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RESUME

Nous &tudions ici un cas particulier du systéme:

,

y'"(x) + (P-q(x))y(x) =0,

o, y 3y =0,
o J

it ~8

* 1 8y -0,
=0 j

aj’Bj nombres réels, « #0 ,n> 2.

Plus exactement, nous considérons le cas q = 0, m = 2,
|50| + Iﬁll # 0, dont leurs solutions sont donn&es par des

exponentielles, sauf pour v = 0.

Nous trouvons des développements qui ressemblent ceux de la
théorie de Fourier non harmonique, et d'aprés ceci le nom

du travail

Nous nous bornerons ici & étudier ce cas particulier,
parce-que cellii-ci contient les applications les plus con-
nues, et d'ailleurs, présente les moindres difficultés tech-

niques.

Dans un autre travail nous é&tudierons le cas général (*),

au moins, avec une q suffisamment régulier.



ON CERTAIN NON HARMONIC FOURIER EXPANSIONS AS EIGENFUNCTION
EXPANSIONS OF NON REGULAR STURM-LIOUVILLE SYSTEMS

by

A.Benedek, E.GUichal and R.Panzone

l. INTRODUCTION. -

1. J.Prescott considers in his book, [17], the following me
chanical system: a rod moving axially with constant velocity
and bearing at one of its ends a finite mass. If the other
end is suddenly stopped severe dynamic stresses are genera-
ted in the rod and oscilations in the axial direction are
produced. Mathematically, the problem is reduced to the stu
dy of the one-dimension wave equation. Using the classical
method of separation of variables the following second-order
ordinary differential equation comes under consideration:

: X"(x) + A2 X(x) =0, 0<x<b,
1)
X(0) =0 , X'(b) =A% X(b)

Timoshenko and Young in their book study another similar me
chanical system. A bar fixed at one end with a load in the
other one. If a force is applied at the lower end and sudden
ly released then vibrations occur in the bar as in the prece
ding mechanical device. Mathematically, the problem of the
displacements of the bar is solved as before changing only
the initial conditions. Separation of variables. leads again
to a non regular Sturm-Liouville system like (1).
P.A.A.Laura called our attention to the eigenfunction expan
sions associated to this system. The eigenfunctions form a



complete set in L2(0,b) but not orthogonal with respect to
Lebesgue measure as in the case when the second boundary
condition is replaced by an ordinary one. In [12], [13] ,he
and his coworker- study a cable-like system with an energy
absorbing device placed at the upper end in order to de-
crease the severity of the dynamic stresses caused by the
sudden loading. The :econd order differential system is now:

X"+ A2 X=0, 0<x<b,
(2)
X(0) = q.X'(0) , X'(b) = A% X(b), q a constant.

Analogous differential systems occur in certain problems of
flow of heat or diffusion. In relation with this, cf. the
papers by Bauer, [2], and Langer, [11].

2. In what follows we shall study a generalization of sys-
tem (2). Observing that the second boundary condition is a
linear relation between X' and X", one is immediately led
to consider the following system:

ytm+Aty=0,0<x<1,
(3) By y(0) + B, y'(0) =0,
agy (1) + ey (1) + ... +ay™ ) =0,

Z|5j| #0,a #0,n>2, « and Bj real numbers.

1
The solutions of this system are,in general, linear combi-
‘nations of exponentials. Then, the expansions associated
could be considered as belonging to the theory of non har-
monic Fourier series. However, they do not fall inside the
usual theory. For example, Paley and Wiener in: their fa-
mous book study non harmonic expansions which are unique
in the sense that only one set of coefficients is associ-

ated to each function. This uniqueness is consequence of



the biorthogonality of the system they consider. This situ
ation does not occur in our case. In relation with the top
ic of non harmonic expansions, cf. (41, (71, [14], [15],
[17].

Approximation theory suggests several problems. We have re-
stricted ourselves to the analogues of Plancherel theorem,
Riesz-Fischer result and Dirichlet-Jordan theorem of the
Fourier analysis.

To prove these results, it is convenient to show firstly
that the set of eigenfunctions is complete in L2(0,1). We
do this following a paper of W.M.F. Orr published at the
beginning of this century. This paper uses ideas that seem
to be due to H.S.Carslaw.

3. The case n=2 has been studied by several authors, cf.
(S, (21, (8], [11].
If a, = Bl =1, @, >0, n=2, Churchill proves as a partic-

ular result of his work the following proposition:

Let f be a continuous function with a derivative bounded
everywhere by a constant. If {yi} 18 the set of eigenfunc—

tione of the system then the expansion

4) £f(x) = chCf,yi)/B(yi,yi))yi(x) ;

holde uniformly in [0,1]. Here,
1 1
B(u,v) = J uv dx + o, u(v(1) = J uv do ,

(5) 0 0

de = dx + a_,8_ .
271

This result implies that {yi//B(yi,yi)} is an orthonormal



basis in Lz(do).

Since @, > 0, the bilinear form (5) defines an inner product
and the system is called normal. In the four papers just
mentioned the idea of orthogonality of the eigenfunctions
plays an important role.

Our aim is to consider simultaneously normal and non normal
systems. To do this we free ourselves of the idea of ortho-
gonality of the eigenfunctions. In this sense we shall ex-
hibit a bilinear form B such that B(yi,yj) = 0 if i#j,

which is not, in general, an inner product.

4. The case n=3 appears also in the literature, (cf. [6]),
as a particular case of a more general setting. It is pro-
ved under the situation that Diick calls "eigentlich defini-

te'" that certain eigenfunction expansions hold.



it. COMPLETENESS.

1. Let us assume that Fi(s), i=1,2,3,4, is a polynomial
# 0 such that:

(M deg F, = deg F, 5 deg F, = deg F,

For a fixed s, let us consider a function:

(2) Ae* +Be®* | w<a<x<b<ow,

satisfying

A e®2 F,(s) + B e 52 F,(s)

|
o

(3) sb -sb
A e F3(s) + B e F4(S)

|
o
-

(4) A(s) = Fz(s) F3(s) exp s(b-a) -

- Fl(s) F4(s) exp s(a-b)

1
@]

We assume also that:
(5) A(s) =0, s#0 = A'(s) # 0

That is, every non null zero of A is of first order. The
following result holds:

THEOREM 1. i) Let ¢ (x) be of finite variation on [a,bl, and
x € (a,b). Assume that A(s) = sP.h(s), h(0) # 0. Then,
there exists a series of functions (2) verifying (3) and
(4) such that:

(6) ¢ (x+0) + ¢(x-0) = P(x) + J(A e + B_e™"%) ,
where P(X) Zs a polynomial of degree less than p.

ii) If ¢ € C([a,bl) and is null on netghborhoods of a and
b, the convergence <s uniform on (a,b).



Part i) of this theorem is due to Orr, [14]. His method

of proof proves also part ii). For the sake of completeness
we shall derive it. In the middle of the proof the follow-
ing proposition is used, (cf.[21], II):

b b
Let be J lg(t)]|dt < o J |£(t)|]dt < e~ , f =g on a

a a
neighborhood of x € (a,b).

Then, there exists the limit:

b .
lim * j £(y) Simk(x-y) 4, - |
k>+o T a X-y

if and only if (Sa bg)(x) = L, where (Sa bg)(x) is the sum

of the Fourier series of g relative to (a,b),(i.e., the ex-
pansion of g with respect to the system {exp i(27n(x-a)/
(b-a))}). Besides, if f € Cl([a,b]) and is zero on a neigh-
borhood of a and b and k + +w, then:

b .
(7) -—j fy) Sink(xoy) gy, £y
a X-y

holds uniformly on (a,b).

Proof of ii). We can assume without loss of generality that

#(x) is a real function.
The function A(z) is entire and therefore the set of its ze-
roes is at most denumerable., Let be F = F1F4/F2F3 and

P = lim F'l(z).An application of Rouché&'s theorem shows that

->
e F,.F

functions: exp(-2z(b-a)) - and exp(-2z(b-a))-p have

1°Fy
the same number of zeroes in anular regiones great enough.
Moreover, it proves that the zeroes of A are of the form:



(8) Sn =0 + nri/(b-a) + o(1)

where 0 is a fixed determination of - —&P_

2(b-a)
Each term of the series in (6) is a multiple of

(9) es(x_a)Pz(s) - e_S(x_a)Fl(s)
and of
(10) S (x-D) F4(s) - g8 (x-b) F3(s).

This suggests the consideration of the following contour
integral:

b
(1 J dz J [{ez(u_a)Fz(z) - e_z(u_a)Fl(z)
C a

.{ez(x'b)F4(z) - e_Z(x_b)F3(Z)} a1 (2)] ¢ (wau,

C is a circumference with center at the origin of radius h
such that A # 0 on C and oriented in the usual positive
sense. We call C_, = C n {Re z>0}, C' = C, N {|arg z| <
<w/2 -8}, C"=(C,-C')Nn{Imz>0}, C" =C,-(C'ucC").

The bracket in (11) can be written as

(42) I = ez(u-—x) -1-F e22(a-b+x—u)+G e
1-F e-Zz(b—a)

22(a-u)+H ez(2x-2b)

where F is defined as above, G = Fl/F2 , H= F4/F3.

¢ is zero outside of (a+e,b-¢) and therefore the inner in-
tegral in (11) must be restricted to this interval. For
u e (a+e,b-¢), we have:



(13) Iez(23-2b+x—u)| v z(2a—u-x)| v Iez (u+x—2b| v

|e

v |e-22(b—a)| < o €lRe z |

For a certain constant M we obtain:

b z(u-x) %_6 -hecos
(14) dz | [I+e lodu| <M e ¥ hdy ,
™
c' a _§-+6

since F,G and H are asymptotically constants. This implies
that the left member of (14) tends to zero if h — o, If
h tends to infinity along a certain set of numbers ade-
quately chosen (for example hn = [n+(1+sgn p)/41n/(b-a)),

it is possible to say something analogous for the integrals
over C'" and C"'. In fact, if h is so chosen and z € cr,
for n great enough we get: |1-F(z).exp(-2z(b-a))| =10 > 0.

Since ¢ is of bounded variation, it is the difference of
two positive decreasing continuous functions. Let ¢ be one
of them. Then

b
J dz j (1 + e )y (w)du
C"

a

has an absolute value bounded by the sum of the absolute
values of the expressions:

g
J dz [y(a) J Re(I+ez(u_x))du] ;
c" a

(15)
J dz [y (a) JEIm(I+eZ(u—X))du] .
c" a

In fact, this is a consequence of the second mean value
theoren.
From (12), it follows easily that:



£
(16) J (1+e2 % )yau = 0(1/2) ,

with () independent of x € (a,b).

(16) implies that the brackets in (15) are (J(1/h) and that

the integrals are (J(8). The same estimations occur when one
considers the integral over C"'.

Therefore,the integral (11) restricted to C, is equiconver-
gent with:

b
17y - J ¢ (u)du J e2(u-%) g,
a

C,

uniformly on a < x < b, when hn — +oo (hn = radius of
C=C(n)).
I£f C_ = Cn {Re z <0}, from the change of variable w = -z

we get:

b b
(18) J dz J I(z,u)¢ (u)du = J dw J K(w,u)o (u)du ,
C_ a C+ a

where K(z,u) is obtained from I(z,u) replacing Fl(z),Fz(z),
F3(z),F4(z) by Fz(-z),Fl(-z),F4(-z),F3(-z) respectively. In

consequence, the second member of (18) is obtained from (11)
with another family of polynomials.

Therefore, it equiconverges (uniformly on (a,b)) with (17).
From this, we finally arrive to the conclusion:

b
J dz J I(z,u)¢ (u)du is uniformly equiconvergent with
C a

b (u-x) b sin(u-x)h
-2 J ¢ (u)du J eZ2'U™*)gqz; = -4i J 2 ¢(u)du ,
a C

a u-xX
+

which converges uniformly to -4wi¢ (x) for hn —> 400
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On the other hand, an application of the theorem of resi-
dues shows that (11) is equal to a sum of the form

(19) I a (2% ™E (5) - B, (s) e 8D))
0<] s] <h S

plus the residue at the origin. Let us call
f(x,z) = [ez(x—b)F4(z) - F3(z)e_z(x_b)].

b
J [ez(“'a)Fz(z) - Fl(z)e‘(“‘a)z]¢(u)du.
a

The residue at z=0 of
£/8 = £(x,2)/2°h(2) = {Aj(x) + A, (X)z + ... +
+ Aw_l(x) 2L S Y E A

is Aw—l’ where

w-1 w=-1
(w-1)! dz¥-1 h(z) z=0 k=0
is a polynomial of degree less than w. QED

The method of proof used by Orr like that used by Langer
[11], are inspired in the techniques of the calculus of
residues applied to certain integrales involving a Green
function of a differential systen.
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I11. EIGENFUNCTIONS AND EIGENVALUES

1. Let us call Fl(z) the real polynomial BO+Blz # 0 and E,
n .

the polynomial [ a, zJ

j=o0

By definition: Fz(z) = Fl(-z) and F4(z) = F3(-z).

, also real with n > 2 and @ # 0.

-8X

The solutions Ae®* + Be of the differential system:

u" - szu =0, 0<x<1,
(1

Fl(d/dx)u(O) =0 ; F3(d/dx)u(1) =0,
have coefficients that satisfy:
(2) AF (s) + BF,(s) = 0 ; AF3(s)eS + BF[*(s)e_S = 0.

The values of s for which there exist non trivial solutions
of (1) are the roots of the equation:
= .8 - =
(3) A(s) = e F2F3 e FlF4 0.
We shall make two hypotheses on the differential system,
which will be assumed from now on, except in few occasions
where we explicitly mention that some of them does not hold.

The second one is justifiable only in a first approach to
the problem.

15t hypotesis: F3(z) is not divisible by an even real poly-
nomial of positive degree.
If F3 had a divisor £(z2) and F,(2) = Fg(z)f(z?) then the

boundary condition at x=1 would be satisfied by any solution

u, = Aet® + Be™™* yith f(tz) = 0 or else if f(tz) # 0, then
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F3(d/dx)ut(1) = 0 is equivalent to Fg(d/dx)ut(1) = 0. Then

the study of system (1) is practically reduced to that ob-
tained replacing F3 by Fg. So the first hypothesis minimi-
zes the set of "eigenfunctions'". If such an f exists, it

divides the g.c.d,(F3,F4). This g.c.d. is real and either

ever or odd, since if s is a common zero of F3 and F4, -s

is also one. So the first hypothesis <s equivalent to:
g.c.d(FB,F4) = 1 or z.

an hypothesis: every non null zero of A is of first order
and null is a zero of A of at most third order.

This hypothesis restricts oneself to "eigenvalues" of "mul
tiplicity one'". One word of explanation deserves the case
A(0) = 0, since this always happens. Call 8(z) = A(z)/z.
The solution u(x) such that u(0) =-261, u'(0) = Zﬁo, is

an entire function of 52([20],Th. 1.5) and F3(d/dx)u(1) =

= §(s). In consequence, if null is a zero of § it is at
least of order two and therefore at least of third order
for A. So the second hypothesis is equivalent to: the even
entire function §(s) has simple nonnull zeroes and null

is a zero of at most second order.

DEFINITION. An eigenvalue s a zero of & and an eigenfunc
tion i8 a non trivial solution satisfying the boundary con
ditions.

To avoid uncertainty in the determination of the general
solution we introduce a new definition: us(x) = u(x,s) =

_ SX - . _ . _

= F,(s)e™™ - F (s)e SX if s#0,uq = 2(-31 + gox) if s=0.

It follows inmediately that u(x,0) = lim u(x,s)/s for
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s — 0. Since Fl(s) = Fz(s) = 0 cannot be verified for s#0,

then u # 0, and therefore u is, for every s, a non trivial
solution of the differential equation and the first bound-
ary condition.

2. THEOREM 1. If s <s an eigenvalue then -s and S also are.
Outgide of a circle great enough the eigenvalues of (1)
are purely imaginary, of the form:

i t where t = *(2m+1)w/2 + 0(1) or t, = mm + 0(1)

’

and are simple roots of A even if the second hypothesis does
not nold.

PROOF. The first part of the theorem follows from the power
series expansion of A around the origin, which is real,
and odd. The roots of this function must satisfy:

(4) e2% = P(s)/P(-s)

where P is a polynomial of degree n or n+1. In consequence,
the distance of one of them to the nearest tends to =«

for s — e, If s = it, t real then elt = tP(it)/|P(it)]|.
It follows that

(5) tg t = ImP(it)/Re P(it) = N(t)/D(t).

This equation determines the imaginary roots of A, If the
degree of N is greater (lower) than that of D, (5) has in-
finite positive solutions which approach indefinitely to
odd multiples of 7/2 (multiples of 7)., This, with the pre-
vious observation about the distance of two roots imply

the thesis. If s were a root of multiplicity greater than
one it would satisfy (4) and an analogous relation obtained
after replacing P(s) and P(-s) by polynomials Q and R.
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Therefore, s would be a root of the polynomial:

P(s)R(s)-P(-s)Q(s), which has only a finite number of roots
QED.

3. A will denote the set of eigenvalues # 0, i.e., it coin

cides with the spectrum when 0 is not a root of §. A(s)

will denote an auxiliary function with domain A :

A(s) = e® Fy(s)/F,(s) = e ° F (s)/F (s).
Since F3 and F, have no common zero in A, A is well defined.

Next we prove a basic technical result. A more complete
statement is given as Th.2 in Ch.VI.

THEOREM 2. If s and t belong to A and s? # t2, we have:

1
fo(Fz(s)esx-Fl(s)e'sx)(Fz(t)etx-Fl(t)e‘tx)dx =

= A(s) A(t).st.V(s?,t?) ,

V(sz,tz) =7 c s2P 24 , 0 <p,q<I[n/2] -1,

P4q
! . . o~
Cpq = "4l fap @y K> G, kej-1 = peq} +
]
+4 7 {o,, LPPIvE k<j , k+j-1 = p+q}.

The prime means that all the summande are not necesarily
present.

Precisely, p,q € [j,k) in the firet sum and p,q € [k,j)
in the second one.

PROOF. If R(s,t) = (d/dx)us(1).ut(1), we have:

1 1
2_4+2
(6) (5267 [ uu dx = uru st [0 e Rs,6)-R(EL ).

Using that A(s) = A(t) = 0, we get:
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(7) R(s,t) = s(FZ(s)eS + Fl(s)e_s)(Fz(t)et - Fl(t)e’t)=

A(SIA()s.L(F,(s) + Fy(5)) (F, (t)-F, ()]

Calling S(s,t) to s times the bracket in (7) we obtain:
(8) R(s,t) - R(t,s) = A(s)A(t){S(s,t)-S(t,s)} =

A(s)A(t){P(s)Q(t)-P(t)Q(s)} ,

where P(s) = s{F3(-s) + F3(s)}, Q(s) = F3(-s) - F3(s), are

odd polynomials of degree less than or equal to n+1 and n,
respectively. On the other hand we have:

) P(s)Q(t)-P(t)Q(s)=-4Z'a2kazj+1(52k+1t2j+1‘52j+1t2k+1)’

where the prime means that the sum is over the set of j and
k such that 2k < n, 2j+1 < n, j#k. The parenthesis in (9)
is equal to

(10) st(s?k ¢23 . 23 2k
If k > j, the parenthesis in (10) equals to:
(11)  (s2-t2)(s2k~2¢25 4+ ,, . s23t2k-2y. ok < n;2j < n-2

In fact, the parenthesis of (10) is divisible by sz-t2 and
equals (11) for 2k < n, 2j < n-1. If n is even then

2j <n-1, and if it is odd, it follows from 2j < 2k < n.
The right member in (9) restricted to k > j equals to:

(12) st(s®-t?). § s2P¢24 ) €

«Q o
. ki %2k ¥24+1 °
Psq k+j-I=p+q ~J J

where 2p+2,2q+2 < n and ekj takes the value 0 or -4.

If j > k, the opposite of the parenthesis in (9) equals to:
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(13) st(sz-tz)(szj“2t2k+...+52kt23'2), 2j <n-1,2k < n-3

From (13) we obtain an expression like (12) but where 2p+2
and 2q+2 are less than n and where the e's take the value
0 or 4. QED.
REMARK. For future references we observe that:

2

Vis®,t%) = (s2-tD) 7 (R, (5)+F, (D) (B, (£)-F, (£))/t -

(F, (£)+F; (£)) (F, (s)-F, (s))/s] .

This is an immediate consequence of (8) and the definitions
of P and Q.

4., Let us call vs(x) = v(x;s) = u(x;s)/llu(.;s)ll2 the norma-

lization in L2(0,1) of the function u defined in §1.

THEOREM 3. If s and t are eigenvalues such that s?#t? then
0(1)/st, for s,t € A

1
(v _,v. ) = J v(x;s)v(x;t) dx =
s” t 0 0(1)/s , for t=0,s € A

PROOF. Assume that s and t € A and s is not a root of F4.
If s is an imaginary number, we have: u, = 2i Im(FZ(s)esx)

and

1 1
(14) Ilusll2 = (u_,u)) = 4J01m (Fz(s)esx)dx = -Joui dx .

The last integral is equal to:

(15) 0(1)e®® s™ Fl(s) + 28,57 + 28 (8,-B,)

In fact, from A(s) = 0, it follows that
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1

2. _ 282 52,02 2 22y,
(16) Jousdx = e Fz(s)(l F3/P4)/25+(F1 Fz)/Zs ZFle

which is equal to (15). In consequence, from theorem (2)
and (15),

1
Jovsvt dx = A($)A(E) st V(s®,t2)/hu_l.lu 1=

0 (st)t ™™ v(s?,t2) = g(1)/st

Observing that the last integral coincides with (Vs,Vf)

and that €2 # 52, the theorem follows.,
When t=0, from (6) we obtain for any s € A:
52(u u) = (u' u, - u_ ul)(1) =
s* 0 s 0 s 0

= 26%. {5 (86 ,) (Fy(s)+F  (5)e™2®) - p (F,(s)-F, (s)e 2%)}=

2A(s) {s(8y=B1) (F,+F;) - 6 (F,~F,))
Therefore,
(17) (vs,v0)=A(s).{Z(Bo—ﬁl)(F4+F3)-230(F4-F3)/s}/sﬂuoﬂ.ﬂusH.

(17) and (15) imply that (VS,VO) = 0(1)/s.
QED.

Making use of real inner product (.,.)theorem 3 can be writ-
ten as: (v_,v )= (0(1)/|st| whenever s and t are purely ima-

ginary numbers and |s| # |t|
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IV. THE CASE n=2,

1. This is a simple and important case. Precisely,
Fl = 1-qgs, F3 = ps+s2 » 9 =20, p> 0, describes the mecha-

nical applications mentioned in I, (cf. [12], [13], [17]
[19]). Besides, the case n=2 is useful to explore the gene-
ral theory with examples and counterexamples.

We shall assume in all this chapter that

(1) Fy(s) =B +s , Fy(s) =as - s* ,« and § real,

and that the first and second hypothesis do not necessarily
hold.

This chapter is not used in what follows and can be skipped.

2. THEOREM 1. i) If af < 0, A has no zero outside the real
and imaginary axes.

ii) If B=0 then a#1 iff the second hypothesis holds.

iii) There exists a number e > 0 such that |s| < e implies
the existence of & and B such that A(s)=0, whenever s is of
the form v + i8, v > 0, 8§ > 0. There exists s of this form
for which no set of polynomials (1) verifies A(s)=0.

iv) In iii) the non ordered set {a,B} is uniquely determined
and is composed of poeitive numbers.

V) If s > 0, <t Ze possible to find positive, not identical
numbere a,B, such that s <i8 aq root of order greater than

one for A.

Vi) If « < 0, B < 0, there is no root of A outside the ima-
ginary axis, and the second hypothesis holds.
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PROOF. i) It is enough to prove that if s = y+ i§, v,8 > 0,
then A(s)#0.
If this were not so, we would have:

(2) cotgh s = (F1F4+F2F3)/(F1F4-F2F3)=(a+6)s/(sz+a5)

(@+B) {y (Y7 +8%+ap) - i (v2+62-ap)}/|s2+ap|? =

(sinh 2y - i sin 28)/2(sin’® 8+ sinh%y) ,

since 52+aB # 0.

But then:
(3) (sinh 2y)/2y(y%+8%+af) = (sin 26)/28 (y2+6%-a8).

«.0 < 0, implies that the modulus of the left hand side of
(3) is larger than that of the right hand side, contradic-
tion. Then A(s)#0.

iii) From (3) we obtain:

4y ap . LGimh 21)/2y - (sin 28)/26}|s|? .

{(sinh 2v)/2y + (sin 28)/28}

(4) yields:
(s?+aB)/s = (sinh 29 + i sin 28)/{(sinh 2v)/2y+(sin 28)/28}.
From the third and last member of equality (2) we get:

sinh227 + sin228

(5) a+p = — :
2(sinh®y+sin“8) {(sinh 2y)/2y+(sin 28)/26)}

But:
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sinh227 + sin226 ) )
(6) ' 2 5.~ = sinh®y + cos“s
4(sinh®y + sin“§)

Therefore:
(7) @+ = 2(sinh®y + cos28)/{(sinh 2v)/2v + (sin 26)/25}.

D = (a+ﬁ)2 - 4af is the discriminant of the second order
equation with @« and B as roots. Then D > 0 iff

. i i 8
(8) (51nh27 + c0525)2 > [(5123 27)2_(51262 )2](72+62).
If 72 + 82 < ez, (8) holds and therefore there exist @ and
B real satisfying the thesis. If & = m(2k+1)/2, k an inte-
ger, the inequality in (8) is verified in the opposite
sense and therefore D < 0. iii) follows.

iv) The preceding proof also shows that af = £(v,86) > 0,
a+f = g(v,8) > 0. From this follows that a and B are posi-
tive whenever they are real and that together with (1), the

2

polynomials F? = ats, Fg = fs-s” have an equation of eigen-

values for which s is a root. These two sets of polynomials
are the only ones with this property.

v) Let us call M = cosh S, N = sinh s. Then MZ-N2 = 1. From
6(s) = 6"(s) = 0 we obtain:

(9) -(@+B)sN + afM = -s2M ; - (a+B) (sM+N) + afN = -s2N-2sM.
If J =s + MN ,

(10) a+B = 2sM%/3 5 of = (-s3 + MNs2)/J.

Then, D = (s?(s2+M2%))/3% >

o

if s is real and non null. On
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the other hand if s is real or purely imaginary the right
hand sides in (10) are greater or equal to 0. Therefore
whenever (10) has real solutions they are non-negative and
v) follows.

ii) From i) it follows that there is no zero outside the
real and imaginary axes. If s#0 and 86(s) = 8'(s) = 0, the
second equation in (10) is equivalent to 2s = sinh 2s. But
this equation has no real or purely imaginary root diffe-
rent of null. Since A/s2 = e %(s+a) + e®(s-a), the second
~hypothesis does not hold iff s-a@ tgh s = 0 has 0 as a root
of order greater than one, i.e., iff a=1,

vi) From Th.2, Ch,.III, we obtain for 5 = t neither real nor
imaginary:

1 )
(11) Jolu(x;s)|2dx = |F2(s)|2.e2Re S.|s|2.4a/|F4(s)|2 R

since V = 4a, But this is impossible since the rigth hand
member is negative. § (0) # 0 follows immediately and if s
is a positive number, §(0) = 0 would imply:

s? cosh? s - (@+f)s sinh s + af cosh s = 0 ,
which is impossible.

If s=ik, k > 0, were a zero of order greater than one of §,
then from (10) we would have:

a+f = (2k coszk)/(k + sin k.cos k) .

The denominator is positive since kx + 2~} sin 2kx > 0
and a contradiction follows. This proves vi). QED
3. We have restricted ourselves to a set of polynomials
depending on two parameters «,f. In some situations (cf.
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for example [11]) where more parameters are involved, it
is also possible to prove that the second hypothesis holds.

COROLLARY. If a,8 < 0 ,
j x~2 1g|8 (ix)/2ap |dx = -7

PROOF. 6 (iz) is an even entire function of order one with
real zeroes and satisfying 6 (0) = 2«xf. The number of zeroes
in (0,r) is asymptotically equal to r/v. Then, it is possi-
ble to apply Th.XXIII of [15].

QED.
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V. L2-EXPANSIONS.

1. In this chapter we show that each function f of L2(0,1)
admits an expansion in eigenfunctions. We call S the part

of the spectrum contained in the upper half-plane:

S ={s; 8(s) = 0, 0 <Arg s <w}. One of the reasons for
this choice is that {vs(x); s € S} is a linearly independent
set. The function J defined by

(1) J(f;z;x) =

1
= J u(t;z)[ez(x_l)FA(z)—F3(z)e_z(x_1)]f(t)A_l(z)dt
0

has a residue at s € S N A :
(2) [es(x_l)F4(s)-F3(s)e_s(x_l)](A'(s))'l(f,us) -
= A)A () THEu) u(x)

If 0 is a zero of order one for A, there is no residue of J
at z=0. But, if 0 is of order three, then

Res J at z

1
0 = j £() (w/2) ([ ...1/2)(a/23)"! dt -
0

z=0

1
4a/2°)7H0) [ £(8) (B ytB ) (gx- (agrep))at.
)]
From A(0) = A'(0) = 0 we obtain ao/ﬁo = (a0+a1)/61 and there
fore the residue at z=0 is equal to
(3) H0 uo(x) (f,uo)

where HO is a real constant.
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u is defined in III,1, in such a way that it satisfies the

first boundary condition. If s € A, then it also satisfies
the second one. If s=0, uo(x) satisfies the second boundary

condition iff aoﬁl = Bo(a0+a1), and therefore, the u, that

appears in (3) Zs an eigenfunction. (Observe that from the
first hypothesis follows: @ =0 = @, #0).

We have proved the following proposition: for every s € S,
the residue of J at s is equal to

(4) - H(s) (f,us>.us(x)

where H(0) = Hy, H(s) = (A(s)A'(s))™! if s#o.

The function H is defined on all the spectrum and verifies
H() = H(#), i.e. it behaves like the eigenfunctions: ug

= ﬁh. If u € A, we have u_, o= -ug. But A(#) = A(-#), and

therefore, because of the evenness of A' we obtain H(r) =

H(-#). If besides # is purely imaginary: Gﬁ = -u,, H(W)

H(#). In consequence, for f real and s € S N A:

(5) H(-s) u(x;-s) (f;u_§> = H(s) u(x;s) <f,us>.

2. The main objective of this chapter is to prove the follo-
wing analogues of Plancherel's theorem and Dirichlet and
Jordan's theorem.

THEOREM 1. i) Every f € L2(0,1) admits an Lz—expansion in
eigenfunctions:

(6) f = Z (nb)s VS s b_= b(f)s = (fsvs) ’

s
sesS

and where n is an hermitian matrix such that nSS=-H(S)||uSII2
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if s 28 real # 0, n

2
00 = “H(O)Iugh?/2, n .= +H(s)lu 12 if
S s imaginary, ns,—? = +H(s)|lusll2 tf s 28 neither real nor

imaginary, n, = 0 elsewhere.

ii) n._ — 1 for |s| — « .

iii) If £ is of bounded variation and x € (0,1), then

) (nb)s v, = (£(x+0) + £(x-0))/2

seS

Let us call A the matrix defined by ASt = (vs,vt) = Ats

’

s,t € S. Then A is the Gramian of the set of eigenfunctions
v with index in S. b=b(f) will designate the vector (col-
umn) associated to f € L2 with components:

b = (f,vg) = (f,vs)

]

That is, the components of b are the Fourier products. If
in L2, £f =) C Vo then {cs}, s € S, will be called a set

of Fourier coefficients. ¢ will designate the vector with
components c.- When for each s, c, = (nb)s , {cs} will be

called the set of Orr coefficients. In this case, c, ~ bs.

Next we prove a very useful result, whose part i) resembles
Riesz-Fischer theorem.

THEOREM 2. Let f be a complex valued function in L? and

s € S.
i) f

1]

. 2 . 2
) C Vg in L® Zff Z|c8| < oo .

i) £=]cv_ in L% implies A.c = b(f) € 1,.

iii) f € L? impliee b(f) € 1,.
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iv) A: 12 —_ 12.

V) Let be N>M — w. Then
(7) WLy e v 15 = (O e 121 + o(1))

where o(1) = 0(1)/M. If [2 |c_|® < w, then (7) holds with
N=eo, The summation in (7) means M < |s| < N.
PROOF OF THEOREM 2. From III, Th.3, we obtain:

2.2

2 2 2 P
lu Iy ~ -287s% = 287]s]| if B, #0,

(8) 2 2
lu ly ~ 28, if B, =0,

and also that

(9) A, = 0¢1)/|st| , for s#t , s,t € S n A.

i) follows from v), and (7) is a consequence of

l|z cv |%dt = Jlc |2+ 7 cT A
0 s s Cs sdt s t ts ?

| L /9G] < A lessD? < Ale 1D T lsI™00) -

s

- 0(1)ucu§ M1l

where all the summations are between M and N.
ii) follows from
bk - (f’vk) = Z Cs(Vs’Vk) - Z CsAks =

= ¢, + 0(1) c_|/]sk| + 0C1)|c|kx t=c, +0(1)Icq /k.
(* 0 T le,1/]sk] gl e,

iv) is consequence of i) and ii). Let us see iii). Observe
that if s=ikK, K> 0 ,
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(10) u, = 21[{30 sin Kx - BlK cos Kx]
Then,
bs(f) = Ziﬁo(f, sin Kx)/"usu - Ziﬁl (f, cos Kx)(K/HuS").

If 61=0 or not, we obtain

(1) bs(f) = 0(1)(£f,t(Kx)) , t(z)=sin z or cos z.

Moreover, we already know that K is asymptotically like a
multiple of # or an odd multiple of #/2. Precisely, its
difference with such a multiple is d=d(X) and

(12) d = 0(1)/K

In consequence, for r=m or =(2m+1)/2

(13) t(Xx)
(14) b_(£)

t(rmx) + 0(1)/K, X ~ar ,

0(N)(£f,t(rax)) + 0(1)"f"2/K

But {t(rmx)} is, except for a factor, an orthonormal system

on (0,2) which implies that (f,t(rsx)) € 12. Then, b € 12.
QED.

3. PROOF OF THEOREM 1. Let C be a circumference of radius

h not passing through eigenvalues. From II, Th.1, we know

that if f € C1(0,1) and is null in neighborhoods of 0 and
1, it holds uniformly:

(15) (—Zwi)'lj J(f,z,x)dz = - } {f,u)H(s)u (x) —— 2f .
c s s

|S|<h h—re

Here the summation is over all the eigenvalues. Recalling
that H(-a) = H(a) and that a € S N A implies -a is eigen-
value not belonging to S, we obtain:
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(16) ) (f,uS)H(s)uS =2 ) (f,us)H(s)uS

0#1s{<h 0#Isl<h
seS

Then, for a set dense in L , it holds
(17) f(x) = lim (nb) v, bs=(f,vs).

h+°°Isl<h
seS

Using that A(s)=0 when s € S, we obtain

- s
(18) A'(s) ZeSFz(s)F3(5)+es(F2F3)'-e S(FIF,)' ~ 2e F,Fq.

(19)  H(s) eSF3(s)/A'(s)F1(s) ~ (2F;F)7L,

From (8), it follows that

1
2 _ _ 2 -
(20) u_p? - jo w2 dx ~ 2F) (s)F, (s)

Therefore, n_, —> 1 for s — . This proves ii) and to
complete the proof of i) assume that a sequence {fm} veri-

fying (17) converges to f in L2, (14) implies that
ub(f)u2 = 0(1)||f||2 and therefore, b(fm) —> b(f) in 12.
In consequence:

c(® nb(f ) ——— ¢ = nb(£) in 1

Since:

ll z

n

’

(n)_ 2 01§ q(e(n). 2
N(c n ) v I [g | (c'® ) _[7I0T + 0(1)/N]

we finally obtain: HZ(cén)-cs)vSHZ = 0(1)|lc(n)-c||2 . This
s

. . . 2
implies that f = Zcém)vs — chvs in L®., Then, the last
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series defines a.e. a function that must coincide with f,
proving so that every f € L2 admits an expansion with Orr
coefficients. iii) follows from II, Th.1, i).

QED.

REMARK. From Theorem 2 it is clear that domain of A = 12 =

the set of all Fourier coefficients and range of A = the
set of all Fourier products.
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Vi. THE GRAMIAN.

1. This chapter is devoted to the study of the Gramian A of
the system defined by (1) of ch.III.

Recall that n > 1 and so the ordinary Sturm-Liouville case
is excluded.

THEOREM 1. i) A=I+T, where 1 is the unit matrix and T Zs q
matrix of finite Hilbert-Sehmidt norm.

ii) A Zs not a diagonal matriz: except eventually for a fi-

nite number of s, AL #0 for all t with |t| > M(s).

iii) vo f € L2 has a unique expansion in eigenfunctions in

L%(0,1).

PROOF. i) T.. = 0 if i=j, T..=A.. if i#j. From III, Th.3,

ij ij “ij

it follows that J§ [T, |?

i,j M

< m.

ii) To prove ii) it is enough to show that the polynomial
S(s,t)-S(t,s) in Th.2, ch.III, is not identically zero.

If it were so, S(s,t) = S(t,s) which is equivalent to
s(F4(s)+F3(s)) = C(Fs(s)-F4(s)) where C is a constant,Then,
(C+s)F4 = (C-s)Fs. In consequence F3(-C) = 0 and F3(s) =

= (C+s) @(s), so F4(s) = (C-s) @(s). From this and F3(s) =
= F4(-s) it follows that @#(s) = @(-s). Since n > 2, F

3
and F4 have an even common factor of positive degree, con-

tradiction.

iii) Assume that f = } cjvj and write the Gramian as

A = T-(-1)I. Then, f has a unique expansion iff for c € 12,
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Ac=0 is equivalent to c=0, Since T defines a completely
continuous operator, Fredholm theorems imply that unique-
ness is equivalent to A 12 = 12. But the range of A is

{b(f); f e LZ}. On the other hand from the expansion theo-
rem we know that J Aij(nb)j(f) = b. () Vi. If range of A

were 12, we could choose bi(f) = 6ik’ which implies

Ajyy = 8., if |k| is great enough. Taking k such that

nkk#O (Th.1, ch.V) and i#k such that Aik#o, a contradiction
is obtained.

QED.
2. The first part of the preceding theorem admits a more
precise statement. This is next theoren 3, but to prove it
we shall need an extension of Th.2, III. If 0 is an eigen-
value we define: A(0) =g /a0= g8 /(a0+ul), (cf.81, V).

Therefore, A(.) is defined on all the spectrum. u /s — u
and therefore (|s|/s)v — v, for s — 0 in the upper

0

half-plane. This makes plausible a generalization of Th.2,
III, which is the content of next theorem. We define now
the auxiliary funection Q(z), equal to 0 if z=0, =1 else-
where,

THEOREM 2. If t € S, s € S-(0), and -S#T, then
= - =2p+1 _2q+Q(t)
(Veavg) = TAGSA(L)/Tu_llu 1] .] ChqS t

PROOF. If t#0, this is nothing but Th.2, III, because of

cpq=cqp. Assume t=0 € S, Then, formula (17) of III can be

written as:

(vgsVy) = LA(s)/Iu IsILAC0) /Iugl] .
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{-2a,(F,(s)-F;(s))/s - 2e; (F, (s)*F;(s))} .

Since 2a, = (F4+F3)(0), -2, = ((F4—F3)/t)(0), we obtain:

(v ovy) = [.10.1 s? v(s2,0),

In fact, the last formula is a consequence of the remark to

Th.2, III. From it and (vo,vs) = (v 0) the theorem follows.

§’V
QED.

3. Let us denote with kp » 0 <p <I[n/2] - 1, the elements
of 12, which are defined by (3) in the proof of next theo-

rem, k; will designate the transpose of kp, i.e., the row

vector with the same components as the column vector. So,
if Ep is that element of 12 whose components are the com-

plex conjugates to those of k , Y =K .k% will denote
P Pq P q
the infinite matrix, a 1-term dyad, such that (E%.k:) =

i]

If cpq are the real coefficients introduced in Th.2, ch.III,
we define:
w_=)c k s 0<p,qg <I[n/2] -1,
A finite range operator will be associated with these vec-
tors:
= ) ( 1 )
g wp,h E;

where (, ) denotes the usual "real" inner product in 1,
The matrix form of this operator is



e Y .

P9 Pq
THEOREM 3. i) A=D+L where L <8 a real linear combination

- = k& = Y
of I-term dyade L =) ¢ q E; q ) Coq

Psq P Pq

0 <p,q <I[n/2] - 1 and the c's are the same as given in
Th.2, III.

D 28 a matrix such that Dii =1 - Lii real whenever i is

r ; ‘nar = v _,v ) - - 1f s % -
eal or imaginary, Ds’_S V_=» - LS’_S if 18 net

ther real nor imaginary, Dij = 0 elsewhere.

ii) The set {kp} C 12 i& linearly independent.
iii) Dn = I.
iv) Vf e L2, yp, nb 1 W

If we assume for example that there are only two eigemvalues

$,-S in S outside the real and imaginary axes, the Gramian
A looke liker

S -S i J . . . .
s L AVay Ve ) L L
ss 8’ '8 S,1 8,7
-S -<Vs’vs ) L-v,-? -5, 1 L-E,J Lv,u
i L L. _ 1 L
i,s i1,-8 i,]
Jj L L, _ L 1
Js8 Js-8 J,1
. 1
' L 1
u,v
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and the corresponding matriz D is equal to:

s -s i j
S 0 v _,v _)-L  _ 0 0
-s | v _,v_) -L _ < 0 0 0
b 0 0 1-Lii 0
"L.. .
j 0 0 0 1 i
' * .

PROOF OF THEOREM 3, It is convenient to '"normalize'" the
function A(.). We define

(1) g(s) = A(S)/llusﬂ , S €S,

From Th.2, we obtain:

(2) Ay = (Vv = g@e(0)] ¢ PP (20M0(E) | gy

for s € $5-(0), t € S, and where £ is the function defined
in §2,
Let us call:

(3 k() = (k) () = g(s)s®P* (D) s 5 g b ns2ye1.
Then,

(4) A, = Z-cpq(qu)s1t = Lst if s#0, s#-t, and cpq=cqp,rea1.
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This implies that A=D+L, D as described, since (vs,v_g) =
= -(vs,vS > . From the definition of A(.) (cf.III, 83 and

VI, §2), we see that g(s) = g(s). Therefore, L,  is real
Vs on the coordinate axes and i) follows.

Because of (20), V, we have
[8()1% = [AG) 12/1u 1% ~ |F,(s) |2/ | 2F, ()F,(5) | [, () |2 .

Therefore, |g| is asymptotically like a constant times

|s| ™"

Since 2p+1 < n-1, kp(s) = 0(1) s™! and belongs to 1,.
From the hypothesis on the polynomials Fi’ we see that

Fz(s) = 0, s € S-(0), implies F4(s) = 0 and F3(s) # 0,

Fl(s) # 0. Therefore, A(s) # 0. That A(0) # 0 if 0 is an

eigenvalue, follows directly from the definition given in
82. In consequence, g(s)#0 ¥s € S.

If for a set of a's: } a k_ =0, we would have
g(s)(} ar52r+1) = 0 for infinitely many s. Since g is

different from 0, the polynomial inside the parenthesis
would have an infinite number of roots, contradiction.

This proves ii). To finish the proof only remains to deter-
mine the matrix Dn. Observe that A12 = {b; Ac=b, ¢ € 1,} =

=1, 0 (T*-(-1)1)'1(0).

Then, third Fredholm theorem implies that the range of A
is of finite codimension. If c=c(f) denotes the Orr coef-

ficients of f € L? we have from i)

(5)  ®+Jec, Y )cE)=b
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Since c=nb, from (5) we get

(6) (I-Dn)b =} (wp,nb ) E; =L nb = Lc

The last formula shows that (I-Dn)b runs in a space of fi-
nite dimension while b varies in one of finite codimension.
Therefore, if h runs in 12, (I-Dn)h varies in a subspace

of 12 of finite dimension, since Dn is a diagonal matrix

and (Dn)ss =D__n__=00) for |s| great enough.

In consequence, the matrix I-Dn must have all its elements
equal to zero with the exception of a finite number of
them:

7 D...n,. =1 f£ il > K.
(7) 5553 or |[j| > K

From (6) and (7) we get:

[} (wp,nb y s2ptly g(s) = 0 for |s| > K.

Therefore, the expression inside the brackets must be zero
for infinite values of s and then, ﬁ; L nb, Yp VYb(f) pro

ving iv). Using (6) again we get:

(I-Dn)b = 0 Vb(f) and iii) follows.
QED.

REMARK 1. iv) says that Orr coefficients verify Lc=0. Con-

versely, all the elements in the null space of L are Orr

coefficients. In fact, assume that Lc=0. Then, for the

function f such that f = § c;vy we have, Ac = Dc = b. Sin-
1

J
ce D =n", it follows that c¢ p~ b = nb. Then,
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COROLLARY. ¢ is an Orr coefficient iff Lc=0,

REMARK 2. The preceding Th.3, together with Th. 2 of next
chapter, show that the study of the differential systems
under consideration can be reduced to the study of certain
finite-range operators on 12. For the ordinary Sturm-
Liouville theory: A=I and the finite-range operator is 0,
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VII. DEGREES OF FREEDOM OF THE SYSTEM.

1. We already know (Th.1,VI) that the eigenfunction expan-
sions we are studying are not unique. There is a certain

freedom of choice of coefficients in an Lz—expansioﬁ. In
this chapter we try to clarify this notion.

In §3, VI, we introduced the matrix L = ) cpq qu, that we
can write

(1) L=Jk.wt , 0<p<in/2]-1
Let us caqll ﬁp(c) = (wp,c > . Then for c e 12.
2 Lc = k
(2) c =] ﬁp(C) 0
From Th.3, VI, we get:
() c=d'b -] 0K B (o),
P P p

where b is as always the Fourier product vector b(f) asso-

ciated to the Lz-function f with Fourier coefficient vector
¢. In consequence,

_ -1 -1
(4) B (c) = B (D "b) - g Br(D E;) ﬁp(C)
If X is the [n/2] x [n/2] -matrix such that

_ -1 _ -1
(5) Kij = Bi(D E&) = (wi,D E5 >,

from (4) we obtain:

(6) (I+K) B(c) = B(D~'b) ,
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where B(c) is the [n/2] -dimensional column vector {ﬂp(c)}.

THEOREM 1. B(D”'b) = 0 and Vc € 1,5 (I+K)B(c) = 0.
PROOF. (3) can be written:

(7 Dc + g ﬁp(c) Ep = b

If ¢ = nb, from iv), Th.3, ch.VI, we see that c is ortho-
gonal to the w's. That is, Bp(nb) = Bp(D'lb) = 0. The se-

cond part of the theorem follows from (6).

QED.
2. DEFINITION. The set of eigenfunctions {VS} (or the dif-
ferential system) is said to have g degrees of freedom if
the set of Cc's such that Z cjvj = 0 zn L2 i8 a subspace ©
of 12 of dimension g. Clearly, the set of c's such that
) c;vy = f for a fizxed f € L2 is the traslation of a sub-

J
space of 12 with dimension g.

THEOREM 2. i) 0 <s the null space of the operator defined.
by matrix A, Z.e., the eigenspace of the completely conti-

nuous operator T (defined in VI) corresponding to the eigen
value -1,

ii) g = dimension of 0 = dimension of the subspace of solu=
tions B of the equation: (I+K)B = 0.

iii) 1 < g <([n/2]. In particular, if n=2 or n=3, g=1,

iv) det(I+K)

0.

PROOF. Since f=0 is equivalent to b(f) = 0, we see that
c eog iff Ac

0. The mapping ¢ @ ¢ —— f(c) is an injec-
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tion. In fact, B(c) = 0 implies Lc=0. From Ac = Dc+Lc =
= Dc and Ac = 0, it follows c=0. Then, dim o <

< dim(I+K)-1(0) is a consequence of the preceding theoren.
Assume that f is in the null space of (I+K). Defining
-1
= ( ) = - = .
c ==} ﬁpD kp we see that W,sC (Kﬁ)q 6q Therefore,

c = —D_ch and ¢ € o. This proves ii). iii) follows imme-
diately from g#0 (iii), Th.1, VI) and that 8 is an [n/2]-
dimensional vector. g > 1 implies iv).

QED.
3. We shall write véh) instead of (d/dx)h VS(X) and prove
that
(8) kp(s) = Toayy, vo (1)
Analogously,
(9) p () = I by v ()

Associated to the sets of a's and b's there is a bilinear
form B:

(0 BE) = (£,0) - T (L by, 3,1 ),

defined at least on C”-functions f(x),g(x).

THEOREM 3. There exist a set {aph} and a set {bph},
0 <h <n, of real numbers such that (8),(9) and

1y B(Vs’v't) =0 , VsvVtes s#-T, hoid.

PROOF. We know that (cf.(3), VI):
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(12) k (s) = A(s f 2p+ﬂ(s)
"u |

On the other hand, at least for s#0,

(h)
(13) g a, Ve (1) = ™ [1 (s).F,(s).e -I (-s).F;(s).e ~8)

h

where Ip(s) =Ja., s

h Ph

By the definition of A(s) (III, §3), we have for s € S
F_Z(s).eS = F4(s).A(s) , Fl(s).e_S = F3(s).A(s).

Substituting in the righ member of (13), we get:

(h) _ A(s _ _
% a v ) = Rﬁ;% c LT, (8).F, (s)-1_(-5).F,(s)].

So, for s € S-(0)

- (h)
(14) kp(s) = g aph v, o (1)

if the polynomial Ip(s) satisfies:

(15) I,(s).F,(s) - I (-s).F,(s) = s2P*!

Since g.c.d. (F3,F ) = 1 or s, there exist real polynomials
C(s), D(s) such that

(16) C(S).F4(s) + D(S)'F3(5) - 52p+1

Moreover, C and D can be chosen to have degree less than n.
In fact, if C = C +F .Qand D =D +F4 R, with deg Cl’

deg D, < n, then from (16) we get

, _ .2p+l = -
Cl'F4 + DI'F3 S F3.F4.(Q+R)
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Since the left member has degree < 2n, (Q+R) must be iden-
tically 0 and Cl’ D1 also verify (16).

Subtracting from (16) the expression obtained from it by
changing s into -s, we get

F,+(C(s)-D(-5))/2 - F,.(C(-s)-D(s))/2 = s2P*]

Thus, the polynomial Ip(s) (C(s)-D(-s))/2 verifies (15),
having degree less than n. Therefore, (14) holds.

If 0 is an eigenvalue, we have

Ip(d/dx) V0(1)

Z[ﬁo.apo - ﬁl°ap0 + Bo.apll/ﬂuoﬂ

I

A(O).Z[Otoapl - alapol/ﬂuoﬂ =

_ A(0) [F4(s).Ip(s)-F3(s).Ip(-s)]
HUOH S s=0

From (15) and (12) we then get

(17) Ip(d/dx) vy (1) = kp(O)

That is, (14) holds for any s € S,

From the definition of wp and (14) we also get for s € S:

(18) w,(s) = G (d/dx)v_(1), where G (s) = gcpqlq(s)=2bphsh.

The bilinear form B, when f=vs, g=v, is equal to

(19) Ats__ g Gp(d/dx)vs(1).Ip(d/dx)vt(1) =

S ts ts

= A - g wp(s)Ei(t) =A _-L _ =D
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Then, (19) = 0 whenever s # -t.
QED.

The meaning of (19) is that the form {B(vs,vt)} coitneides

with the matrix D. We have obtained also a representation
of the matrixz L in terms of the values of at most n-1 deri
vatives of the eigenfunctions taken at the extreme x=1.
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VIill. AN APPLICATION.

1. In this chapter we shall study a particular case of the
preceding theory, precisely, that described at the very
beginning of this work. To avoid the unnecessary repeti-
tion of the imaginary unity we write the equation as:

(m u" + k?u = u" - (ik)zu =0, 0<x<1
The boundary conditions are now:
(2) u(0) =0 , a.u"(i) + u'(1) = 0 , a#0

Then, Fl(s) =1, F3 = as? + s. We shall assume that a > 0.

In this case any eigenvalue is purely imaginary and there-
fore k is always real different from zero. (If a < 0, there
are two real eigenvalues). In this chapter we call eigen-
value any value of k such that ik is eigenvalue in the sen-
se of Ch.III. Now, k is an eigenvalue iff

(3) tg k = 1/ak , k -7 = 0o(1)

Writing u, instead of uik/i we have: uk=2 sin kx, and

1
(4) J u u dx = -4a sin n sinm , if m#n ,

1
(5) J u? dx = 2(1-a sinzk)

For k and 1 positive eigenvalues, we have

(6) A, =1if k=1 Ay, = (-2a s;n k sin 1)2 :
((1-a sin“k) (1-a sin®1)) /2
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We know that the Gramian A can be written as D+L, where D
is now a diagonal matrix

(7) D, =D . =1+ 2a_sin’k _ 1+ a sin®k

1 - a sin’k 1 - a sin’k

In this case is immediately verified that for k eigenvalue
sin k = 0(1/k), and that 0 # D, ~ 1.

Let us define R = ) sinzk/(T + a sinzk), where k runs in

the set of positive eigenvalues. Next theorem is formula-
(4.26) of [9], p.207. An alternative proof is given later,

THEOREM 1. 2a R = 1.

From ch.VII, we see that g=1 and there is only one vector
ko(s). It holds:

(8) ko(s) = {-i sin k / /2(1 - a sin’k)}.

Then Wo = cooko. But Coo0 = -4 @, as it follows from Ch.III.
Then, o0 = -4a, and we have:

(9) wy = -4a k.

Then, the matrix L <s equal to -4a Eo°k8’ and the matrix K

of Ch.VII has only one entry equal to

_ -1
(10) Koo = (WO,D EO ) B
But K00 = -2a R as it follows from (7), (8) and (9). From
Th.1, Ch.VII, we get finally: Kso = -1. And this proves

" Theorem 1.
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2. THEOREM 2. If Vo =-uk/||uk|| >

i) } Vk(1)vk(x)/Dk =0 in L2 ;

ii) § v, (v, x)/D, = 0 2f 0 <x <1,

1/a <f x=1 ;
iii) V£ el?: [ (b, /D) v, (1) = 0 ;

iv) Zf £ € L real and ¢ € (-»,0), there exist a vector
C e 12 such that
2 .
11 C.v. = £ (L , C.v.(1) = .
(1) ey, =fad) v () =
holds., This vector is unique.

PROOF. i) Let C be a vector in 12 non-orthogonal to EO'

If AC=b and ¢ = D_lb, we have: C + D™ lLC = c, and therefore

. -1+ .
f + i2a (C,D ko).z Vj(1)vj(x)/Dj, in 1, ,

since

(12) Ky G) = (1/2) v (1)

ii) Let G(x) be the function defined by

(13)  G6(x) = J v.(1)v,(x)/D, = 2 § Sin jx 2in i,
J J 3 1 + a sin®j

whenever the series converges.

From (3) we obtain :
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(14) aG(x)/z = § o3l simJX
(1 + a sin“j)j

) [ Cos j sin jx _ _cos wJ sin wJx 1+ 7 (-1)Jsin mJ
(1 + a sin?j)j (1 + a sinzJ)nJ nJ

where J is the integer such that j - #J = o(1).

Using the mean value theorem, we see that the first summa-
tion is equal to

7 G- 7d) d _cos t sin tx
dt t(1 + a sinzt)

’
where the derivatives are taken at values of t in the inter
vals (j,nJ).

Since |j-wJ| = 0(1/J) and the derivative is 0(1/J), the
last series converges uniformly to a continuous function
H(x) for 0 < x < 1. Therefore

(15)  aG(x)/2 = H(x) + f (-1 (sin #Jx)/nJ
J=1

The series in (15) converges to -x/2 on [0,1). Then G(x)
is defined and continuous on [0,1), and equal to zero
there (cf. i)). Therefore

H(x) = x/2 for 0 <x < 1. From (15) we get:
(16) G(1) = 1/a.

By the way, since G(1) = 2 Z~sin2jx/(1 + a.sinzjx) = 2.R,

from (16) <t follows again that 2R.a = 1.
iii) and iv). Let us define a vector C e 12:

a7 Cj = bj/Dj + ¢ .avj(1)/2Dj
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and 7 = ) ijj(l)/Dj.

According to Ch.VII, §1, Corollary and (8) and (9):

-1, -1 _ . _ . -
0 =8(D"b) = (wO,D b) =7 WO(J)bj/Dj = -4a ) kO(J)bj/Dj—

4air

Then the function defined by J C,v, coincides with f. In
fact, because of i) this series coincides in L2 with

) (bj/Dj)vj which converges in L2 to f. But

I Cv.(1) =7 +9(a/2) ] v§(1)/Dj =0+ ¢,

because of ii).
QED.

iv) of the preceding theorem shows that the indetermination
in the expansion of f due to g=1 is reduced to the indeter
mination of ¢ which is equal to the value of the expansion
at x=1,

The method of calculation of coefficients given in [17],
(191, [11], [12], [13] consists in using those coefficients
for which the expansion converges at x=1 to f(1).

3. THEOREM 3. There exists a bilinear form

1
B(f,g) = jo fg dx + a £()g(1) ,

.such that B(vs,vt) = 0 for s#t, s and t eigenvalues.

PROOF. According to (15), ch.VII, we must have:

s = I(s)(asz-s) - I(-s)(a52+s).

Choosing I(s) constant and equal to -1/2, we get the poly-
nomial I necessary to define the bilinear form of Th.3,
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Ch.VII. Then

ko(s) = —(1/2)VS(1) ; wo(s) = S0 VS(1)/2

Since (cf.(9)) Cop = -4a, we have, from (19), Ch.VII.,
B(f,g) = (f,g) - (cho/4) £(1)g(1) = (£f,g) + a £(1)g(1).
QED.

This result coincides with the inner product used by
Churchill in [ 5], (cf. ch. I, (5)).
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