+«):
- ]
(27) nzl [(Cn-l * Dn—l)sn Cn-l Gn] * % (Cn+l * dn+1)6n+cn+16r'1]+
© Mn—l
+ (-3 (G | (G+2) +
N
n+l . .
(G+1) _ ((3+2) =
* .Z Yn+l,j (Gn * Gn )} 0.
j=0
From here we conclude that Mn_1 = Nn+1 , N 1,2,3, ; then
(28) MO = M2 = M4 = ... = N2 = N4 = L.
N1 = N3 = ,., = M1 = M3 = .

From (26) and (27)

we obtain the following equations for
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n

1}

—
-

N
-

W
-

.

( Dn-cn+dn_cn =0 Cn—1+Dn—1+cn+1+dn+l =0
Ba,0 Yn, 0 Cptcy = 0 “Bn-1,0"n+1,0 Cno1%Cq4y = O
Bn,07 80,1 0,07 Yn,1 = 0 ®n-1,0"80-1,1"n+1,0" Tne1,1 =
(29) |
P, 1%, 2" 0,17V, T O Pao1,17 01,2 01,1 0,2 T
i i e
B (-1) T+y =0 B _ (-1) 7 T4y =
L n,Mn n,Mn n l,Mn_1 n+l’Nn+l

Taking into account (28), it follows that if one knows

(30) Cyy Dy, M d., N

B s 4,

0,0""’BO,M y C

2
0 0

0’ 1° Yl,O"“’ Yl,N

1

then from (29) it is possible to deduce all other constants that
enter into the definitions of S and T. Besides, 7f one already
knows that S and T are functions, then it suffices to know the

four parameters

(31) C, , D, ; c

to determine completely S and T. They correspond to the jump at 0
of S (Cp) and that of its derivative (DO), and the jump at 1 of
T (c;) and of its derivative (dy).

LEMMA 2. Assume {Ag} is the set of coefficients of a null series
such that: ) AB uB(O) =Yg s ) AB u6(1) =y, . Then

i) ) AB uB(x) converges in D'(-»,+~) to a function R,

ii) R(x) + R(-x) is a continuous function on (o, +w) ,

iii) R(1+x) + R(1-x) is also a continuous function on (mo,+) ,
iv) R(-0) = 2 vy, R(1+0) = 2 vy ,

X
V) ) AB J uB(t) dt converges absolutely and uniformly in
0

17



compact sets of (-«,+») to an absolutely continuous function
P(x) such that P'(x) = R(x) on (-1,0) U (1,2) and is a con-
tinuous function there,

vi) P'(0-) = 2 Yo P'(140) = 2 v, P(x) = 0 for x e (0,1).

PROOF. Let us recall that ) A8 us(x) = 0 in L2(0,1) and converges
uniformly to 0 in compact sets of (0,1), (cf. 82). For ¢ € D R
(uB,w ) = Jw uB(x) ¢(x) dx is a rapidly decaying function of B at
infinity. Sizce {8 AB} e 22 s {AB} e ¢! and ) (AB Ug,¥ ) converges
V¢ € D(-»,+=), and therefore defines a distribution R.

From uB(x) + uB(-x) = 2 cos B x = 0(1) it follows that

) AB (uB(x) + uB(-x)) =2) AB.cos B X converges uniformly to a
continuous function.

Analogously, uB(1-x) + uB(1+x) = 2(cos B - B sin B) cos B x =

= 2 uB(1) cos B x = 0(1). In fact, from the eigenvalue equation

we have for RBR#0: uB(1) = Cos B - B sin B = -(cos B + il%—é).

Then ) AB (uB(1+x) + us(1-x)) =27 AB uB(1) cos B x also conver
ges uniformly to a continuous function. In consequence, | AB uB(x)
converges in L? on any finite subinterval of (-w=,+), and the

distribution R is a function. Since R(x) = 0 on (0,1)

lim R(x) = lim (R(x) + R(-x)) = 2} AB uB(O) =2y, ,

x+-0 x+-0

lim R(T+x) = lim (R(1+x) + R(1-x)) = 2 ¥ AB u8(1) =2y,
x+4+0 x++0
Thus, i) - iv) are proved. Let us see v) and vi). The Lz-conver-

gence of ) AB uB(x) on any interval implies that } AB JZ uB(s) ds
converges uniformly to a an absolutely continuous function P(x).
Therefore ) AB uB(x) = P'(x) in the sense of distributions and

necessarily P'(x) = R(x) a.e.

18



Since ) AB uB(x) converges uniformly on compact sets of (0,1),

R(x) is continuous on (-1,0) and on (1,2).

In consequence, P'(x) = R(x) on these intervals and vi) follows
from iv).

QED.

THEOREM 1. Assume f and g of bounded variation on [0,1]. The se-
ries (7) with coefficients verifying (8) in L2(0,1) define the
only solutions 6 of (1) in the distribution sense which are func-
tions.

To prove Theorem 1 we shall make use of next Lemma 3.

LEMMA 3. A distribution ex’t = Tx+t + Sx_t on

R = {(x,t); 0 <x <1, t>0} CExF = (= <& < 1)x(0 < n < =)

X,t

is a function iff T € D'(0,») and S € D'(-=»,1) are functions.

PROOF. Assume U C E, V C F such that t,
UxV C R,  .Let x(g) € D(U), &/\\
’ N\
1 N
v(n) € D(V). Then + /7 \Y)\\ 4
N /
\G /
9(x,t) = X(x-t).y(x+t) € D(R) and 1% .
C>\ / X
6(v) = c; S(X) + ¢, |x(g) de , N4 17
1 N X
S [ I L T VA AN A
as follows from (15). If 6 is a \\ yd
function on R and ¢ is kept fixed 7
. Fig. 6 &
with <y # 0, we have

s00 = [([ep e, BEvmann(eds - (ey/ep) [xoree -

Jo(a) x(g) dg ,

with ¢ a locally integrable function on U. Then S is a function.

Analogously it follows that T is a function. QED.
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PROOF OF THEOREM 1. We call admissible solutions those functions ¢
solutions of (1) in the distribution sense given by series (7)
with coefficients satisfying (8) in L2(0,1) such that

X X
S = % (f - j gdy) , T = % (f + J g dyJ on (0,1). The proof
0 0

of the theorem will be accomplished if we prove the following pro
position: the admissible solutions are all the solutions with S
and T functions.

Because of the existence of at least one admissible solution for
each pair f, g, it is sufficient to prove the proposition in the
case f = 0 = g,

Then assume £ = g = 0. If ¢ is an admissible solution necessarily
S=T=20o0n (0,1). In this situation the series (7) is determi-
ned by the four numbers f£(0), £(1), g(0) and g(1). We have alrea-
dy shown that there is a one-to-one linear correspondence between
4-tuples {f(0),...} and pairs of sequences of coefficients of null

. 1 [} = : 1 = 1 =
series ({AB},{A B}), A 8 B BB if B#0, A g B, if 8=0.

Given ({AB}’ {A'B}) there is a pair (S,T) = a({AB},{A’B}) defined

by (22). The application o is linear. These pairs (S,T) are in a
one-to-one linear correspondence with a set of 4-tuples

(CO, DO, s dl).

If o« were one-to-one, the map {£(0),...} — {CO,...} would be
onto and according to what we have proved above this would show
that the pairs (S,T) defined by (22) are the only solutions
which are functions, thus proving the proposition. Assume that
' = = ) =
a({AB} , {A B}) (S,T) (0,0) and that § AB uB(O) Yo >
= 1 = ' ' ; = '
ZAB ug(1) = v,, I A g Ug(0) = v' ), T A g Ug (1) = v' .
Let us call R the function R(x) of lemma 2 defined with the set
{AB} and P the function P(x), as in lemma 2, but obtained with

the set of coefficients {A'B}.

Then § = -12- (R(x)-P(x)) on (-=,1) and T = -;- (R(x)+P(x)) on (0,=).
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Since P(x) =0 on [0,1] and is continuocus function, we obtain
from lemma 2 that S=0 implies Yo = 0. Also that T=0 implies

v, = 0. Therefore {AB} = 0 and then R=0. In consequence, 2T = 0 =

= P(x) on (0,«) and -2S = 0 = P(X) on (-»,1). We get from this

= = U J = 3 -
that y'l 0 Yoo and {A B} 0. Therefore, o is 1-1. QED.

We finish this paragraph with a lemma on the behaviour of those
solutions that arise from null series.

t .
Let us call P the set of points (x,t) Fig. 7
such that: t >0, -t <x < t+1. g) y
/
N
By a solution of problem (1) we shall \\ //
/
understand a solution in the distribu- \h Z X
1

tion sense that verifies the initial
conditions in a way to be described.

LEMMA 4. Let {AB} be the set of coefficients of a null series
that converges to v, at x=0 and to v, at x=1, and {A'B} the set
of coefficients of a null series that converges to Yo @t x=0 and
to v, at x=1.
3 ] = ! = =
Then if A g B BB for B#0, A 0 Bys o(x,t) ) AB cos st.uB(x)+
+ ) BB sin Bt.us(x) + Bot.uo(x) is a solution of problem (1) for
f=g=20on (0,1) such that
i) 6(x,t) and o6.(x,t) tend to 0 uniformly in compact sets of
(0,1) when t — 0;
-‘-1) e(o’t) —_— ‘po- 9 9(1,t) — ‘pl >
111) 0, (0,t) — vy -9y, 8 . (1,t) — v, -9
iv) Yo = 0 = ¢, implies that 6(x,t) is continuous on P , and
therefore that e(x,t) —— 0 on [0,1] when t — 0.

PROOF. o8(x,t) = 0 if 0 < x-t < x+t < 1 (cf. proposition 1) and
i) follows. On the other hand we have:
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8(x,t) = T(x+t) + S(x-t), where T(x) = % (R(x) + P(x)) on 0 < x,
S(x) = 3 (R(x) - P(x)) on x < 1, R(x) = ] Ag ug(x)
X
P(x) = ) BB B Jo uB(t) dt + Bx.
From lemma 2 it follows that 1lim 6(0,t) = lim (T(t)+S(-t)) =
t+0+ t>0+
= lim T(t) + lim Z(R(-t) - P(-t)) = 0 + 1im RLEL - RUO .
t+0+ t+0+ t>0+
Also that: lim e(1,t) = lim T(1+t) = lin RSB =y | Thus i3)
t->0+ t->0+ t-+0+
is proved. Let us see iii). We have
6 (x,t) = T' - S' __and e (0,t) =T' - S' _=T'(t) - S'(-t)

on {0 < tN\Z.

] - - ] -
Then: lim 6 _(0,t) = lim -S'(-t) = lim P'( t)ZR (-t)
t+0+ t+0+ t-+0+

The series AB B sin BXx converges in Lz(—1,0) since uB(x) =
= coS BX - B sin gx and {AB} € El. Therefore, if -1 <x <0 ,
R(x) = 2 Z AB cos gx and also R'(x) = -2 ) AB B sin Bx a.e. On

the other hand S, T, S' and T' converge when the argument tends
to an integer. In consequence, from v), vi) lemma 2, it follows

that R'(y) = 2 S'(y) + P'(y) is continuous on (-1,0) and has a
limit for y — 0=,

Then, from 2 ) AB cos B(-x) - R'(x) = 27} AB uB(-x) =0,

-1 < x <0, we obtain: R'(-0) = 2 } AB = 2¢4, and therefore

lim 6 _(0,t) = v, - ¢ .
t»0+ B 0 0
As before we have: 1lim 6 _(1,t) = 1lim T'(1+t) =
t->0+ t->0+
- 1im P'(1+t) + R'(1+t)
t->0+ 2

For 0 < t < 1: R(1+t) = R(1+t) + R(1-t) = 2 ) AB cos Bt.u8(1)

(the series converges uniformly since u8(1) = 0(1)) and R'(1+t) =
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= -2 z AB B sin Bt.u6(1) a.e. (the series converges in L2(0,1)
since Z AB uB(t) uB(1) converges in L2(0,1) and this because

{AB uB(1)} S 22). Taking into account that g cos g + sin g =

-8 (cos B - g sin g) it follows easily that uB(t) uB(1) =

uBC1—t) and then R(1-t) = § AB uB(t) u8(1) =0onl0<tx<il,
In consequence: 2 ) AB cos Bt°u8(1) + R'"(1+t) = 2 R(1-t) = 0.
Since again lim R'(1+t) exists, we obtain R' (1+) =

t>0+

= -2 ) A, u, (1) = -2y, and also that : lim ¢ (1,t) = v. - ¥_,
s e 1 Lin e (1, S

iv) The hypothesis implies that {AB} = 0. Then, S

-P/2, T = P/2.

7. The solution of problem (1) with a = b = ¢c = ¢
seeking must satisfy:

It
—
(—f
jmp
®
o+
5
[
®
=
o]

- = in R; - = 0 for x=0 > 0; + =
ett 8xx 0 in R; ett ex ° » T 0; ett ex 0

for x=1, t > 0.

Let us assume that 6(0,x) = f(x) € Cz([0,1]) and et(O,x) = g(x) €

S Cl([0,1]). In this case there exists a function, solution in
the distribution sense (§5): 6(x,t) = T(x+t) + S(x-t) with S and

T functions (cf. Lemma 3) such that T = g + % , S = % - % R

X
h(x) = ( gly) dy , for 0 < x < 1.
‘0
The boundary conditions show as in §6 that the knowledge of T(S)

on an open interval Ii determines S(T) on another interval Ik R

+ .
except for summands of the form: Ak e "+ Bk , since T and S must

satisfy the following differential equations:
T"(t) - T'(t) = -[S"(-t) - S'(-t)] , 0 <t<ow
(32)

| T"(1+t) + T'(1+t) = -[S"(1-t) + S'(1-t)] , 0 <t < =,
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With a convenient choice of the Ay's and By's it is possible to
obtain T € Cl([O,w)), S € Cl((-w,1]). Let us assume this regular-
ity for S and T. Under which conditions it is possible to assure

that T € C*([0,%)) and S € C2((-=,1]) ?

S
Al8)
(3) N
/ ()
-4 R -2 - 0 1 z 3 4
2) g
{ ,
T 1A
Fig. 8 (4
9 T

First, let us consider S and the interval -1 <s < 1. If

s € (-1,0): S"(s) - S'(s) = -%If”(-S) +g'(-s) - £'(-s) - g(-s)]

implies S"(0-) = f£'(0) - &2(0) - f'2'(0) since §'(0) = (f'éh')(o)-

On the other hand from the definition of S we have:

va(0+) = f"(O) - g'(O)

That is, £"(0) = £'(0) Zs a necessary and sufficient condition
for §'"(0-) = S"(0+). The plausibility of the condition follows
easily: if for x=0=t, O = Buy and O = O, then exx(o,o) =
= eX(O,O)°

Next, let us consider T and the interval 0 < s < 2. In an analo-
gous way it can be seen that f'"(1) = -f'(1) <5 « necessary and
sufficient condition for T"(1-) = T'"(1+), and an explanation for
this can be given as before.

Then,
(33) £11(0) = £'(0) , (1) = -£7 (1)

are requirements on the initial conditions imposed by the boundary

conditions to get a certain regularity of the solution.

If -2 <t <0 then S"(t) - S'(t) = [T (-t) - T'(-t)] = d(t) €
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€ C((-2,0)).

Since S(0), S'(0) are known, S is determined in that interval and
coincides in (-1,0) with the function already obtained. In conse-
quence, in this step we have S(x) well defined on (-2,1) and
twice continuously differentiable there. By reflection at x=1 we
can extend T from (0,2) to (0,4) and in such a way that T € C2,
(see Fig. 8). Repeating these steps we conclude that the first
point of next lemma holds.

LEMMA 5., i) Assume f € Cz([0,1]), g € Cl([0,1]). If (33) holds

then there exist S and T verifying (32) such that S = f%h
f+h % 2
T = L_T—l , h = Jo g(s) ds on x € (0,1) and S € C°((-»,1]),

T € Cz([O,w)). This pair S, T is unique.
ii) Assume f € C([0,1]), g € L2(0,1). Then there exist S and T

X

verifying (32) such that S = ﬁ%h , T = f;h , h = J g(s) ds on
0

x € (0,1) and T € C([0,»)), S € C((-=,1]). This pair S, T is not

unique.

iii) If f € Cl([0,1]), g€ C(l0,1]), then there exist S and T

e -1 X
verifying (32) such that S = £7l , T = ﬁ%h , h = /s g(s) ds on

x € (0,1), and S € Cl((-»,11) , T e cl(l0,=)). This pair is uni-
que L]

PROOF. In the proof of ii) and iii) we make use of the following

proposition:

a) Let F be a distribution on the open set @ C (-»,=) such that
F'" + a F' = G" where a is a constant and G a continuous function.

Then F is a continuous function.

b) If F" + a F' = G' then F € Cl(Q) y (cfr. [4], p.131).
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Now ii) follows from a) observing that S and T constructed by the
"ping-pong method" given by relations (32), are uniformly conti-
nuous in the intervals Iy. A convenient choice of the constants

Ak and Bk in each step yields continuity at the integers.

iii) follows from b) of preceding proposition.
QED.

LEMMA 6. Let f, £f' and g be uniformly continuous in (0,1)

3

h = [X g ds. Let S and T be functions such that on (0,1):
0
S

(£-h)/2, T = (f+h)/2, and they verify (32). Then, i) S € ¢!

on {(-~»,1)\Z} and T € C1 on {(0,*)\Z}, being uniformly continuous
together with their first derivatives on any finite subinterval.

The limits C0 = CO(S) = 1lim S(t) - S(-t)
t-+0+
DO = DO(S) = lim S'(t) - S'(-t)
and t~>0+
c, = cl(T) = 1lim T(1+t) - T(1-t)
t>0+
d1 = dl(T) = lim T'(1+t) - T'(1-t)
t->0+

determine uniquely S and T.

ii) CO = ¢, = 0 implies the continuity of S and T on their respec

tive domains.

~

PROOF. Let S, T
T =T-T. Then S and T are null in (0,1) and are determined uni-
quely by CO(S) R DO(S) and cl(T) , dl(T) (cfr. §6).

~

as in iii) lemma 5. Let us call § =S-S5,

Since cocé) = Cy(8) Docé) = Dy (s) cl(%) =c, (M) dl(%)
= dl(T), i) follows.

ii) follows from the analogous property for S and T.
QED.

8. In this section we study the behaviour of the solution eo(x,t)
and of its derivative et(x,t) for t — 0 and x € {0,1].

26



We shall restrict ourselves to cases where concrete applications
may be at hand. Suppose to begin with that f is continuous and g
of bounded variation there.

For 0 < x-t < x+t < 1 , we have

X+t
(34) ox,0) = 3 | glsras v EOEEGEY)
X-t

Its derivative in the distribution sense is

(35) g 0(x,t) = (gCxst)rg(x-t))/2 + (£, - £ _)/2 ,

and tends to g(x) in D'(0,1) if t — 0.‘

For convergence in a finer topology as that of D'-more suitable
for applications-f must be more regular. Let f, £f', g be uniform-
ly continuous in (0,1).

For such f, g we describe more preciscly the correspondence
(36) ({AB} ’ {A’B}) - (S,T) - (CO’ DO’ C1’ dl)

giving the following complement to Lemma 6:

THEOREM 2. Let f, f' and g be uniformly continuous in (0,1). Then

1) CO f(0+) - ‘po ’ DO YO - g(0+) * CO ’
ii) ¢, =w, - £(1-0) , d

1 Yl - g(1'0) - Cl ’
. 2
= = 1 -
where f Z AB u6 and g Z A 8 uB in L°(0,1), Z AB uB(O) P
AI = = A’ =

PROOF. Let S =

0
% (R-P) , T % (R+P) , R(y) =} Ag ug(y)

X
P(x) =7 A'B f uB(s) ds.

0

= s e 1.
Then Co i-l»IC1)1+[S(t) S(-t)] = > ii’&[ (R(t)-R(-t))-(P(t)-P(—t))]
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But, leaving to the reader some a.e. arguments, we have

(37) & R = R(t) - R(-t) =) Ag Dug = -2 ) Ag B sin Bt =

2 7 Ag (uB(t) - cos Bt) = 2(f(t) - } Ag cos Bt) —
— 2 (£(0+)

¢0) for t — 0+ , and

(38) AP = P(t)-P(-t)

t t
) A'B J-tuB(s)ds = j_t(Z A'B uB(s))ds — 0.
t—0+

Also Dy = lim [S'(t)-S'(-t)] = lim %—(A R' - A P'),

t->0+ t->0+
But
(39) & R' = ] A, %f(ue(t)+u8(-t)) = -2 ] A, 8 sin Bt — 2 C,
(40) & P' = TA' (ug(8)-ug(-t)) = 2 ] A", (u,(t) - cos gt) =

2 (g(t) - ] A", cos 8t) — 2 (g(0+) - v,)

Therefore D, = CO - (g(o+) - yo) , and i) is proved.

0
We have
J ug(x+t) = ug (x) ug (t) - (82+1) sin Bx sin gt
(41) uB(x+t) + uB(x-t) = 2 Ug (x) cos Bt

uB(1-t) ug (t) Ug (M

where to get the last identity the eigen-value equation must be
used. Then, from (41) we have for t > 0.

(42) R(1+t)-R(1-t) = ) AB (u8(1+t) - u8(1-t)) =

1}

2 ) AB u8(1) B sin Bt =
Z AB (u8(1+t) + u8(1-t)) -2 A8 u6(1-t) =

Y2 AB uB(1) cos Bt - 2 f(1-t) — 2(¢1 - £(1-0)).
t+>0+

and
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1+t 1+t

(43) P(1+t)-P(1-t) = } A'Bj uB(x)dx = J ) A'BUB(X)dX — 0
1-t 1-t t>0+

In consequence

T(1+t) - T(1-t) = AR+ FAP —> 9, - £(1-0) = ¢, for t —> +0.

Also

(44) R'(1+t)-R' (1-t)

1]

ZAB (u6(1+t) + uB(1-t))' =

-2} Ag ug(1) 8 sin gt = - AR — -2 ¢, for t — 0+

’

and

(45) P'(1+t)-P'(1-t)

I A (g (1+t) - u (1-t)) =
) Aty (u8(1+t) + uB(1-t)) - 27 Aty ug(1-t) =

2 ) Aty uB(1) cos Bt - 2 g(1-t) —— 2(v, - g(1-0)).
t->0+

In consequence

AT — -c; + (v, - g(1-0))
| QED.

Finally we want to study the behaviour of ¢ and 8, fot t — 0,
under the same hypothesis of Theorem 2 when the set {AB} is cho-

sen in such a way that ¢(0,t) — £(0+) , o(1,t) — f(1-).

THEOREM 3. Let f, f', g be uniformly continuous in (0,1) and A
such that Yo = f(o+) , vy, = £f(1-).

B

Then

i) 6(x,t) — f uniformly in (0,1) , 6(0,t) — f(0+)
8(1,t) — £(1-),

ii) a8 (x,t) — g(x) uniformly in compact sets of (0,1) R
at
ii1) 22 (0,6) — vy, 22 (1,0) — v,

at ot
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PROOF. From the hypothesis and Theorem 2 it follows that Co=c1=0

Then by lemma 6, ii), S and T are continuous and uniformly conti-
nuous in (0,1). Therefore 8(x,t) is continuously extendable from
P to P, and 1) follows.

ii) Given ¢ > 0, from (35) we obtain for t — 0, 0 < t < 1

’

%% = g(x) + o(1) , 0(1) being uniform in [e,1-¢].
[ _ - = t - t t - ' =
iii) 6 (0,t) = T' - 8'_=T' - S' +§8' -38'_
= g(t) + S' - S'_ — g(0+) + Dy(8) = (by Th. 2) -
Yo T S T Yo
- _ ] = [ . ' ' - =
0,08 = T e - S e = Tlipe - Tl * Tl - 871
=T e - Tt 8(1-t) — 4 (T) + g(1-) =
t>0+

= (by Th. 2) = y, - ¢, = ¥y
1 1 1" qED.
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AN EXAMPLE OF BESSEL EXPANSION ARISING FROM AN ANOMALOUS
BOUNDARY DIFFERENTIAL PROBLEM

by

Agnes Benedek and Rafael Panzone

ABSTRACT. The example introduced at the beginning of paper [1] is

discussed and thus, this paper becomes an application of that one.

1. INTRODUCTION. a) Expansions of the form:

(1) u=u(r,6,0) = u(r,8) =

% © J S . T -s .ot
n+l/2( n,i ) P (cose)e n
n

c_ .
n=0 i=1 ™»? V§ . T
n,i

where 0 <8 <7, 0 ¢ < 271, 0 <71 <o

symmetry of the heat equation Au = 1_3u 71 , p.289).

b
OL2 3t

, are solutions with axial

If the problem is to find the temperature in a solid sphere of ra

dius one whose surface is kept at temperature zero and its initial

temperature is f(r,6) then we must have Jn+1/2 (Sn,i) = 0 ,
i=1,2, ,n = 1,2,... , and the Cn i must be chosen so that
® ® J (s . 1)
(2) £(r,e) = ] § ¢, 2HZ md T p o (cos ).
n=0 i=1 "% VST

- Since /T Jn+1/2 (Sn,i T) Pn‘(cos g) is an o.n. system, the coef-

ficients Cn ; are determined by the values (a.e) of f(r,s).

b
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In the particular case where f(r,8) = f_(r).cos 6, since
P1 (cos 8) = cos 8, Cn i = 0 for n # 1. If we call g(r) = r.fo(r)

»

and Bj = C j//sj s, S. = S , we get

1 h| 1,3

(3) | g(r) = % B; {/r Jygp (55000, Ty, (sj) =0

b) If radiation of heat occurs from the sphere into an infinite me
dium of constant temperature zero, we have the following boundary
condition ([ 3], p.312):

V]
o
(e

|

+ g u = , o>20

(=5}

n

If we look for a solution of the diffusion equation satisfying
this boundary condition, the separation of variables provides the
following axially symmetric elementary solutions

2 2

7% Joe1/2 (5.1) P (cos ) e”° °© t
where s verifies
(4) s.Jr'IH/2 (s) + (0 - 1/2) Jn+1/2 (s) =0

If the initial distribution of temperature £ is independent of ¢
then an expansion like (2) holds. In the special case for which
f = fo(r).cos ® we must again have (3) but where s satisfies the
following relation at r = 1:

(5) o0 J3p2 (5.1 % (o0 - 1) (/T3 (s5.1)} = 0

3/2

In fact, this follows from (4) taking into account that

(2 vr,,6.m0) - 2=, (s

1
(6) s.Jr, ,(s.T) = —
3/2 Yr dr 2V/T

c¢) The boundary condition (5) and that which appears in (3) are
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ordinary boundary conditions for Bessel's equation. Let us see an
example of an Zrregular boundary condition for this differential

equation.

Assume as before a solid sphere of radius one with an initial dis-
tribution of temperature axially symmetric with respect to the z-

axis, cooled in a mass of liquid kept at uniform temperature v (t)

at each instant t. The liquid receives heat also from its sur-

roundings at constant temperature Tl‘

If u =u(r,6,t) denotes the temperature at the point (r,6,¢) of
the sphere at time t then v(t) = u(l,e,t) , t> 0 , and

1 2

Au = —— { (r2 u_ sen 6) + 2 (u

r sen 6 aTr 30

au
at

_ 1
g Sen 8)} = —5
o

The rate of accumulation of heat in the liquid is proportional to

%% and equal to a linear combination of - —%

(o3

-1- and of

(Tl - v(t)). Then, it holds with a v > 0, that ([6], pp. 262-3):
(7) _% U, 3y (- T,) = 0
a ot aT r=1-
If w=u - T1 we obtain
(8) AW=1_23_W s 0_23_W+_8_W_+vw| =O
a” dt o at or |r=l—
For a suitable choice of the units we can assume that o« = 1 and
study the following differential system:
Aw = » X = (X;,x,x3) , T = x| <1 , t>0
2273
at
(9)
G W LW =0 ,0>0 , v>0 for t>0
ot or r=1-
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(o]

lim w(x,t) = f(x) = fo(r) cos @ , r<i,
t>0+

(10)
lim w(x,t) = v , [x] =1 v = v(0)

t>0+

Separating variables in this problem, the solutions of the heat
equation of the form: w = R(r) ©(8) ¥(t) verify (cf.[7], p.288):
1

= (0'(8) sen 6)' + (n+1) n O(8) = 0, n=20,1,2,...
6

sen s
W' (t) = -s2W(t)
| 2 R
(11) R+ —L 4+ (s2 . 2@m1)y p_
rY 2
T T
In consequence
_ .-1/2 -(n+1/2) n+l/2
R=or (cls Jn+1/2(s.r) * C,s J_(n+1/2)(s.r))
(s = 0 is not an exceptional value in this formula). For the boun
dedness of R at the origin it is necessary that c, = 0. So we may
_ _ - ~1/2 _-(n+l1/2)
take c, = 1 and call R = Rn’S T S Jn+1/2(s.r).
The boundary condition in (9) reduces to
o W' R + %B ¥+ yvR V¥ = 0 , therefore
T r=1-
(12) v-oshHhr+Ro0 oo R =R

This is the equation of the eigen-frequencies s, which for each n,
form a countable set An.

Then, we try to find a solution of (9), (10) of the form:

2
w=w(r,e,t) = J g e”s ¢t Rn’s(r) P_(cos ).
n,s i

Because of the initial conditions (10), we try expansions with
n = 0,1. That is

35



2 2
_ -s't -ts
(13) w(r,e,t) = 7} Cs,8® Ro’s(r) + sZA c, e Rl,s(r) cos 6.
1

- - n+l1/2
Let us call y yn,s(r) = r Rn,s(r) = /?.Jn+l/2(s.r)/s .

Then.y satisfies, in view of (11),

2
(‘]4) y" o+ (52 + 1/4 - 2(11*‘1/2) ) y =0
T

’

and in view of (12) the boundary condition
(15) (v - o st - 1) y() ryr() =0

That is, a boundary condition of the form

P(A) y(1) + Q) y'(1) =0

where P and Q are polynomials in A = 52, not both constants and
without common zeroes.

Besides, the boundedness of R at the origin implies the boundary
condition:

(16) y (0).

From (13), in order to satisfy the initial condition (10),

0.

Yo g (1)

(16 a) 0 =7 So,s 1 — » T <1 ; Y o8 yo’s(1) = v,
Y1 (1)

(16 b) £_(r) =z°1,s'_"f~—_ P r <1 ch,s 1,610 =0

should hold. Expansions in series of Bessel functions of order n,
n =0, nan integer, arising from an irregular boundary problem
with P and Q linear functions of A, were already considered by

P. Zecca in his paper [8].
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2., NULL SERIES. Let us consider (16 a). Y S(r) satisfies, in view
of (14), (15) and (16), the boundary problem

yt e sty =0

(17) y(0) =0

y(1) P(s?) + y'(1) = 0 where P(A) = v-or-1 v,o > 0.
We suppose that the eigen-frequencies of this problem are simple
(cfr. Appendix II).

For the boundary problem (17) there exists a null series with sum
equal to one at r = 1 and such that any other null series is a
multiple of this one (the factor being the sum of the series at
r=1).

[This was pioved, for example, in a previous joint paper by the
authors. Alternative proof: according to [5], Ch.III, Th.4, in
this situation the expansion of a ¢ € L2(O,1) obtained through
the calculus of residues-which was called in another paper Orr's
expansion - converges to 0 at r = 1. Now take an eigenfunction

v (r) solution of (17) for a value S, such that P(si) # 0. Then
y(1') # 0, and the difference between y(r) and its Orr series is a
null series that converges to 0 in square mean and at each point
in [0,1), and converges to y(1) at r = 1,

Since g (the degrees of freedom) is equal to one, any other null

series is a multiple of this one].

So there exist coefficients o o such that ) o s Y S(r) conver-
’ ’

’ (o]

. 2 2
ges to 0 in L“(0,1) , {CO’S Iy H2} €L and ) ¢y (1) = v,

o,s 0,870,s

This last series converges absolutely. In fact, Yo S(r) =

O(sin s). From the boundary

_ /2 sin sr
= /:———g——— and then yo,s/uyo’su

cendition it follows that s.sin s 0(1). Thus, Y, S/IlyO =

= 0(1/s) € e?, Therefore

37



(18) Joo =225 " -9 in L2(x| < 1),

and (16 a) is true in the mean.

Now we turn to (16 b).yl < satisfies, in view of (14), (15) and
(16), the boundary problem

y' o+ (s? - 37) y =0
T

(19) y(1) P(s®) + y'(1) =0 , P(r) the same as in (17)
1 y(0) =0

It is easy to see that in (19) the boundary condition y(0) = 0 is
equivalent to y(r) € L2(0,1).,The system of eigenfunctions veri-
fying (19) is a particular case of those studied in [1].

There, in § 3, it is proved that the eigen-frequencies s verify:
s, =nom+ 0(1).

Besides, we suppose again that they are all simple (cfr. Appendix
i II).

In 1], § 7, it is proved that if r f (r) € L2 (0,1) (what is just
to say that f(x) € L2 (Ix] < 1)), then there exists {c
that

1’s} such

. 2 2
(20) ) cl’syl,s(r) = r f_(r) in L°(0,1) and {Cl,s"yl,suz} e

The series in (20) just being the Orr series. We have also

(21) Loy ¥y (1) =0

(cfr. Appendix I), and this series converges absolutely since

{ y, oM

2 - -
Ty, s"2 } € £, In fact, yl’s(1)/lly1’sll2 = (Prop. 3, [1]) =

\

= /§.J3/2(s) 0(1) = (boundary cond.) = /E.Jg/z(s) 0(1/s) =
= 0(1/s).
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5. EXISTENCE. THEOREM 1. Suppose £(x) = f_(r) cos 6 € L2(|x| < 1).
Then, there exists a function w(x,t), C” on |x| <1, t > 0, that
verifies (9) and such that lim w(x,t) = f(x) in Lz(lx| < 1) ,

t>0+
lim w(x,t) = v_ uniformly on |x]| = 1.
o

t>+0+
PROOF. Having chosen the coefficients ¢ s and C, o we show that
(13) is a solution.
Since

yn S(r) ‘/“‘_
(22) w = NS r.s . Jn+1/2(r S)

where NS is bounded, (Prop. 3, [1]), we have

ad vy, )/
drj Iy I

n,s

1

(23) = 0(s37

)

Then term by term differentiation is valid in (13) for t > 0
r > 0, and

’

2. Y, ¢(7) 2.y, ()

(24) w(r,e,t) = ) <c eSSt 198 T Liose. ) ¢
sel

H]

o
sel » 8 r
o 1

defines a C” function in t > 0, 0 <r, that verifies the boundary
condition (9), since each summand does. Since the summands are
solutions of the heat equation in, say, |x| < 2, t > 0, and the
equation is hypoelliptic, the continuous function w belongs also
to Cm(x,t) in that region.

For r = 1 we have, with absolute convergence,

y o5 yo’s(1) + Ccos 0. %  1.s yl’s(l) =v_,

o 1

therefore, uniformly on |x| = 1, 1lim w(x,t) = v
t->0+

Also by construction
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I‘(W(I‘,e,t) - f(X)) =

So(r,t) + Sl(r,t) Cos 8

1 m
2m J r? dr J sen 6 do |w - £]% =

J lw(r,e,t)-£(x)|? dx
0 0

[x]<1

1 2 4 (! 2
4 |S (r,t)|“dr + =z |8, (r,t) ] dt
o ° 0

From [ 1], proof of theorem 1, jj), it follows that

2
i,sI "yi,s" [e

1
J 1S, (r,t) % dr <K. J |c
0 1

sel .
i

which tends to 0 with t — 0+ by Lebesgue's dominated convergence

theorem.
QED.

4. UNIQUENESS. Assume w(x,t) is a function, C° (t > 0, x| < 1)
that verifies (9) and (10) in the sense of Theorem 1. We have,

THEOREM 2. If G(t) = J w? (x,7)dx + oJ w?(x,1)dz  then

Ix|<1 [x|=1

0 <G(r) < ufu§ Y40 vi for 1> 0.

PROOF.
1 d _ W 3W
(25) _Z-HG(T)_ J 37 wdx + ¢ j 3T w dE
|x|<1 [x]=1
But
(26) J %% w dx = J A w.w dx = by Green's formula =
x| <1 |x|<1

40



aT

J Wy dr - J |grad w|? dx
[x|=1 |x]<1

Substituting (26) in (25) we obtain

1 d- 2 oW 3
73 G(1) = - J lgrad w|“ dx + J w.lsz *to §¥) dr =
|x|<1 |xl=l
= (cfr.(9)) = - J |grad w|2 dx - j v.w? dr < 0.

|x|<1 Ix|=1

. 2 2
Therefore G(t) < lim G(1) = J [£]“dx + 4 7 o v

£ 04 ) QED.

.|xl<1

Theorem 1 shows not only the uniqueness of the solution but als
the well-posedness of the problen.

0
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APPENDIX I

We used in the preceding discussion the following complement to
paper [1]. To prove it we assume familiarity with that paper and
use its nomenclature. We want to show that the expansion of

f e r? obtained through the calculus of residues - which was cal-
led Orr's expansion - converges to 0 at x=1 tf p > q. Orr's coef-
ficients are exactly those chosen in (20)-(21) and denoted there

by {Cl,s Hyl’suz}. If G(x,y,x) denotes Green's kernel and {Cn}

a set of adequate contours of integration, our desired result is
equivalent to:

PROPOSITION. If p > q then J Gk(f)(1) dx =
C.

n

1
- J da j G(T,y,2) £(y) dy = o(1)
C 0

n

PROOF. We shall only sketch a proof. References of formulae are
always to paper [1]. Then (cf. (15) and (55)):
e v-1) o] 0(1N)

G(1,y,5%) = -e(N¥(y) ; &(1) = Q2 ; w(y) = 5
S

and for f e L1(0,1) we have

1
[ somm a =] a[eaym tor e -
c C 0

n n

1
i j Q) dx j ¥y) £(y) dy
C 0

n

where Cn is a contour adequately chosen. Let Y be absolutely con-

: 1
tinuous, null in a neighborhood of x=1, such that J [£-¥| dx < e.
0

1 1
Call AQA) = jo ¥(y) ¢(y) dy and B(\) - jo ¥(y) (£-y) dy.
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Then B(A) = 0(1)/s?? and

*) jc Q(A) B(x) dr = o(1).

n

Now we consider the integral: f Q(x) A(A) dx =
C

n

= 2 J Q(sz) A(sz) s ds

Dn

where Dn is the semi-contour " vCh ". If ¥ denotes the primitive
of ¥ null at x=0 we obtain by integration by parts:

1 1.
(%) AGY = | W) v gy - - J W0 v o

Next we estimate

- y J (u s) 1 ys
7 = U S— _ du = ' Yu J_(u) du
(r) JO u Y w(sz) sv+3/2w(52) JO v

(cf. (33)). We have:

t t
1/2-v-1,_v+1 _
JO Vz J,(z) dz = JO z (z Joep) ' dz =

t

- t1/2 Ty (8) + (v+1/2) JO z"1/2 T, (2) dz =
t

- 0(1)+0(1)J0 2_1/2Jv+1(z) dz =

- 0(1)+0(1)J; ;312 J,ep(2) dz = 0(1)

and then: @(y) 0(1) / [sv+3/2.w(sz)].
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1 _ 0(1)

From (33) and (55), it follows that =
s Sv.w(SZ) S2p—1/2'e|Im s |

Thus ¥(y) = 0

S2p+l

From this estimation and (*%*), it follows that

A(X) o() / s2Ptl , and in consequence J Q) A(N) dx =
C

n

2p+1

2q
- J 01 s * ¢ 4s = 0(1/s). QED
D S *

n
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APPENDIX II

Here we show that the pairs of values o,v such that the etgenfre-
quencies of boundary problems (17) and (19) that are not simple
form a set of first category in the (o0,v)-plane. Therefore the
assumption that these eigenfrequencies are simple is reasonable.

We treat both, problems (17) and (19) simultaneously. Suppose
g,v > 0,

a) s = 0 is never an eigenfrequency,
y = rn+1, n =0 or 1, is the solution verifying the differen-
tial equation and y(0) = 0 in (17) and (19) respectively.
Therefore y (1) P(0) + y'(1) = (v-1) + (n+1) = v+n never

vanishes for this solution.
b) If s#o,/?}1n+1/2(r.s),n=0 or 1,is,except for a constant factor,

the solution of the differential equation verifying y(0) = 0

in (17) and (19) respectively. So the equation of the eigen-
frequencies s#0 is

Tne172(8) P(s?) + S—r (/r Jne1/2(r08)) 0 , that is

r=1

) (v -os2-1/2)J ) +s g

n+l/2(S n+1/2(s) =0

If we equal to 0 its derivative with respect to s we obtain

. 2
(-(20+1)s + LE;%LQL—) Jn+1/2(s) + (v - o s2 . 1/2) J¢

n+1/2(s) = 0.
Therefore s is a multiple zero of () only if

2

v - o s° - 1/2 s
0 ne1/2)2 ) = 02s%4[30-2v0+1] s? +
mr172)° | s (20+1) v-052-1/2

s + (v+n) (v-n-1)

These values of s, s = s(o,v), satisfy the following formula:

45



26%2.52 = (2v-3)o-1 i\ﬁ (2v-3)o - 112 - 402(v+n)(v-n-1)‘ :

Such an s is actually a multiple eigenfrequency if it verifies

(f). That is, if 52 is a zero of the entire function of 52,

Jnt1/208) s 7 11,(8)

Eee2Yy o (u_ac2.
F(s®™) = (v-0s°-1/2) sn+1/2 Sn+1/2

This yields: {o,v: 0 > 0, v > 0, (f) has a multiple zero} =’

= {¢g,v: ¢ >0, v>0,

F(L (2v-3)0-1 + \/l (2v-3)0-112-40% (v+n) (v-n-1)] /262) = 0

or F([ (2v-3)o-1 -\ 1/26%) = 0}.

- ' b 3 3 -
Since s.Jn+l/2(s)/Jn+1/2(s) is a meromorphic function but not al
gebraic, {(o,v): o >0, v >0, (f) has a multiple zero} is no-

where dense. QED.
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