20

Agnes Benedek - Rafael Panzone

REMARKS ON A THEOREM OF A. PLEIJEL
AND RELATED TOPICS, i

ON THE NEUMANN BOUNDARY PROBLEM
FOR A PLANE JORDAN REGION




NOTAS DE ALGEBRA Y ANALISIS

20
Agnes Benedek - Rafael Panzone

REMARKS ON A THEOREM OF A. PLEIJEL
AND RELATED TOPICS, I

ON THE NEUMANN BOUNDARY PROBLEM
FOR A PLANE JORDAN REGION

2007
INMABB - CONICET
UNIVERSIDAD NACIONAL DEL SUR

A Aoaeoa I T T
S FAT FR JUA AR

ISSN 0078 2009






REMARKS ON A THEOREM OF A. PLEIJEL AND RELATED TOPICS, 11,
ON THE NEUMANN BOUNDARY PROBLEM FOR A PLANE JORDAN REGION.

Agnes Benedek and Rafael Panzone
Instituto de Matematica (INMABB, UNS-CONICET), Alem 1253, (8000) Bahia Blanca, ARGENTINA.

RESUMEN. El problema de Neumann en una regién de Jordan (acotada) plana D de contorno J

suficientemente regular admite una sucesion de autovalores y autofunciones, W, e C*(D)NC(D),

ow,
a—"-=0 enJ, —Aw, =A,w, enD, h>0, tales quesiJes C* valeen Rez > 1
n.

[

areaD 1 long 1
A z-=1 8z z-1/2

+ g(2), g(z) holomorfa en el semiplano derecho.

Pleijel demuestra esta férmula para curvas C®. Sea N(A)=# {ﬂj i, < /1}. (*) puede demostrarse sin

utilizar la siguiente férmula asintética de H. Weyl que es consecuencia de la precedente,

areaD

**) N(A)-

A=0(A).

Los planteos clésico y variacional dan lugar a los mismos autovalores con las mismas autofunciones. Estas
son también autofunciones del operador de Green y tienen otras propiedades ademas de las indicadas. La
exposicion es independiente del vol. I y autocontenida.

Palabras clave: problema de Neumann, autofunciones, autovalores, serie de Dirichlet espectral.

ABSTRACT. We consider Neumann's problem for the Laplacian in a plane Jordan (bounded) region D with

regular boundary J. It {Z,j 1j= 0,1,2,---} is the set of eigenvalues of that problem, the counting function

areaD

N(A) #{ 4, /'?} satisfies H. Weyl asymptotic formula: N(1) = A+o0().

Related to  the monotonous  function =~ N(A) is the spectral Dirichlet series:

P(z)= Z[’ J x7dN(x), Rez >1. The behaviour of P(z) follows from that of N(A) but results about

0+

P(z) can be obtained without a priori knowledge of the counting function. A theorem of A. Pleijel deals with

this type of results. He proves that if D has a C* -boundary the following formula holds:



! = areaD 1 + lengthJ __ 1 + g(2), g(z) holomorphic at leastin Rez > 0.

~% 4r z-1 8z z-1/2
In this paper we collect some results on eigenvalues, eigenfunctions and Green's kernel that hold for plane

regular membranes. We show that the preceding equality holds for a Jordan region with a C? -boundary and
present a simplified proof for this case without using Weyl's asymptotic formula. In fact, it is a consequence

of Pleijel's formula. Besides we show that the variational eigenvalues and eigenfunctions and the classical

ones coincide for general C 2 Jordan regions proving then that in our framework we can use the results
obtained by the powerful variational method.

This work is essentially of expository nature and mainly self-contained. No use is made of volume L Its
central core is in Chapters 5-9 that can be read almost independently of the first four chapters.

Key words: Neumann problem, eigenvalue, eigenfunction, spectral Dirichlet series.
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CHAPTER 1

(1.1) INTRODUCTION. We study the so called Neumann problem for the Laplacian in bounded open plane
regions. We assume that the problem is posed in one of two forms: the classical way and the variational one.
The variational problem can be posed for more general regions and if nothing is said about a result, it will
mean that it has been obtained under the variational setting.

One objective that is pursued in the study of Neumann problem is to know more and more precisely the set of

eigenvalues. When this set is discrete an interesting problem is to determine its asymptotic behaviour. That is,

to determine, if it exists, the asymptotic behaviour for A —>c0 of the counting function
N(A) =#{0 <414, < ﬂ}=number of non negative eigenvalues not greater than A counted according to
their multiplicities. An actual problem is to know better the second term of the asymptotic expression of
N(A) when the first one is determined or at least to estimate the difference between N(A) and the main

term.

Sometimes to solve some problems related with the eigenvalues of a Neumann problem it is not necessary to

@

know N(A), it is enough to know the behaviour of some related functions like je_“dN @) or
0

of[e‘”‘dN(e’) = O].v"‘dN(v) .

0

(1.2) DEFINITION. a) A plane region A is a bounded, finitely connected, open set.
b) 4 is called & -semiregular, & € (0,1), if for A():={z € A:dist(z,04) <t} it holds that [4(r)| = O(*).
Here |B| = m(B) =Lebesgue exterior plane measure of B. If 4 is £ -semiregular then m(04)=0.1If J= 04

and 4 is a Jordan region we shall suppose J oriented in the positive sense and defined by continuous functions

x(s), y(s), s € [O,S ], S > 0. If J is rectifiable, <J > will denote the length of J, lengthJ, and s will represent

the arc length parameter. In this case we have S = <J > Moreover, A(f)~¢ and 4 is 1-semiregular. Note

that there are Jordan regions that are semiregular for no ¢ € (O,l].

For a very general family of plane regions, H. Weyl's theorem holds, (regions with property C', cf. Note 1. See
also Note 6). That is,

a3 a3, 47

n ~Th 3
4] 4]
If 4 satisfies an additional property, it is known that

(1.4) N(A)=aA+0(Alogd), a=|d@4n)™.

N(A), n—>0,0<A—>w0,



It is conjectured that for 04 sufficiently regular one has

(1.5) N = ad+ A +o(A), B=(J)4r)".

Weyl's result (1.3) does not hold for Neumann problem on a general plane region 4.

(1.6) THE CLASSICAL NEUMANN PROBLEM. In this boundary problem one is asked to find the
eigenvalues and the corresponding eigenfunctions of the operator —A ina C™ plane region 4, m >0, with
- aboundary J = 04, under the conditions:

A.7) —Au(x)=Au(x), xe4; ;3_u( ¥) =0, n,=interior normalaty, yeJ,
.

where it is required that the function u € C(4) N C?(4).

If u satisfies the differential equation (1.7) in the sense of distributions then there is exactly one function in its
equivalence class such that # € C” . It satisfies the equation in the usual sense. For regions with irregular
boundary the classical problem has no sense and has to be posed in a weak form. However, for C? Jordan
regions both provide the same sets of eigenvalues and eigenfunctions as we shall see in Ch. 8. What we
understand by a C ? Jordan region is the content of Note 3. The definition there can be extended to C " plane
regions where m =1,2,---.

(1.8) Any strongly Lipschitz region 4 (see definition in Note 2) satisfies the following property W) that we
call Whitey condition:

W) There is a constant ¢ such that for any two points of 4, X;,X, , there exists a rectifiable arc p — 4 whose
end points are X,;,X, and such that ( p) < c|x, - x2| .
A theorem of H. Whitney asserts that if 4 satisfies W) and u, v=0u/0x,,w=0u/0x,€C (A) then they

can be simultaneously extended to a region A4'D> A in such a way that their extensions U, V, W satisfy

V=0U/ox,,W =0U/0ox,.
In the case of (1.7), if we had 0u/dx, € C(A) then we would have that U verifies ~ AU = AU on 4 and,
ou oUu ou

onJ, — = ——— = ——— =0, n, = exterior normal.

on, on, on,
(1.9) The preceding argument suggests that it is convenient that the involved functions in Neumann problem
can be extended outside 4. Thus, naturally arises the idea of requiring to the region the extension property S)
for Sobolev spaces, (cf. [La]). We introduce below this property S).
A theorem due to P. Jones ([J]) asserts that a simply connected plane region 4 has property S) if and only if it

is a uniform domain, (cf. Note 4).



(1.10) DEFINITION. A plane region D is a quasidisc if it is simply connected and uniform, ([J]; [Le], Ch. 1;
cf. also Note 8).

Thus, a simply connected plane region D has property S) if and only if it is a quasidisc.

On the other hand, D is uniform if and only if it satisfies W) and some other additional property that we shall
call T), (cf. Note 4). '

For a quasidisc D the following property E) holds:

E) There exists a linear extension operator E:W := W' (D) — W=w'? (R?) such that if €W then
E(9)|D =4, ”E(H)”W < K”H”W , K a constant, (cf. [J]).

We shall write H'(D) instead of W"“*(D), (cf. [A]). We have seen that on H'(D) it holds that
||E(9)||H'(Rz) = |||9||| = ”0”11'(1))' Let us remember that the subspace of H'(D),Cy (RZ)‘D (2Cy (D)), is
dense in H'(D).

(1.11) DEFINITION. The plane region D has the extension property S) if there exist a plane region D>D
and a continuous linear operator E : H'(D) — H'(D) such that Y8e H'(D), E(@)] p =0 ae.

Observe that a simply connected plane region D satisfies property E) if and only if it satisfies property S). We
are especially interested in these regions as domains for posing the Neumann problem.

(1.12) DEFINITION. By a simple bounded open set U we shall understand a finite union of plane regions

q — —
U=UU,, suchthat h#k => U, U, =D and Vh,U, has property E).
Pt

Thus, for this set U it holds the extension property for Sobolev spaces S). Besides, H ! (U) is compactly
embedded (=) in L’ (U). In fact, we know that H(B)cc L*(B) on balls B. Since the domains U ;

have property E), it follows that H' (U cc U ;). In consequence, on simple bounded open sets it

holds Rellich-Kondrachov theorem: the embedding of H' (U) into L*(U) is completely continuous. Many

results on Neumann problem hold even for simple bounded open sets.
(1.13) We supose from now on that the Neumann problem is posed on simple bounded open sets, in particular,

on (finite) quasidiscs. A variational (or weak) eigenfunction is defined as follows:

DEFINITION. Let U be a simple bounded open set and u € H'(U), real. u is an eigenfunction for the

Laplace operator if there is a (real) number A such that V¢ € H'(U): J.Vu xVg =241 J‘u¢ .
U U

Thus, u € H'(U) is a weak solution of the equation — Au = Ay according to the following definition.



(1.14) DEFINITION. Let U be a simple bounded open set and f € I*>(U). A function ue H ') is

- called a weak solution of (~A+ A)u = f whenever the equality IVu xVvdrx+ A4 Iuv dx = I Jv dx holds
U U U

forany ve H'(U), (cf. [E]).
NB. This definition of weak solution is more restrictive than the definition of weak solution in the distribution

sense, where IVu xVvdx+A4 Iuv dx = I Jv dx must hold only for v € C;’(U). Definition (1.14) implies
U U U

- that u satisfies an additional "boundary condition", (cf. (8.8) and (8.9)). This is why theorem (1.16) can assure

uniquenes of the weak solution.

(1.15) DEFINITION. B:= B, (u,v) = I(u,v) + y{(u,v) where u,v e H'(U), y >0,

I(u,v) = J'Vuvadx and (u, v) = Iuvdx .
U

14

For positive constants M =sup(l,y) and £ =inf(1,7) we have
2 2 2 2
Ml > B = [Vufdssplufl > A,
Then, B is a bilinear functional, continuous and coercive on the Hilbert space H ! ).

(1.16) THEOREM (existence and uniqueness of a weak solution). Let 7>0.Forany feI’(U) there is

one and only one weak solution of (-A+y)u= f.

PROOF. Because of Lax-Milgram theorem (cf. Note 5) there is a unique u, € H '(U) such that
Vve H'(U) onehas B(uy,v)=1(u;,v)+ y{u,,v)=(f,v).

That i, J' Vu, x Vvdx +y ju vdy = j fodx, (cf. [E]), QED.
U U u

(1.17) COROLLARY. 1) L;l fel*!U)>u rE€H '(U) is a linear bounded operator,

2) L;l fel!{U)> U, e @U) isa compact operator, i.e., L;l, as an operator from I’ into I, is

completely continuous, (cf. Note 7).

PROOF. ) If f, —> f, Uy —>u then B(u,,v) = B(u,v) and (f,,,v) - <f,v>. Thus, u=u, =L;‘f.
L

In consequence, ”u f“H‘ = ,iL, f ”H' < K" f "2 .

2) Because of H'(U) cc I2(U) the operator L;l is completely continuous from L*(U) into I*(U ),
QED.



Ifin (114) y=0 and =0 then [VuxVv=0, VveH'(U). This must hold in particular for any
U

VE C:’ (U). Then, —Au=0 in D'(U) and u is a harmonic function with ”Vu"2 = 0. Therefore, u is

constant on each (connected) component of U.

(1.18) PROPOSITION (regularity). If » is a weak solution of (—A+ u)u=f, u a constant and
feC*(U) then ue C*(U).

PROOF. It holds that J.Vuva dx+u J'uv dx = I fvdx for every ve H'(U). Thus, in the sense of
U U U

distributions, <(—A +u—f, ¢) =0 for every ¢ € Cy’ (U) . Because of the hypoellipticity of the operator

we obtain # € C*(U), QED.
(1.19) PROPOSITION. Let # € H'(U) and p be a real number such that pu —Au = f & I*(U). Then,

ue H?

loc

).

PROOF. 1t is sufficient to prove the proposition for p>0.Let F = f on U, F=0 on R* \U . The equation

A

pw—Aw=F e I’(R*) has a solution whose Fourier transform is w(&) = Then, we H*(R?)

7.

Prie
and v=u—w on Uissuchthat pv—Av=0.

Therefore, v=u—w e C*(U). In consequence, 1 € H?

loc

(U), QED.

(1.20) THEOREM (the alternative). Either the equation (—A+Au=f, ue H'(U), A<0, has a
(unique) weak solution for any f e L’ or else there exists a non trivial weak solution of the homogeneous
equation (—A+A)u =0, ue H'(U). The corresponding null space N , has finite dimension. The non
homogeneous equation has a weak solution for f € L*if and only if £ LN Lin L2,

PROOF. We know that Vg € L*(U) there exists u = L;lg € H'(U) which is the only weak solution of
(-A+y)u=g.Now, ue H'(U) is a solution of the equation A+ py)u=(y—-A)u+ f,ifand only if

(1.21) u=L'(y—Au+fl=(r-DLu+L'f =Ku+L'f =Ku+h.

That is, if and only if (/—K)u=h where h:= L;l f € H'. Since in this last equation the operator
K=(y —/"L)L;,1 is completely continuous from L*(U) into I*(U), Fredholm's alternative holds: either

there is a (unique) solution of (I —K)u = h forany h € I* orelse there is a (maximal) subspace N  I* of



positive finite dimension such that (/ — K)N =0 and (/ —K)u =h will have a solution if and only if

h LN . Thatis, if N is non trivial then (-A+Au=f, ueH '(U), will have a solution if and only if
-1 .72

L fIN in L.

Let us see that N=N,. In fact, ve N if and only if v=L;1(}/—l)v. Thus, if and only if

(-A+y) =V, which is equivalent to (—A 4+ A)v =0, that is, it is equivalent to ve N,.

Finally we show that f LN, if and only if L;l f 1N . We know that if ve N then ve N ; this means.that
vakadx+ﬂIvkdx=0 forany ke H'.

Then,  [VwxVL'fdx+A [Vl fdx=0. Buw, [VwxVL!fds+y VL' fdv=[yfdc. In
consequence, Vve N,

(1.22) (r=4) VL, fax = [vf dx.

Therefore, L;l f LN ifandonlyif f1N,, QED.



CHAPTER 2

(2.1) SIMPLE BOUNDED OPEN SETS. EIGENVALUES. We continue the study of the variational
Neumann problem on simple bounded open sets in R*, (cf. (1.3)).

characterization of the eigenvalues). ere 1S a function w, € s [Will, =1, such that
THEOREM (ch ization of the eigenvalues). A) There is a function wy € H'(U), |wj||, =1, such th

for
2.2) A :=inf{1(u,u) rue H' |, = 1},
2.3) I(w,,v) = A(w,,v) forany ve H'(U).

That is, w, is a nonzero weak solution of (—=A — 4, )w; =0 such that I(w,,w,) = 4,.

B) There exist w,,w,, - € HI(U), ”wn“2 =1, such that for n>1,

24 A =inf{I(v,v):ve H',

v||2 =1, (v,wi> =0,i=1..,n-1}, 0<A4 <4,

2.5) I(w,,v)=4,(w,,v) forany ve H'(U).

Thus, w, € H'(U) is a weak solution of (-A-A4,)w, =0 such that: I(w,,w,)=4, . Moreover,
Wn-L[Wv'”Wn-l]-

PROOF. A) Obviously, 4, =0,w, =constant on open components. However, let us pay attention to the

following argument that holds even for 4, > 0.

Assume that {vn } c H'U),

Vall, =1, is a sequence such that I(v,,v,)—> 1. We have

i <I(v,,v,)+1< K <o, Because of the compact embedding of H'(U) into

2
o =1,,v,)+

v, v,

L*(U), it follows that there exists a convergent subsequence in I’ to a function w,

], =1. Without
loss of generality we can assume that {vn } is this subsequence. We have,

26 44 +e22(Iv,,v,)+I(,,v,)=1V, +v,,v, +v,)+I(, -v,,v,~v,)) >

P+ A, v 24w | -5 =44 —¢.

2 X’l “vn + Vi

From (2.6) we get,

Q.7 I, +v,,v,+v,)—> 44, Iv,-v,,v,-v,)—0.

From the second limit we obtain: v, —w; in H'(U). Next, we show that w, is a weak solution. Let

_I(w, +to,w, +tp)

5 >A,pe H'. Fhasaminimumat £ =0,
i + 10

F(t):



Therefore, F'(0) = 0= 2(I(w,,@) —(w,,@)I(w;,w,)) =2(I(w;,)—(w,,@)4). Then, for every
@ e H',itholds that I(w,,0) = A {w,,0).

We prove B) by induction. Let #> 2 . Assume that we already have w,,---,w,_;. Suppose that the family
{v,} < H' verifies [[vh"2 =1, v,lw, fori=1---,n—1,(Lin %), I(vh’vh)h::o A, . The same argument

as before shows the existence of a subsequence of {vh } , that we denote in the same form, such that

"vh -w =1,---,n—1. It verifies,

.8 I, +v,,v,+v,)—>44,, Iv,-v,,v,-v,)—>0.

Since v, — w, in I, from the second limit in (2.8) we get that ||v,, nllen 2, 0.

Let pe H'U), yv=9—{p,w)w,——(p,w, )w, €H'. y is orthogonal in L’ to w,

Iw, +ty,w, +ty) S

i=1,--,n—1. Then, the function F(t):= l >4, has a minimum at =0 and

therefore F'(0)=0. This is equivalent to

2.9) 1w, )= 4,(w,,w) =0.

Because of w,.Lw, and the inductive hypothesis, we obtain I(w,,w,) = 4, <w,. W, > =0, (cf. (2.4)). Applying
this in (29 we amrive to I(w,,@)-A4, <Wn , (0) =0 for any ¢@eH'@U),

QED.
(2.10) THEOREM. For u,w,,v, € H' > M and L in L*, it holds that

(2.11) o) 1wu) =2,
culw, .., W,_ ”u”
. I(u,u) _
(2.12) dlr}lrl}lf n 03:13;/{ B ln ’
I{u,u)
2.13) su =4,.
10y }II::n.indep 0¢”'Lvl "u"

PROOF. (2.11) was already proved in (2.1). Let us prove (2.12). The case n=1 is trivial. Recall that
I(w,,w,)=0  whenever k#i and I(w,,w,)=4,. Assume that M=[wj :jzl,...nJ,

U= Zc,.w,. € M . Then,
1



I(u,u) DX
S

and its maximum A, is achieved at w,. If M is an n-dimensional subspace then there exists a nonzero

(2.14)

I(w,w) 52
I

element w € M such that wJ_lw ij=Le,n— IJ Threfore, from (2.11) it follows that o >

Next we prove (2.13). There exists ue[w],...,w,,]h[Vl,.'..,vn-l]l, u#0, verifying u=zciwi and
1

Lw) 2k,

W, 2

sup I(u,u)

{91 seensVy Yin.indep. 0*’”—"1 Vn-1 ”u”

In consequence,

<A,.But if v, =w,, i=1,...,n—1, then, because of (2.11) we obtain,

I(u,u)

Oaéu_l_v, ..... Vool ||u||

=1, QED.

n?

(2.15) DEFINITION. Let U be a simple bounded open set, (cf. (1.12)). o =0, = {/1 1j=1 } will

denote the family (spectrum) of the variational Neumann eigenvalues of —A in U, (-A-A,)w, =0,
counted according to their (finite) multiplicities.
W, = {w,. = 1,2,---} will denote the normalized orthogonal family (in L?) of the corresponding weak

eigenfunctions introduced in Theorem (2.1).

(2.16) THEOREM. Let D, E, U be simple bounded open sets, D "U =@, DUU =E. If o) ={lj },

={/1'j}, fo ={,uj} then
Yy <minmaxid;, A’} and Ny(AD)+N, (A <N, (A).

J+k=l
PROOF. It suffices to prove that 4, < sup{lj,l'k } Let M=M,+M, M, = [vl,...,vj]c H'(D) and

M2=[v’1,...,v'k]cH'(U). Let u=v+v,veM,,v'eM,. Then, I(u,u)=I1(v,v)+I(¥'V').
Because of (2.12),
I(v,v)+I(v',v')<
2 02 =
+]

/uj+k

M= Ml +M, OxueM

sup(/(t, t)/"f" )”VII + sup(](t' t')/”t'” )||v "

teM,

< inf sup
Mo e b



if M, =W, | My = [w)',..;w, "] then, (cf. 2.19),

A 2T

< <maxild;, A, {.
S S B
Since N, (A) =#{, :0< g, < A} it follows that N, (1) + N, () < Ny (4), QED.

We leave to the reader the proof of the next result, (cf.[M], p. 141).
(2.17) THEOREM. Let D, E, U be simple bounded open sets, D NT =@, DUU = E. Let o,={4,§,

0'U={/1' j}, 0'E={,uj}. Then, u,€0, or i €0, and its multiplicity is equal to the sum of the
multiplicities it has as an eigenvalue in the spectra o, ;.
IfO=p4 Sp, << gy SA <y, <--- and A; is the greatest eigenvalue in o, not greater than 4, ie.

A<A<4;,, and A4,' is the greatest eigenvalue in o not greater than A, then
My = pyy =max(A, A7) and N, (A)+ Ny (A1) = N (4).

(2.18) PLANE REGIONS. EIGENFUNCTIONS. From now on we restrict ourselves to plane regiones with
the extension property E). That is, we shall deal with connected simple bounded open sets satisfying E). An

instance is a quasidisc, (cf. Note 8). For those regions the eigenspace corresponding to the first eigenvalue is
one-dimensional and generated by I,(x), the characteristic function of U. ¢ is an infinite family of

_ eigenvalues of finite multiplicity as it follows from (1.20) and next theorem.
(2.19) THEOREM. Let U be a plane region € E). Then, it holds,

DO0=A4 <L, <4< A, >0,
W, = {w,. = 1,2,--'} is a complete orthonormal system in L*(U).

PROOF. 1) The compact operator S := L;l A y >0, is such that S (Lz) c H',
B,(§f,v)= [VSf xVvdx+y [(Sryvas= [ foax.

For v=Sg we have, B, (Sf,Sg) = j fSedx =B, (Sg,Sf) = j g Sfix .
Thus, S is symmetric, (cf. note 7). On the other hand, w, verifies (-A+ y)w, = (4, + y)w,. Therefore,

wn
Aty

=Sw,. Then, u, = n is an eigenvalue of S corresponding to the eigenfunction w, . Since the

n

~ eigenvalues of S have 0 as its only point of accumulation, it follows that 4, — 0.

10



N
2) Let ue H'(U), w=u-— ZC,, (w)w, with c,(u)= (w,,,u) . Then wlw,, n=1,..,N. Therefore,
1

2

I(w,w) ) I(w,w)

2
7 =g OF 2”W” =
N+1

. But, (cf. (2.4), (2.5)),

N
u—chwn
1

[

N
0<I(w,w)=I(u- chwn NTES chwn) =I(u,u)— Z ¢’ A, < I(u,1). In consequence,
1

2
(GO QED.

N+1

| N
iu —chwn
1

The following theorem is a complement of the preceding one and allows us to introduce a characterization of

H'(U). Provisorily we denote with V=W (U) the space H'(U) with the norm

|u | = (u,u) = \/I(u,u)+7<u,u) .

(2.20) THEOREM. a) The family " = {‘9,1 =w, /Jy+4 }, y >0, is a complete orthonormal system in 17.

n

b) If we H'(U) then its sequence of Fouricr coefficients (in 17), {h” =(w,3,)=1(w,9,) +7<w, .9”>},

verifies /1, /|y + A, =c¢, where ¢, = (w,w"> is the ordinary nth-Fourier cocfficient of w (in L*(U)). It

n°-"n

holds that w e I?, Zcle < w,
1

¢) Conversely, if 1 € L*(U) is such that Zcfl” <o then ue H'(U).
1

d)If 722 then J-w” =0.
u

PROOF. a) Becausc of (2.5), (w,w,)=(4, +y)<w,wn>. If 3, =, +7)"w,, n=12,-- and

w eIV then we have =1 and

4,

(2.21) (wd)=(4, + 7)”2<w,wn>.

Aty

In consequence, (4,,9,)= ( )
m TV

12
) <wm,w,,> and this implies that F={9n :n=1,2,--~} is an

orthonormal family in JV. Besides, if welV is orthogonal to [ then because of (2.21) we obtain

~ . 2 .
<w,w“> =0 for every 1. From the complefeness of {w” n= 1,2,---} in Z(U), we get w=0. That is,

I'={8} is complete in I



b) From Bessel's inequality we have Z h} = Zc,f (r+4,)< Ilw"; <00,

N N
¢) From the hypothesis it follows that Zcf (u)(y + 4,) <. But then Z h,8, = ZC,, WJy+4,89,
1 1 )

converges in W.

& w =1/[U, QED.

(2.22) QUASIDISCS. THE COUNTING FUNCTION. Let f be a K-quasiconformal mapping and Q
(CC Rz) the quasidisc Q = f(B), B the open unit ball in R’. Let X := {Z=(x,y):|2|=1} and
q=0Q = f(Z), (cf. Note 8).

NOTATION. dLmA denotes the Hausdorff dimension of the set 4, (cf. [F]). D(q) = D,(q) denotes the

interior upper Minkowski dimension of the boundary of Q and M , tepresents the interior upper Minkowski
content associated to £, (cf. [L] or note 9).

(223) THEOREM. I) dimg e [1,2),

m D(g)eL.2],

1IT) There is a number 1 = u(K) € (1,2), (#(K) is defined in the proof), such that D=D(gq) < u and
M, (9)=0.

PROOF. ) is proved in [GV], (cf. [Le]); a proof of II) for the boundary g of any bounded open set can be seen
in [L]; III) is proved in note 10, QED.

The same results hold if D denotes the superior exterior Minkowski dimension, D, . From [L, Th. 2.1, p. 479]

and Theorem (2.23), we obtain,
(2.24) THEOREM. i) The Neumann counting function for a quasidisc Q verifies

(2.25) N(A) = AA+O(A*'?), A=|0|/4x.
if) If D(g)=1 and M,(g) < oo then
(2.26) N(A) = 4A+0(A"*logA).

A strongly Lipschitz domain is a quasidisc with a rectifiable boundary that satisfies the hypothesis in ii)

(2.24), as it is easy to see. Thus, we have,

(2.27) COROLLARY. For a strongly Lipschitz domain Q it holds that N(1) = A4 +O(X*log4).

Thus we have Weyl's asymptotic approximation: N(1)/A ~ IQI/ 47 , (cf. note 11).
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CHAPTER 3

(3.1) DEFINITION. Assume A is an infinite dimensional real Hilbert space with scalar product <,> . We say
that (VV,H,a) is a triplet if V is a linear dense subset of H which is also a Hilbert space with a continuous

embedding (Vv eV,

v” 4 <C “v”V) and a is a real bilinear form defined on ¥V, symmetric, such that a is
bounded (Ia(x, y)| <M ||x”V|| y”V ) with a non negative quadratic form ( a(x) := a(x,x) = 0) and coercive,
as defined below.

A . n 2
We say that a is strongly coercive if the quadratic form a verifies, for a certain m > 0, that a(x) > m”x”V .

We say that a is coercive if there exists a number p >0 such that (a+ p)}(x,y) :=a(x,y)+ p<x, y> is

strongly coercive on V, that is, there exists m > 0 such that (a + pj(x) =a(x)+ p||x||; b m”x”f/ .

If a is strongly coercive on ¥ we shall say that (V, H,a) is a strong triplet.

A triplet is called variational if V cc H , that is, if any bounded subset of ¥ has a compact closure in A, i.e.

the embedding is a completely continuous application.

EXAMPLES. For a Jordan region D, (H, (D), I*(D), (-,-)H‘;) is a strong variational triplet.

If U is a plane region with the extension property then (H'(U), 2 (U), (-,')Hl) is also a strong variational

triplet. However, in general, (H'(U),2(U ),(-,-)Hn) is only a strong triplet, (cf. note 16).

(H'(U),}(U),()) is not a triplet. However, if I(f,g):= j Vf.Vg then (H'(U),I2(U),I(-)) is a
U

triplet.
(3.2) DEFINITION. Assume that (V,H,a) is a triplet and let

E,=E,(V,H,a)= {subspaces E of V:a—Ais strongly coercive on E }
We define N(A,V,H,a) = L;nEf cod, E.

(3.3) Let us denote by S, := {u eV:a(u)< 1}. By the non negativity of a, the scalar product a(x,y)

induces a seminorm on ¥ which satisfies Schwarz inequality, (cf. note 15),

!a(x, y)| < \/ a(x,x) \/ a(y,y) . Because of this inequality and the boundedness of a we conclude that the set

L= {w ca(w) = O}, Lc§,, is a subspace of V. Let / be the dimension of L. Thus, / =0 if g is strongly

coercive, that is, for (V,H,a) a strong triplet.

13



Assume that (V,H,a) 1is a variational triplet. On L we have, p"u”il Zm"u"f/ Therefore,

{u ‘uel, u" - 1} is a precompact subset of H. Then, dim L <0 .

(3.4) LEMMA. Let (V,H,a) be a triplet. If 4 >0 and on the subspace Y cV it holds that

2
A

(a - 2)(u,u) = a(u) - /1||u||: > gl , £>0, then (a—A)(u,u) 2 77||u||§ for a certain 77 =7(¢) > 0.

Thatis, Y € E,.

PROOF. Because of the coercivity we have (a — A)(u,u) > m"u“i -(A+ p)”u”: for each # € V. From the

A+
£

hypothesis we  get P (a—ﬂ)(u,u)2(2,+p)"u||; whenever u€Y. Then, on 7V,

[1 + Atp }(a —A)(u,u) 2 m"u”; , QED.
€

(3.5) In note 12 we define the m-diameter d,, and quote related results.

THEOREM. Assume that (V, H,a) is a triplet and L is of finite dimension /.

a)lf n=n(1)=NWA,V,H,a), v=v(4) :=#{m >20:d,(S,,H)= l/x/:l_}, then for any
A>0,n(l)<v(4d).

b)If (V,H,a) is a strong triplet then n(A) =v(A1).

PROOF. Recall that S, := {ueV:&(u)Sl}. Suppose that oo >n. Observe that if we had

a

d,(S,,H)<1/ 2 then we would have 7 := éan cod,E 2v.Let E CV be of finite codimension » such
€L,

that on E: (a—A)(u,u)= ml]u"; , (m>0). Because of A>0, EnNnL= {O} Let

G= {g eV:NuekE, a(g,u)= 0}. Because of Schwarz' inequality G D L, (cf. note 15). Thus,
VoE+G,{0}=ENG,n>2dimG21.

b) Assuming a), it sufices to prove that n>v for co>n. Since (V,H,a) is a strong triplet, G is an
orthogonal complement of E with respect to the scalar product a(:,), (cf. note 15). Therefore, dimG = n

and V=E+G,(here [ =0).1f u=e+ g belongsto S, then, for a certain p >0, we have

12 a(u,u) 2 ale,e) 2 Ale[}, +mle], > (A+m/C)e[}, = (A + pu~g[, 2 (A + p)dist*(,G).

14



Therefore, 1/v/4 > supdist(u,G)>  inf _ (supdist(u,T)) = d,(S,,H), and b is proved.

ueS, TcHdimT= ues,
a) Let us see that n <v. Assume that v <co. Observe that if L/ {0};& D from S, > L it follows that

dy = . Moreover, d, = whenever j =0,---,/ —1. Since d ¥ and v(1) <0, then v>/ —1 and there
exists A'> A such that d, (S,,H)=1/A>1/JA' > d,(S,,H). Let G be a subspace of H such that

dimG =v, supdist(x,G) <1/+/A' . Then G L and v>1 . Let P be the projection of H onto G. Given

xeS,

ue H define w'=u if ue L and u'=u/\/a(u) if u does not belong to L (in which case 0 #u'e S,).
There exists g € G such that ”u’—g” <UVA . In consequence, if @(u) > 0 then ”u - Pu" < a(u)/ Ja
and if @(u) =0 then ”u - Pu" =0.

Let E=V NG*,(G" in H). This is a subspace of V' since ¥ is continuously embedded in H. Besides, the

codimension of £ in ¥ is not greater than v. Therefore, if 02 u € E then u¢ G and Pu=0. Therefore,
a(u)> 0 and [uf}, = Ju~Puf}, <a(u)/ A'.

Then we have, (a—~A)(u,u) = a(u) - ﬂllu": 2 g"“”; for ue E and £ = A'-4 > 0. But then by Lemma
2 there exists £, >0 such that (a— A)(u,u) > 80"14”,2, . Thus, E € E,. Then, gelff; cod,E <v. That is,
nsv, QED.

(3.6) When the bilinear functional a(:,) is not specified, it will be understood that a(u,v) = (u,v)V . In the
following lemma V = H'(Q), H = I? (€2), thus, according to our agreement (H',1*)=(H I,Lz,(-,-)H.)
and a(u) = ”u”;, (@ + In this case, (H',I?) is a strong triplet. If € is a plane region with the extension

property then it is a strong variational triplet.

LEMMA. Let Q be a plane region with property E), (cf. note 14).
a) If A is great enough then n, = n,(1) = N(1, H (Q), I* Q) < (}"Ql/zﬁl)’?’ , where ¥ = () < 0.

Thus, Jim Y H L) 7.
0<ito A

. 1 g2
b) If € is a quasidisc then 1/47 <y <00 and [im Mﬂiﬂ <79



PROOF. a) Let v € Z%, J, = J,(8) = {x : |[x, - 6v,| < /2, i = 1,2} Define,

A=AG)={:Qnd, 28}, 0= (T, Q= {x: dist(x,Q) <¥2 5},

ved

Then, Q=QN(JJ,)=Qn(JJ,) or Q=QNno. Thus,

ved ved
3.7 QcocQy, ad|Qgl2lo2 Y |,|=#4)8.
ved
From (3.7) we get, # 4 < IQJEJ‘/52 .
On the other hand assume that fe H'(J,) and that f, = JL I f(x)dx. We have,
viJ

v

2
ﬂ f- f,,Ide = J{ﬁ I( fo)-f (y))dy] dx. Because of Schwarz inequality and note 13, the last
J, JA vl

integral is not greater than J.ﬁx—l ﬂ f(x)—f( y)|2dy <85° _ﬂVf |2 dx. Thus,
J v, J,

'ﬂf—fv|2de852||f||:.u'). If feH'(w) and g(x)=f, whenever xeJ, then the following
Jy

inequality holds,

(3.8) JIf - & ax <85°| T, -

Define G as the set of L’ (@) -functions that are constant on each J,,v € 4. Thus, G = {g} c I’ isa finite

dimensional linear space such that dimG =# 4.

Assume also that fLG (L in I[*(@)). Therefore, f € S :=G* N H'(w). S is a subspace of H'(®) and
cod H,S <# A . In this case, for any g € G, we obtain
2 2 2
”f I} (o) <85 ”f”H'(w)'
Given 1> 0,if & verifies 96°1 =1 then, for £ such that 1/85% = 1+ ¢, it holds that,

(3.9) a(f» f) = ||f”i1’(w) 2 (A' + 8)l|f”iz(w) '

iz(w) < ”f —&

Since £> 0, S € E,(H' (@), L’ (®),a(-")) . In fact, from (3.9) and (3.4) we obtain,
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(3.10) @= 0= oy = U Ly 2 7 -

thatis, @ — A is strongly coercive on S. In consequence,

1 2 IQ«/ZSI
@.11) p=N(H' (@), L (@) < cod,, S <#A < = 940 sl

2
We have to replace @ by Q. Assume M is a subspace of H "(w), cod o (w)M = s (< ), such that for

any f'in M, (3.9) holds. Assume that @, is a bounded open set such that Q c @ ¢ @y D Q. Suppose that
E, is a linear extension operator, E,:H'(Q)— H (@), of norm Ky and E:=1F,. If

F={f e H\Q): Ef € M} then cod

HY(Q)

F<u.

IfKisthenormof Ethen 1 £ K <K, <. Thus, for 1> A'> 0 and any f e F, we get,

A
L A P e T
Therefore, m,(2/K) = N(A/ K, H'(Q), L'(Q)) < cod,,, F < 41 < 93] m] = 9,1|Q - ﬁl.
Then, we arrive to n,(4)<(9K )xllQ G ml Therefore, there is y <9K, = 9"E0” such that

n(A) < }//IIQI P ﬁl .In fact, v2/3vKA <1/2/2 and a) is proved.

b) Let Q be a quasidisc. We shall estimate ¥ = (Q). Define,

3.12) n”(A)=N(4, Hy(Q), (),

the counting function of the strong variational triplet corresponding to Dirichlet problem in Q. Since H,, is a
subspace of H', the mth-diameter d,(S,, ,[’) is not greater than the mth-diameter of
NQAH (Q), (), d,(S, ,I%) . Because of b) theorem (3.5), it follows that n°(1) < n,(1). But, for
ia certains, 0 <s= /2 <1, (cf. Th. (2.23)), we have

(3.13) n®(4) = I—Q—IA +O(X) = Hl +o(A),
4z 4z

Q
(cf. note 17, [La], Corollary 1, p. 479). In consequence, L l +o(]) L }/(Q)‘Q] I ﬁ’.

4r
Letting 4 — <0, one obtains IQI/ 47 < }/lﬁl = }/IQ,. The last equality is due to the fact that lan =0 since

dgn@Q <2, (cf. Th. (2.23)), QED.
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CHAPTER 4

(4.1) TRIPLETS AND THE NEUMANN PROBLEM. Let 0 =4, <A, <:--< A, <-- be the eigenvalues

J

corresponding to the variational normalized eigenfunctions, w;, of Neumann problem in a plane region U

with property S), (v.g., a quasidisc).

As usual we denote with /> the real Hilbert space given by the family /* = {x = ix,.e,. : ixf < oo} with
i=1 1
scalar product <x, y) p = (x, y) = ix Vs ||x"12, = ”x”2 = ixlz . Let us define,
1 1
4.2) W= {x el’: iﬂ,xf < oo} , (%), =a(x,p)+(x,y), where
1

a(x,y) = Zﬂ’ixiyi = Z’?'ixiyi ) ||x||:[/ = Z(l + ﬂj)xf :
1 2 ]

W (c I?) is a Hilbert space dense in /°.

Due to /11. T 0, the inclusion mapping of W into [* is completely continuous. In fact, if x € {"x"W < 1}

and y = ix,.e, (€R") then 12 iﬁ,.xf > A, = | where |y <|x],, <1.Thatis, the unit ball of
i=1 i=n+l

LY

is contained in a m -neighborhood of a compact set of / 2 Therefore, it is compact since it is a closed
set of I2.

(4.3) The bilinear form a is continuous in W, Ia(x,t)| < "x"W ”t"W and verifies a(x) >0 forany x e W . For
x such that x, =0 whenever i>1 we have a(x)=0. Thus, a is coercive but not strongly coercive. Then,

7= (W,I*,a) is a variational triplet, (cf. (3.1) and (2.20)).

The set S, := {x eW:a(x,x)< 1}={x el’: z&ixiz < 1} is not bounded in /* since it contains the non
2

trivial subspace L = {te1 :teR } Here, ] =dim L =1, (cf. 3.3)).
However, the set S,'= {x :x, =0, a(x,x) < l} is contained in a bounded set of W and it is a closed set of

I? . Thus, it is also a compact set of [ 2,

Let us recall that, (1 >0),

E,=E,W,I%,a)={Y :Y e {subespaces of W }such that a— A isstrongly coercive onY}.
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To verify that ¥ € E, it will be enough to check that for a certain € >0 and Yu e Y,

2, .. . . .
, since this implies, as we have seen in Chapter 3, that for a certain

(a—A)u,u)=a(uu)- /1”14"2 > 8|[u|

>0, (@=A)u,u) 2 7jul], holds,
(4.4) Assume that U is a plane region with property S), V' = H'(U), H=I*(U), T =(H'(U ), 2 (1)),

”u"V = JBl(u,u) = \/I(u,u)+<u,u>H . vB,(-) is a norm, ””H, , for the Sobolev space H'(U)=V .

Then, T is a strong variational triplet.

For we I*(U) define x = x(w) €1” by X, = I w(y)w,(y)dy , where the w, are the weak eigenfunctions
U

defined in (2.15). This establishes an isomorphism between I*(U) and /* in such a way that the triplet

T =(H'(U),IX(U)) becomes equivalent to the triplet t = (W,I*) where W = {x el :Z/'L,‘x,2 < oo},
1

(x, y)W = i(lix, ¥y +x.y;) =a(x, y)+<x, y). In fact, this is the content of Theorem (2.20) for y =1.
1
Thus, ¢ = (W,I?) is a strong variational triplet. This fact can be proved directly.
The triplet 7 = (W,1?,a), a(x,y) = i/l,.xi Y, = iﬂixi Y, is equivalent to
1 2
T=(H'(U),[’{U),I) where I (q,v) = .[Vux Vv . In fact, this follows as before from
U

(”u” - ) = B (u,u) = 1(u,u) + <u, u) ;2 and Theorem (2.20).

The existence of these equivalences allows us to work with the triplets ¢ = (W,I%) and 7 = (W,[%,a) and
then to translate the results to the triplets 7 =(H'(U),L[*(U)) and T =(H'(U), U),1 (,)) ,
respectively.

(4.5) NOTATION. n(4)=N(4;7) =N AW, a) = lfl«“nbf cody,E and the counting function for
A>0, N(A):=#{4, < A},

(46) LEMMA. If 2> 0 then n(4) =N(4) < v(4) =#{i 2 0: d,(S,.1%) 2 1/VA}.

PROOF. Assume that 0 =4, <A, <---< A <A<A <. .Thus, N(A)=n.lfueE",

n+l —

E"={ueW:u,=0,i=1,.,n},then (a—A)(u,u) = i(z,. =} 2 (A = A -

n+l
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Therefore, E" € E; and n(A)<n. If we had n(4)<n then there would exist £ € E,; such that
codim,, E <n. Define G = {u eW:u,=0,j= n+1,-~-}. Then, n=dimG >codimE and there

exists a geW suich that 0O#geGNE. For suwh a g it holds  that
0< 8||g||;, <(a-2A)g.8)= Z(}t,. —1)g? <0, a contradiction. Hence, n(4) =n=N 4).
1

From a) Th. (3.5) we obtain, A > 0=>N(4) = n(1) <v(4), QED.
(4.7) LEMMA. If A > 4, then N(1) =v(4).

0

PROOF. Define [ = {y=(y2,y3,---):2yj2 <oo}, W= {xel~2 DY AX <oo},
2

2

a(x,y)= Z’lixiy'i’ X,y 672a (xay>"7 = Z(ﬂ‘ixiyi +xiyi)=a(x>y)+<x>y>]'2 ’
2 2

S; = {x eW :d(x,x) < 1}={x el”: iﬂixf < 1}.
2

The triplet 7 := (W,Tz,?l' ) is strong and variational, (cf. (4.3)). After applying b) of Th. 3.5) to the triplet
7', we obtain,

4.8 n(A)=v(4).

Next we repeat the argument of Lemma (4.5) to get,

@9) A24, = infleod E: E e E,()}=7(A)=N(A) =#{k: k22,42 4} .

In fact, assume that

(4.10) Ay S S A SA< Ay L A < At -

Thus, the counting  function NA)=n-1. If ue E = {u eW:iu=0,i=2,. n} then

(@ - ) (u,u) = i(,@. — Ayt 2 (A, = ANl - Then, ™" € E,(F) and 0<7(A) <n—1.1f we had

n+l

7i(A)<n—1 then there would exist EeEl(‘?") such that codim,;,E<n—l. Define
C~7r={ueVIN/:uj=0,j=n+1,---}.Thus,

n—1=dimG > codim E and there would exista g € W suchthat 0 # g € GNE.
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For this g there is an £ > 0 such that 0 < 8”g“;~, <@-4)g,g)= Z(l,. —2)g? <0, a contradiction. In
2

consequence, 7(4) = n—1=N(1). It follows easily that,
(4.11) dy=w,d =d,,d,=d,, -,
@.12) A2, =v(A)=¥(A)+1 and N(1)=N(1)+1.
Because of (4.8)-(4.12) we get,
Az = N(ﬂ,)zﬁ(l)+1=ﬁ(l)+1=7(l)+l=v(l), QED.
After collecting previous results we arrive to,

(413) THEOREM. Assume U is a plane region with property S). {/11. S 1.2,...},
0=24<4<-.-< /Ij S--+, is its family of Neumann eigenvalues; n,N,v are the reckoning functions
defined in (4.5) and (4.6) associated to the triplet T = (H'(U), 2 ), 1 (,)) (or T=(W,I’,a));
{d,. (= 0,1,2,...} is the family of diameters of the unit ball of H" evaluated in I’ . Then,

ayfor k20, d, =1/,/4,,, ,

b)if 4> 0 then n(1) = N(1) = v(4).

PROOF. a) is a consequence of (4.11) and note 12. b) We proved that if 2 2 4, then n(1) = N(1) = v(1)
and if 4,>A>0 then n(A)=N(A)<v(1). But, because of a), for these values of 4 we have
NA)=1=v(1), QED.

(4.14) Next we repeat some known arguments on the triplet t=(W,H), H=1". (Recall that
t~T=(H'I). ( f ,.) yoJ €H, defines a continuos linear functional on W,
'( f ,v>H,S” f ”Hm - Then, there exists a continuous linear mapping, R:H — W , such that
(fody =(RF.)y on W, |R|<1.

Rf =0 implies f1,W and hence S =0. Thus, R is inyective. From the definition we get, (4.15)
R(e)=¢, /(4 +1).

Therefore, the range of R is dense in H. Since W cc H » R is a completely continuous linear application

from Hinto H. Let us denote 4 =R~ where dom(A)=R(H).If u=Rf,v=Rg then,

4.16) (Au,v)H =(f,Rg)=(Rf,Rg), = (Rg,Rf), =(g,Rf) = (Av,u) = <u,Av>H.
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It follows that R and A are symmetric and 4 has a dense domain in H. The operator 4 is selfadjoint: in fact
A*¥' =A% =R*=R  and because of this, A*=R'=A. Recall that (4.17)
dom(4%) = {y € H :3y* ¢ H;Vx e dom(4),(Ax, ), =(x,y%), }, y*=4*y.

If g edom(A4), (Ag,v> "= <g,v>W and we have, <Ag, g> g = ||g":,, > ||g||: . 4 is then a positive definite
operator on its domain.

Since R =A"" is a completely continuous selfadjoint operator from H into H there exists a complete and
pletely J

orthonormal  system  of  eigenfunctions, ¢;, corresponding to  positive  eigenvalues:
Rp, = up,0<1/pu, T oo, @, € dom(A)cW .

From (4.15) we get, g, = (4, +1)™' and the spectrum of R is o = {1 (A4 +1):j= 0,1,...}. Besides we
can assume that @, = e, . We denote A; = 4, +1. Then,

(4.18) Ae; = Age,.

If yeL= [(1 .0,0,---)]C W then y*=A*y=y, (cf. (4.17), (4.18)). In the equivalence between the

triplets 1 =(W,I*) and T = (H',I*), (cf. (4.4)), the subspace L is in correspondence with the family of

constant functions of H'(U) . Its orthogonal complement in W is {x el’:x, =0, lez/l, < oo} which is
2

in correspondence with the family of H'(U) of functions with zero mean.
(4.19) The domain of the operator 4 is ® = {x eH=1*: lez lf < 00} , (cf. note 18). The action of 4 on ¢
1

corresponds to the action of the operator — A +1 on T, (cf. (1.16), (1.20), for ¥ =1).

(4.20) The indexes of the eigenvalues in Chapter 9 shall begin with O instead of 1. Then, we shall have
2, =0 and a) of Th. (4.13) would read d, =1/,/4, , k> 0. Obviously, we shall also have for 1 >0,
n(A)=v(A)=N(4).
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CHAPTER 5

(5.1) NORMAL DERIVATIVES. DEFINITION. Let « be a continuous function defined in a plane region

D. To define the interior normal derivative of u, Ou/0n,, at a point x of the boundary J of the region D we
assume that at x there is a tangent versor £, that 7, is the interior normal versor at x (that is: n, orthogonal

to ¢, and a segment [ = (x,Y ] of n, is contained in the region) and that » on 7 has a continuous extension to

I=[xy ] The normal derivative is the limit -Z—u(x) _ o = lim uy) ~u(x)

, ¥ € I, whenever it exists
n On, »>* y-—-x

and is finite. For y € I°:= (x,Y ) ( y) can be defined without the requirement that u(y) has a limit at x.

x

Ou
If 6_( y) exists for all y € I° and converges to a finite limit 4 for y — x then #(x) can be defined in
/7

X
such a way that u becomes continuous on the segment [x,Y ] and it has a normal derivative at x equal to d.
Therefore, if the continuous function % in D admits a continuous extension to D and has continuous
derivatives in D, u';=0u/ax;,i =1,2, continuously extendable to D then u possesses a normal derivative

at any point of the boundary where a tangent exists.
(5.2) THE MAXIMUM PRICIPLE FOR ELLIPTIC DIFFERENTIAL EQUATIONS. Assume that

a,(x) =a,;(x), a,(x), a(x) and f(x) are continuous functions on D,Da plane region. Let 4 be the

operator defined by

5.3 Au = Zak(x) + Za (x) , x = (x,,x,),
ik=1 i=1
where u € C*(D)NC(D) . We assume that 4 is uniformly elliptic: forany x € D ,
2
(54) > a,(x)h, h, >0 whenever & = (h,h,)#(0,0).

ik=1

For this operator, Hopf's first lemma holds, (cf. [H]),

(5.5) THEOREM. Assume that Au 20 in D and x, € D is such that u(x) <u(x,) forany x € D . Then,

u(x)=u(x,) on D.
Corollaries of Hopf's Lemma are the following theorems,

(5.6) THEOREM. (Th. of minimum/maximum.) Assume that a <0 .
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If f<0 on D then any non constant solution #(x) of Au+au= f that has a negative minimum on D
takes it on 0D and not in D.
If /20 on D then any non constant solution #(x) of Au+au = f that has a positive maximum on D

takes it on 0D and not in D. _
(5.7) THEOREM. The boundary problem Au+au=f inD, a<0, u=¢ on 8D, ¢ € C(8D), has at

most one solution #(x) € C(D)NC*(D).
Ifthe u,(x), i =1, 2, are solutions such that u#, =@, on 8D then ||¢1 -9, "w > "u1 -u, IL° .
(5.8) THEOREM. (Maximum principle). Assume that the coefficients @, and @, in 4 do not depend on x
and that D is a plane region. Assume also that c(x) e L' (D), c(x)<0 ae. and that /20, fe L'(D).
Assume that u € C (E) verifies
Au+c(x) u= f(x) in the sense of distributions in D.
Then, if max u(x) > 0 then max u(x) = max u(x), (cf. note 30).
(5.9) DEFINITION. The plane region D satisfies the ball property if for any x, € 0D there is an open ball

B(y,) < D ofradius R = R(x,) >0 such that x, € 9B.

Let us consider the following differential operator with a(x) <0, A:=A+a. The next complement to the
theorem (5.6) holds.
(5.10) THEOREM. Assume that D satisfies the ball property and u € C(D)(NC (D) is not a constant

function. Assume that Au>0,a<0 on D and that u has a strict positive maximum at x, € 0D:

O<u(x,)>u(x),xeD. 1If v denotes the exterior normal to the ball B at X, then

>0 for SV 0.

lim

u(x,) —u(x, — ov)
)

(5.11) DEFINITION. Let us assume that # € C'(D) and that D has the ball property. We shall say that u
has a normal derivative extendable to the boundary if for any x, € 0D there exists the (finite) limit

lim Vi x 1 where # is the interior normal to the ball B(y,) at x,, (cf. (5.9)) and x € D runs along 1 to

XX,
xo.
(5.12) Of course, this definition is really useful when for each x, € ©D all the possible balls B have a

common 1, (cf. (5.1)). In this case, if 1€ C (5) has a normal derivative extendable to the boundary then
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Ou
lim Vuxn= B_(xO) and Vu x n will become continuous on a segment [xo,Y ] in the direction of n. So,

X—>Xq

17
if the function u of theorem (5.10) has a normal derivative extendable to the boundary then 0 > a—u(x0 ).
n

(5.13) A FUNDAMENTAL SOLUTION FOR THE PLANE METAHARMONIC OPERATOR
A, +A. Assume that A =—,(2, X positive. We wish to find the radial solutions of Au+Au=0,

u(p)= ¢q pl) That is, the solutions of

d¢
(5.14) ( ) 7%=0, p>0.
pdp\"dp
Let K(xp) =¢(p). (5.14) is equivalent to
(5.15) li( dK) K=K"+ 1K'—K=O,r=;(,o>0.
rdr\ dr r

© e_n
Kelvin's function of orden 0: K, (r)= dt,
’ ]I Vit -1
I e y-—K)
w/l - r
2n

Bessel function of order 0, I,(r):=J,(ir) = . Because of K (r)—> o as r -0+, K, and
( nlf

r>0, is a solution of (5.15). In fact,

. Another solution of (5.15) is the modified

K!(r-K,(r)= J}/ e"dt =

I, are linearly independent. Both solve the equation (p¢')'—q¢ =0 where p(r)=gq(r)=r. Thus, their

wronskian is

W=W(]0,K0)=L=£¢O and d(KO/I) = —-—— Hence,
p(r) r dr I (r\ rlg(r)
(5.16) LAES =S4h(r), reUnR,,
dar\ I, r

where 4 is a holomorphic function in a neighborhood U of the origin.
Denote G:=C\{0}. After integrating (5.16) on G we get

(5.17) Ky(r)=cI,(r)logr+P(r), reU/{0},
where P(r) is a holomorphic function in the neighborhood U. Since K, (r) is a solution of a differential

equation with analytic coefficients in G, it is continuable along every continuous arc contained in G. The same

happens to 1 (r) logr . Therefore P(r) is arbitrarily continuable along any arc in C.
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Because of the monodromy theorem we conclude that P(#) is an entire analytic function. Then, (5.17) holds in
G. Next we determine ¢, proving thereby /) of the next theorem.
© f e—rt
=limrW=1i K (r) =lim— dt =
c lrz_r)}g r lrz%z rl,(r)Ky(r) im rl,(r) {[x/tT—-_ lrza)z -
—(1+7)
. —(t+r)e
= lim j (+r)

dt =(using Lebesgue's theorem)= — Ie “dt=—
rlo e+ 2r 0

2
(5.19) THEOREM. i) W(I,,K,)=—1/r and K,(r) = ~I,(r)logr+P(r), r >0, where P is an entire

(5.18) DEFINITION. E*(x):=—

function,

iy (A= z2)E* =6
PROOF. i) T = (A + l)Ko ()(|x|) is a distribution with support {0}. From i) we obtain 7" = —27z¢ +function

locally integrable. Therefore, (A + Z,)Ko ( }(|x|) =-276, QED.

Because of K( Z|x|) = Ie_llx’t (2 =1)7"2dt >0, E*(x) is negative and real analytic in R*\{0}. Thus,
1

(A -X 2) is an analytic-hypoelliptic operator. Therefore, for D a plane region, we have,

(5.20) COROLLARY. The solutions of (A -7 )u =0 in D are real analytic.

Moreover, all the operators A+ y£, p € C, are analytic-hypoelliptic (cf. [H6], p.114).

(5.21) Denote, as usual, grad w = Vw . One can estimate the quadratic mean of Vu, for u the solution of
(A+Au=f,- y* = 2 <0, by the quadratic means of u and f:

We denote with K cc K| the fact that K is a compact set contained in the interior of the compact set K,
ie, Kc K| cK,.

PROPOSITION. Let D be a plane region, f € C(D), ue C*(D) (real), (A—z)Ju = f inD. Let K, K,

be compact subsets of D such that K cc K, . Then,
2 2 1 2
[l v ac<C fwds+— [frax, C=C(K.K).
K K 2y K,

A proof of this proposition can be seen in note 19.

(5.22) THE y —HARMONIC (or METAHARMONIC) FUNCTIONS. The functions in the null space of

the operator A — ;52 , ¥ >0, defined on D, are the y -harmonic functions (with domain D). As noted above,
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any distribution in the null space of the operator is a % -harmonic function. They enjoy many properties in

common with the ordinary harmonic functions ( ¥ = 0). Recall that
(5.22') B,(y) denotes the interior of the closed disk S ,(¥)and £ (y)=0B,(y).

(5.23) THEOREM. (Phragmén-Lindeléf's maximum principle). Let w be a y -harmonic function on D and
F= {xo,...,x,, } < J . Ifwis bounded and continuous on D\F and w = 0 on AF then w=0.
PROOF. We shall give an argument in the particular case F = {xo} . Asume that D® = D\S_(x,) and that

M=sup |w(x)|. The function
xeD

(5.24) W,.(x):= MK, (;(lx —X, I)/ K,(ye),

is y -harmonic on D. Besides W, (x) 2 w(x) on 8D° and therefore on D°, (cf. (5.6)). Let x € D . Making
& — 0 we obtain 0> w(x) . Applying the same reasoning to — w, it follows that w(x)=0, QED.

(5.25) NOTATION. A*(D), yx 20, will denote the family of y -harmonic functions in the region D. We

shall simply write A(D) whenever y =0. If u € A*(D) (for some X >0) we shall also say that u is
metaharmonic.

THEOREM. (Principle of the removable singularities). Assume that u is % -harmonic and bounded in

D\ {xl } Then, u can be extended as a continuous function v(x) on D in such a way that v € 4% (D).
PROOF. Let F = {xl} and assume S, (x,) © D. As we shall see in theorem (5.34"), there exists a function
ve A*(B,(x)), continuous on S,(x), such that w(y)=v(y) for ye z,(x;). Call
w(x):=u(x)—v(x). Then, w=0 on T p and is continuous and bounded on S, \F. From the theorem
(5.23) we obtainthat w=0 onD, QED.
(5.26) THE KERNEL Pl. Our aim is now to construct the analogous of Poisson's kernel on the disk of
radius o and center O corresponding to the problem:
(A—Zz)u =0, u(pei“”):f((p), ~r<p<nm.

After separation of variables in the differential equation, we have:

" "
L 4% o
The periodicity of @ implies that d(@) = A cos np + Bsen ng,n=0,1,2, ... and R is a solution of

(527) u=R(r)o(p),

2
(5.28) l(rze')'—g— Z’R=0, 0<r<p.
r r
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" The bounded solutions of (5.28) are multiples of R, (r)=1,(yr), where
(5.29) I(z)=e""J (e"*z), -m<argz<m,

(2/2)n+2k

is the modified Bessel function I, (z) = z )

Then I,(yr)(Acosng+ Bsenng), n=0,1,---, are bounded solutions of (5.27) on B,(0) and they are

% -harmonic functions on R*.

We assume that the continuous periodic function f in (5.26) has the Fourier expansion

flp)~ i (a,cosnp+b,sen ng). Then {a, } and {b,} are bounded sequences.

n=0

Define,

(5.30) u(re'®) = ZI ((;gr ) oA (g cosng+b,senng),
n=0

It is known that (Zr) <| / pl , (cf. [Wb], pgs.149-150). Moreover, (cfr. Note 31),
) " J +C.

(5.31) Ms|r0/ |(L——j2 for r<r<p.

1,(xp) (%)

Then, one obtains from (5.30),

(5.32) u(rei"’)—z—-ll((lr) If( ) ds 21 ((Zr) Icosn(s p) f(s)ds=

1 L) 1,(rr) -1
jf( )[2 L (2) ; Ty (p)]ds jf(s)P (7,35 — p)ds,

since, for r <7, < p, both series converge uniformly.

By (5.31) the derivatives of u(re'”) can be evaluated term by term in r <7, < p, so u(re’’) is a

metaharmonic functionin r < p.

Assume now that annl + Ibn |) < 0. This holds, for example, for f of bounded variation

satisfying some Holder condition (cf. [Z]); in particular, for f absolutely continuous with f'e I?. Then,
1 n

(5.30) converges uniformly for » < p to a continuous function, equal to — J‘ f()P,(r,p;s —@)ds on
/3

-7

B,(0) and equal to fon X (0). Therefore, in this case,
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(5.33) THEOREM. The function u(re’®) constructed in this way is the unique solution of the boundary

ul,, <[71.-

(5.34) DEFINITION. For0<r < p, -7 <t <,

problem (5.26), (cf. (5.2)-(5.8)) and verifies,

N LG & L)
L= o 2T

(5.34") THEOREM. &) P, is a positive kernel, that is,

. B O . o1 .
hP,20; i) ;_;[Pl(r,p,t)dtr;rpl, i) — IPx(r,p,t)dtrT:O.

lt|>&

B) Assume that O(¢) is a real, continuous, periodic function of period 27 . Then,
. 17
(5.35) u(re’)y=— I(D(S) P,(r,p;p~s5)ds,0sr<p,
4 -7
is such that (A -7 )u =0 on B,(0) and forany p € [— ﬂ,n’],
(5.36) lim u(rei‘” )= D(p).
rtp

If u(pe’?) := ®(¢p) then ueC(S,). Besides, ® >0 =>u >0.

PROOF. &) In view of (5.33), ) is true, for example, if the periodic function ® € C”. By the maximum
, 17

principle, ® >0 implies wu(re’’)=— J'd)(s) P (r,p;0—5)ds=0, (cf. (5.8)). If we had
7[ -

P,(r,p;0) <0 we would have P, (r,p;t)<0 in an & -neighborhood of &. Assume that @ >0 with

support contained in (— g, 8). Then,

. 17
u(re'®) = p .[CD(S) P, (r,p;60 —5)ds <0, a contradiction and i) follows.

if) On the other hand for ® =1, 1 IPZ(r,p;t) dt = 1o(zr) - 1.
T I, (xp) rp

iii) Assume now that @ = ICD| eC” (— 7r,7z), O(0)=0, @) =1 for It] > & . It holds that,

j P,(r.pst)dt < [P,(r,p3t —0) () dt =7 u(r) — 7 D(0) = 0.. Therefore, ) is true.
r->p

lf>
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) A continuous periodic function @ can be uniformly approximated by indefinitely differentiable functions
{d)n } Calling  and u, the functions associated by (5.30) to @ and @, respectively, we get from i), ii) and
(5-33) that u, converges uniformly on S,(0) and to  in B,(0) and to ®@ on Z p(O)'. Then f) follows,
QED.

It is possible to extend f) to a related problem for circular sectors, (cf. note 20). Note 21 deals with the

behaviour of metaharmonic functions under a conformal change of variables. Note 22 is devoted to
metasubharmonic functions. In note 23 a proof is given of theorem (5.10) in a conspicuous particular case.

Note 24 deals with normal families of J -harmonic functions. Next theorem is a more general formulation of

Th. (5.23).
(5.37) THEOREM (Phragmén-Lindel6f's maximum principle). Let w(x) be a y -harmonic function on the

plane region D, continuous and bounded on B\F, where F = {xo,...,xn_l}c oD. Call
N := max{0,sup{w(x) : x e 3D\ F}}.

Then, N 2w(x) on D\F.

PROOF. For the sake of simplicity we prove the theorem in the case F' = {xo}. Define for z fixed and
M=sup {|w(x)| :xe D\ F},

Ko (fx—x,))
Ky (xe)

Then, on a(D \S, (x, )) we have W_(x)2w(x). Therefore, W_(x) > w(x) on the closure of D\'S,(x,),

W, (x)=M +N I (zlx-2)).

(cf. (5.6), (5.8)). Assume x'e D fixed. Letting £ > 0, we obtain N I( ;(Ix'—zl) > w(x") on D. Next,

letting z—>x', we armive to N2w(x'). Thus, N 2w(x), for any xe€ D\F,
QED.
(5.38) THEOREM. If D is an infinite finitely connected region such that the proper boundary J = 0D is a

bounded set then theorem (5.37) holds whenever  lim w(x)=0.

xeD,x—>®
PROOF. Let D, := {x eD: |x| < R}. From the preceding theorem we get,
w(x) < max{O, sup{w(x) ixeJ\ F}, sup w(x)} < max{N,s}.
[x|=R

If R —> o then £ > 0. In consequence, W(x) < N, QED.
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Applying (5.37) and (5.38) to — w, we get with the same hypotheses,

(5:39) COROLLARY. |w(x)| < sup{[w(x)l :xedD\ F} forall xe D\ F .
(5.40) THEOREM. Let % € C*(D) (1 C(D) be a solution of the problem
(5.41) (A ~ 7? ) u = h in the plane region D, u=¢ on oD.

Assume that |h| <M and that |¢l <m, Mand m constants. Then, if x € D ,

(5.42) |u(x)| <sup {]\1 / xz,m}.
PROOF. We can suppose that u is not a constant. Define v, =tu-M/ ,1'2 . Then,
(A - Zz)vi =+h+M 20 onDand v, <m—M/x* on 8D. Since v cannot reach a positive maximum

on D (cf. (5.5)), we have v(x)<sup {O,m—M / zz}, xeD. In consequence, *u <sup {m,M / z’},
QED.
(5.43) MEAN VALUE FORMULA; HARNACK's INEQUALITY. Let u be % -harmonic in the plane

region D and assume that S, (0) c D. From (5.35), we get,

2z
fure*ydti2n  [u(x)do’ ()

I

(5.44) u(0)= -2 = forr<R.
I,(ar) [, do” (x)
|x]=r
That is, %(0) j L) do’ (x) = j u(x) do’ (x). Then,
Jx|=r |x|=r
[ _L u(x) dx
(5.45) u(0)=
It o(xlxl) dx’
This is the mean value formula, which 1mphes the inequality
(5.46) |u(0)| o u(x) dx].
_ ou | ou ou | 1
Applying (5.46) to Fo 55(0) < J’L(O)éx—idx =—3|[ o4 v ds <= ma;c] |

Thus, Harnack's inequality follows,

Ou
Ex—(o)

1

(547 <2 = u(x)|.
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~ (5.48) UNIQUENESS OF THE SOLUTION OF THE NEUMANN PROBLEM FOR THE
METAHARMONIC EQUATION WITH A =-%°, z>0.

Until now we have estimated derivatives of a solution u by means of the same solution . and data of the
equation, (cf. (5.21), also (5.47)). Next we shall see an inequality in the other direction, appropiated for
Neumann problem. It is an interesting result on the subordination of the supremum of the modulus of the

function to the supremum of the modulus of its normal derivative.

Let U be a C?-Jordan region. That is, U is an open set with boundary a simple C 2 _curve J, (cfr. note 3).
These regions have the (uniform) ball property. That is, there exists an R >0 such that for every x € oU
there is a disc K, < U , of radius R, verifying K, N"oU = {x} This is achieved by taking, with the notation
ofnote3, R<H/2.

When dealing with such regions we shall always suppose that R satisfies this inequality. If xzyekK, andy
is on the interior normal n, then ¥ denotes its symmetric point with respect to the tangent to J (or K,)atx.

NB. What we have said about a bounded U holds for R*\U .

(5.49) THEOREM. Let D be an open set witha C ?_Jordan boundary J and with the ball property satisfied

with a radius R such that either

a) D is bounded or else b)) R*\ D is bounded.

— ou
Assume that € C*(D)NC(D) is such that n exists at every point x € 0D. If u verifies
n

X

Au— y*u=0 in D, and in case b) also that u(x)| l—) 0, then
X|—>©

(5.50) max |u| < Lo(2R) max| Ou I
xeD ZIO'(ZR) xedD Ianxl

PROOF. It is sufficient to consider the case u # 0 with sup lu( y)| =supu(y). Then, from (5.37)-(5.39) we
eD

yeD y

obtain, mal_gclu( y)|=m%c u(y)=M <. Also, M =u(y,) for a certain y, € 0D . Suppose that 0 is the
ye ye

centre of K, and that x belongs to the segment (0,y,) of length R. Then, u(x) < mcgg|u( y)| =u(y,).
ye

o 2n _
Recall that [ (7) = Z (r/2)2 and so v(z2) =M Lz IZ Ol)
n=0 n') IO(ZR)

Besides for IZ—O|=R, v(z)=M >u(z). By the maximum principle we have v(z)=u(z) for

satisfies also the equation Av— y*v=0.

zeK, = {z :lz-0]< R}. Moreover, v(¥,) = u(y,).
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In consequence, (0 <) u(¥o) — u(x) > v(Yy) —v(x) > M X' (R)

Thus,

o= a=A e LGRS
- ou >M 2o (ZR) . (5.50) follows from | — = [maxlule, QED.
on,, I,(xR) tleey, o ) L(ZR)

(5.51) COROLLARY. Let D be a C*-Jordan region as in Theorem (5.50). Assume that
= ou

ue C*(D)NC(D) isa y —harmonic:function on D satisfying a—(x) = @(x) for x € 0D. Then, u is
nx

the only function with these properties.
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CHAPTER 6

(6.1) NEUMANN PROBLEM FOR THE METAHARMONIC OPERATOR.

We shall study the interior Neumann problem in a C 2 _Jordan region D satisfying the ball property with
radius R, (cf. (5.11), (5.48)).
Let p be a continuous function defined on J, the boundary of Dand ¥ > 0.

The simple layer potential of density p is defined by, (S = length(J) = (J > ),

N
w(P)=w,(P;p) = [p(t) Ky(2|P-Q)) .

w,(P;p) is x -harmonic on DU D, where D, := R*\D.

(6.2) THEOREM. 1) The integral in (6.1) exists in the usual sense, i.e. absolutely for P e R . wP)isa

s
continuous function on R’ . In particular, at Q, € J takes the value w(Q,) = Jp(t) K( ZIQS - Q,|) dt.
0

2) w(P) —> 0 whenever P —> o and W : p — w belongs to B(C([0,5]),C(R?)).

PROOF. s is the arc length parameter that increases when the
y y=9(x)

corresponding point O, moves along J in the positive sense. Taking into

1

account that log” ™ :=sup(0,—logr) € C(0,), we have:

6.3) K,(r) =log*(1/r) + F(r), F(r) € C[0,00)n [*[0,0).

Then, if P ¢ J, we have,

Fig.1

(6.4)

N N
W(P)= [p(0log' ——dt+ [p(OF(2|P-Q)dt=L(P)+S(P),
0 t 0

[P-0|

where S is a well defined, bounded and continuous function on R? . Let us consider L(P), (see fig. 1). Define

s+&

I,(P)= |lo(t) log'|P - Q[ dr . Then,

§—£&
hZ

_hl

S+&

1, < (lo(t)loglP—Q)|dr < max|p]

logJ(x — A)? +(@(x) — B |(1+ ¢ (x)?) 2,

where h, —> 0 if £—> 0. In consequence, for & sufficiently small and P near enough to J, there is a

constant M such that,
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hy hy+hy
I, <M|p|, ”log]x - A"dx <2M|p|, _ﬂlog x| .
0

_hl
The last integral is o(1) for £ — 0. Therefore, the integral in 1) exists, (cf. (6.3)), and also the integral in

(6.1) exists. On the other hand, the following integral defines a continuous function in a plane neighborhood

$—& . 1
of O, IP(’) log I—E_

I dr , where Q, runs from Q,,, to Q,_, in the positive sense of J. From this
{

S+&

s
we obtain that L(P)= I p(t) log* l dt is a continuous function at each point of J, and therefore, at any
0 '

|
|P-
point of the plane. Thus, 1) is proved. 2) is left to the reader, QED.
The double layer potential of density p is defined by

S
69 wP)=uPip)= [p0) = Ky(AP-O dr,

PeR?, n, is the interior normal at Q,, where the derivative is calculated.

(6.6) a=d(P) will denote the function equal to 277 on D, equal to 7 on J and equaltoOon D,.

s
Let w(P) = Ip(t) Ky ( ZIP -0, l) dt be the simple layer potential as before.
0

{ :I(P) [ } (P) the suffixes i (interior), e (exterior), stress the fact that Pe D is on n
-‘ e

PeD, is on —ng, respectively. In the case that P=(), € 0D, the same notation indicates that the

derivatives in the direction of the interior normal are calculated from the interior or the exterior, respectively.

(6.7) THEOREM. 1) The function of (s, t) I) is continuous on {s#&t} and

S

€ I*((0,S)) for fixed s. Moreover, it is essentially bounded on (0,5]x (0, S].

I) dteC([O,S]), even for peL’([O,S]). This holds also for

y 0
2)  C(s)= ij(t o

-0 ar.

() = jp(r)

3) The following limits exist for Q € n, and for Q € —n, respectively and
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le_)né[u+[§:j J(Q) u,(s)+C(s) = lzm [u+[ ] J(Q)

I) dt is equal to d(P)+V(P), where V(P) is a

4) Assume p =

continuous function on R? such that V' (0) =0.

5 2
on, |,

] ©)+7p(s) = C(s) = [ e
. n,
6) u,(s) = le')ngzs u(Q) for Qen, and u,(s) = Qlirgs u(Q) for Q € —n, exist and

} (Q,)— 7p(s).

u,(5) = u,(8) = mp(s) = u, () 4, (s), (1, —,)(s) = 2(; —, Xs) = 27p(s).
NIf u(P)=u(P), Pe D, u,(P)=u(s), P=0Q, then u,(P) e C(D).
Analogously, u,(P) € C(D,).

PROOF. For fixed Q # Q, and for fixed 0, # O, respectively,we have, (cf. fig. 2),

a|Q ol _

l

= ZKO'(ZIQ —Qll)' ['— COS(Q _QI’”I)] = —ZKO'(Zlg - Qt|) cosa .
IQ A

S

(6.8) ——K (-0 = 1K' (Zo -0 )——=

0D =2K," (A0 - 0p——" = 2K, (#|Q - Q.. cos(Q - Q,.7n,) =
= K, (2|0 - Q.])-cos B.

Fig. 2

)

| 0
(6.8) and (6.9) are continuous functions of (Q,(Q,) on the set {Q # Q,} In particular, 7 Ko
nt

is continuous on {S # t}.

For s near to ¢ we have, (see figs. 2 and 3),
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610)  [cosa—cos B <|a - B|=|dng(n,,n)

Also, |cosA| |sene| |Q “Qll ( |£|z’2 QQ'| . Thus,
(6.11) | lcos 4] =00, - 0.

For O =, we have 4=« and for a certain constant M, we obtain, (cf. (6.10)),

(6.12) |cos(7r - 7)| = |cos ,B| < Icos AI + IAng(ns,n, )| < Mls - tI ,

in fact, there is an 7> 0 such that if the subinterval of J; J(s), centered at Q, verifies (J(s)) <7 then
Fig. 3 cosy <1/2. Then, from

a’+b* -2abcosy = IQ—Q,I2 >

2a’+b*—ab>(b-a/2)’ +(3/4)a>

>(3/4)a’ =3/, - 9f

it follows that
©6.13)|0-0,|= (\3/2)|g, -

Since IS - l‘| > |Qs - Q,I , we have Is - tI ~ |Qs - Q,| On the other hand, we have

t
(6.14) |Ang(ns,nt)| = ]Ang(rs,z',)l = < (sup k)ls —z‘l .

= ]k(a)da

Thus, from (6.13)-(6.14) we obtain the last inequality in (6.12). Define,
(6.15) h(Q.1) = p() 2K, (2|0~ O]

Therefore, C(s) = Ih(Qs,t)cos(Q -Q,,n,)dt = jp(r)—-K (o, - ar.

From (6.15) and note 32, we get K,'(r) — 0 and
—o- 1
©16) |K,'(zlo-o | cCe e °
I 0 | Ill Z|Q—Qz|/2

o)

The first part of 1) follows from (6.11) and (6.16). The second part is a consequence of

SCII/)IL,;ce""Q“~"'”(1+ )=

the uniformity of the estimations.
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0
2) follows from the continuity properties of v K, ( ;(le -0, |) and the Lebesgue
n

t

dominated convergence theorem. Also in the same way for, (cf. (6.8)),

S N
1,(s) = = [W(Q,,t)cos(Q, — Q,,m,)dt = ) at
0 0

3) Let u be the double layer potential with density p.For Q¢ J,Q € n_, we have,

61 Q)+ 220 = [ot) 2 Ko -0 dt+ [pt) 2 K(o -0l di =
' on, S om, " ’ S on '
N
=(cf. (68), (6.9)) = [P(D) 7K,' (20 ~ Q- cos(Q = 0,,n,) + cos(Q ~ Qo)) dt =

s
= - [n(Q,1).(cos(@ - 0,,n,) ~cos(Q~0,.n,))dt
0
If / is a small neighborhood of O, on J (fig. 2), because of (6.10) and (6.16), the integral
[l (cos(@ - 0,,m) ~cos(@ =0, m))at
1

except for a constant factor, it is not greater than

[eos@=0um) ~cosQ=0umy o jlsen(l/z)w A,
0-9| |

Therefore, if Q — Q, along n,, the last expression is equal to, (cf. (6.12), (6.13)),

(6.17")

|sen(1/2)Ang(nS,n)| |Ang(ns,n)| Mis—1|
=2 dr < ———<4M(l
,I 0-9| I 0-9| I(I 3/4)s~1 )

and the last integral in (6.17) tends to
s

©618)  8(s) =~ [A(Q,.1) [cos(Q, - 0,.n,) — cos(Q, - Q,,n)dr = u, () + C(s),
0

and the first equality in 3) is proved. Idem for the second equality.

NB. Observe that with the preceding arguments one can also prove that the function

f® =cos(Q, — 0,.n, |=

is continuous for ##s and bounded. Since lim f(t) =
=S

|2

, it is also continuously

x(8)y(s) = %(5)y(s)
2

extendableto £ = 5.
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5) We have shown that for Q — Q,, O#0,, Qe n,orQJe-ng,
: ow
lim (U(Q) + E;(Q)J— u,(s) = C(s).
If u(s):= OlinQ1 u(Q) exists for Q e n,, Q#(,, as we shall show, then it exists.
lin 270)= [ } ©).

Analogously,if © & —n, and u,(5) = lim u(Q) then [im gﬂ(g) = L;ﬂ} ©,).
= s - * nS nS e

Then, putting s instead of (J, , we would have,

(6.19) u,-(S)-u;,(S){ ](S) C(s) = u,(s)- ub(S)+[ ](S)

Therefore, whenever 6) holds for some p, 5) also holds.

4) To prove 4) recall that if v is the conjugate function of the harmonic function u then from the Cauchy-

Riemann equations we obtain,
—aicosﬂ +—a£senﬂ = @cos(ﬂ +7/2) +@sen(/5’ +7/2).
ox dy Ox oy

Applying thisto Log(z) = loglzl +iArg(z) we have,

da,

ds ()

9 E
——IloglP —
on, gr-0. a(-n)

and, (see fig. 4),

S a ~ S
(6.20) Ja—nslog|P —o'ds= Ojda,,(s) =d(P).

Let X(t,r):=e™" /(t3 +12417 -1 —1), (cf. note 33). Kelvin's function can be written for C a constant and

r>0 as:

© 1 ©
Ko(r)= (e /NP ~1)dt=-logr + C + Jee' =nyrdr + [Xa .
1 r 1

1 ©
(6.21) (a/ans){logl/r%C + j(e" —1)¢7'dt + j(e'"/(t3 +£24P -1 —t))dt],
r 1
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s
we obtain, Ip(s) —a—K0 (;(IP - Qsl) ds =
5 on,

G on, | P +2VP -

s 1 - w o 1P l¢
=d(P)+ j[—a— j Lar+-2 j dt}ds =d(P)+V(P),

S
©22) V(P):= [vw(P-Q,

0

s[1_ -2P-0| = -2|P-0,lt
; -0l (VA 1(E -1+

S1— -2|P-0. s -2|P-0slt

e e
=—y |———cos(P-Q,,n)ds + x
ZIP_Qs 0

; Jf—l(Jt _1+1)

dt} cos(P —Q,,n,)ds

=V(P)-V,(P),

- Q) =—cos(P-Q,,n,) . Hence. the functions V;,i =1,2, are defined and continuous

on R? and theytendto 0 as P — 0.

s
6) and 7). Let u(Z) := jp(s)a—fl—KO( ;(IZ -0, |)ds . Assume that p € C'. Then, from (6.8), (6.16) and 4)

0 s

we obtain,

S
629 u2)= [(p9)- pO) - Ko(Z -0,

- COS(Z - Qs’ns)
lz-0,

= I{IZ - Ok, (HZ - 0. }(p(S) - p(O)ds + p()(d(2)+V(2)) =

S
- JO(I)%%st + p(d(2)+V(2)).

Suppose Z € J,=6 — neighborhood of J. If @ is small enough, because

Fig. 5
of the ball property, there is a unique @, on J such that
|Z —Q,| = distance from Z to J , (see fig. 5). 0

e=gl-al,
0.7

Thus, t =#(Z) and

For o near to s we obtain I o- sl/ 2< |Qa - QSI and therefore,
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0()p(s) p(t)—-O() IS t, _0(1) I 0(1)

Also, Z—>Q =0, —>Q, =t—>s.Then, Z — Q, implies p(t(2)) = p(h).

Therefore, the second integral in (6.23) tends to a number L(%) independent of the way Z approaches O, .
Thus,

(6.24) L(h)= f 2K, (0, -0 - 0,,1))(p(s) ~ p(R))ds +.

+p(h)(d(Q)+V(Q,)
s
Besides, L(h) € C([O, SI). In consequence, u(Z) = J',o(s)ga—K0 (ZIZ -0, l)ds has a limit for Z — Q
0 nS

h

that depends only on the set D, = D, J, D, containing Z and we have,

(6.25) L) =u,(h)-Qr+V(h)p(h) ZeD,
(6.26) L(h) = u, () — (7 +V (h)) p(h) ZelJ,
(6.27) L(h) = u,(h)-V(h)p(h) ZeD,.

With the same abuse of notation as before, we write V' (k) :=V(Q,), L(Q,) = L(h).
(6.28) It was proved that if p e C', u,(h) and u,(h) exist as limits independent of the way Z approaches
Q, as far as Z remains in D or in D, respectively. A consequence of (6.25)-(6.27) is that (6.19) is a valid

formula. And 6) and 5) hold for p € Cl .

Let us return to #(Z) = jLo(.s) p(l(Z))] K(;{lZ ~0.\ds + p((ZINA(Z) +V(Z)). The integral

%]

isequalto L(Z) = I{— ZKo'(l’IZ - Q,I)COS(Z — Q,,n,)}(p(t) — p(1(Z)))dt . Since J is a compact set, il

(=]

Z,Z'eJyand Z—Z'¢ J then t(Z) > 1(Z'). Then, L(Z) — L(Z'). Thus, L is a continuous fimction
ondJ,.
Therefore, from 1(Z) = L(Z) + p({(Z)X(d(Z) +V(Z)) we conclude that the double layer potential (P)

is continuously extendable up to the boundary as well for Pe D or forP e D, . So, 7) is also proved if

peC.
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(6.29) Assume that { P; }C C' is a sequence that converges uniformly to p € C and call , ;,u, ;,u, ; the
functions associated to the double layer potential u; of density p;.Let us prove (6.26) for p € C . Because
of u, ;(s)——>uy(s), it follows that L J(8)——> L(s) = u,(s)—(w +V(s))p(s). In consequence,
u, (5)——>U(s), wu,;(s)——>W(s). The sequence of ¥ -harmonic functions {u (P):Pe D} which
are continuously extendable up to the boundary, converges uniformly to 4(P), (cf. (5.37)-(5.39)), a_ 1 -

harmonic function on D, continuous on D that verifies on the boundary: A(s)=U(s). However,

S
u;(P)—> u(P)= j p(s)ga——Ko( Z|P—Q,ds,PeD. That is, 4(P)=u(P), U(s)=u,(s) and (6.25)
0 n

s

holds for peC.

Moreover, we get u,(s) € C([O,S]). Also, u,(s) = Qllrg u(Q), Q€ D, and not only for Q on n  as was

originally defined.
Let us prove (6.27) for p € C . It holds that u, ; () =0, (cf. (6.16)). Also, given & > 0 there exists m such

that for |P| > m and any j we have

U, j(P)\ < g. Thus, we can repeat the preceding argument but using this
time the theorem of maximum of Corollary (5.39), proving so (6.27) for p continuous. On the other hand,

u(P),P¢ D, is continuously extendable up to dD ; therefore, we can arrive to similar conclusions as in the
case PeD.

In particular, u(P) € C(D), u(P)e C(D,) for peC and 7) holds. Then, 6), (6.19) and 5) also hold for
p continuous. Thus, Theorem (6.7) is proved, QED

(6.30) Next we prove the fundamental result for Neumann's problem of existence and uniqueness of the

solution of metaharmonic equations. Recall that if o(f) is continuous then the simple layer potential
s

w(P) = j K, (z|P-QDp(t)dt € C(R*) N A*(R*\8D).
0

The derivative of w(P) at Q, in the direction of the interior normal #; is, (cf. (6.7)),

ow | %0
[5— (s) = —7p(s) + C(s) = ~7p(s) + [—Ko(21Q, - QDo)
n |, o on
and from the exterior is,
ow | 5 8
o | )= 70()+ C(s) = 7p(8) + [ = Ko (210, = QD0 .
n, |, 5 on,
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Then, because of (5.51) we have i) of the following theorem.

s
(6.31) THEOREM. i) If peC then w(P)= J-Ko( ZlP—Q,l)p(t)dt is the solution of the following
0

problem: Aw- y*w=0onD, we C(D), [g—w—J (8) =-7mp(s) + C(s).
n, |

s Ji

i) If p(¢) verifies —7p(s) +C(s) = 0 then p)=0.

. e Ov
PROOF of ii). The hypothesis implies that for any s, [a—v] (s) =0 =—7p(s)+C(s) .Because of theorem
n, |

§

(5.49), we have w(P)=0 for Pe D . Since w(P) 2 0, again by (5.49), we obtain w(P) =0 also for

PeR*\D. Then, 0= ,:?J () =7p(s)+C(s). Therefore, p(s)=0,
n, |,
QED.
(6.32) DEFINITION. K(s,f):= 9 K22, -0 0.-0) s K*(s,0):= 9 K(0.-0) ) .
on, /4 on, T

Thus, K *(s,t) = K(t,5) . Because of 1), 2) of (6.7), both are bounded kernels on [O,S ]x [O, S] that define

completely continuous operators, onc adjoint of the other, that we call K and K*. Precisely, they have finitc

Hilbert-Schmidt norms and
s s
K(p)=C(s)/7 = [K(s,0p(0)dt,  K¥ p)=u,(s)/7 = [&*(s.0p@)dr.
0 0

Morcover, K, K*e B(L'([O,S],C([O,S]). From ii) of theorem (6.31) we know that A =1 is not an
cigenvaluc of K. But then, from the theory of completely continuous operators it follows that K-1 is

surjective mapping from I* onto I*. Then, for any /1 € C(J), the equation,

. S
(6:33) "fr—” =—p(s)+ [K(s,)p(0)ddt =(-1+K)( p).
0

has a solution p € L. Necessarily, peC()).

Ow
Because of i) of theorem (6.31) we have [5—:, (s) = m(=p+Kp)(s). Then, the next existence theorem
n, |

s Jdi

holds.



(6.34) THEOREM. For any he C(J) there exists a p € C(J) such that the simple layer potential

s
w(P) = IKO( ZIP - Q,I)p(t)dt is a solution of the following Neumann's problem:
0

Aw— y*w =0 on D, we C(D), [gﬂ} (s) = h(s).

nS

(6.35) THEOREM. i) The Neumann problem for /2 € C(J), (n = interior normal),
2 —. Ow
(A-y )w=0,weC(D),a—(x)=h(x), xed,
n
has a unique solution w.

S
ii) It is of the form w(P)=w,(P) = j K, (x|P -0 p, (Ddt with p, € C(J).
0

iiiy T=(1/7)(-1+K) " is a surjective continuous mapping from I ([O,S ]) onto I ([O,S ]) .
iv) T:h— p, is a suryective continuous mapping from C ([0, S ]) onto C ([O,S ]) .
v): The mapping T : & — p, is continuous from L’([O, S ]) into I/ ([O,S ]) .

PROOF. i), ii) The existence of the solution is asserted in (6.34). The unicity of this solution is a consequence

of the subordination principle (5.49) of chapter 5.

iv) From (6.33) we get (-I+K) ™' (h/z)=p. Thus, if h—> 0( C([O,S])) then p — 0(L*(0,S)) and
therefore o —> 0(L'(0,5)). Then, K(p)—>0(L*(0,S)). Since K(p)eC([0,S], we obtain
K(p)—>0 (C([O,S]) ). From (6.33) we know that pPE C([O,S]) and now that p — 0 (C([O,S]) ).

v) Let us see that T € B(Ll([O,S ], Ll([O,S ]) .K:I' > L is a completely continuous operator that has not
the eigenvalue 1. From Fredholm theory of Banach spaces we know that Vh e L 3pe L' such that
~-#K)(p) = h/ 7. Thus, (-I+K) 1.I' 5 I' is a bounded operator that defines a bijection on L. In
particular, since (-I+K) ™ (h/7)=p, we get for h€C that h—> 0 in L' implies p=p, >0 in L,
QED.

(6.36) Recall that if # € C'(D) and D has the ball property we say that » has a normal derivative extendable

to the boundary if for any x, € dD there exists the (finite) limit /im Vux n, n is the interior normal to the

RN

ball at x, and x € D runs along n, ((5.11)).

DEFINITION. We denote N(D) the familiy of these functions that belong to C*(D)NC (D), (see note
25).
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NOTATION. We denote J° =J;ND= {P e D:dist(P,J)<d } and write sometimes Q=" if

QeD,Qen, Q#0,.

(6.37) THEOREM. Assume D and w are as in (6.1). Then, i) we N(D),

iiy Vwe L'(D) and "Vw"1 <M ”p”w where M = M(D, y) is a constant,
iii) a_nx € C(J's).

PROOF. i) follows from (6.1), 2) (6.2) and 5) (6.7).

i) V [Ko(2|P - QDo) = [ 2K, (2]P - Q)VIP - Q|p(t)dt implies

Do(t)dt

S N
C
< [ulKo G - Ol < el [r5=5
0 0 !

(cf. (6.16)), where C is a constant. Then,

dpP
[V, < el Idt S scaslol, [ 5= M.
»IP=0| ] |

|P|sdiamD

iii). We know from (6.7) that the double layer potential u with density p verifies # € C(D) and takes the

value u,(s)eC ([O,S 1) in the boundary. Therefore, we have for A(Q", '), that

(cf. (6.17) and 3), 5) of (6.7)),
ow s
5n—(Q‘) = Ih(Q’,t)(cos(Qs -Q,,n,)—cos(Q° -0,,n, ))fit —u(Q°) > u,(s)+C(s)—u,(s)  =the
s 0
sum of three continuous functions. We shall prove, for 0° — Q. , that

S
(6'38) J.G)(Qs:t)dts ®(stt) = h(Qs,t)(COS(QS - ans) - COS(QS - ant))’

converges uniformly. Since u(Q’)——>u,(s) , it will follow that
Q: 9QS

(6.39) o (Q7) converges uniformly to ow (Q.).
on on,

s s

After fixing conveniently the origin of the parameter ¢, (see Fig. 2), we have for s € (— el2,el 2) ,

©640) (@)= [e@.nd—— [0(Q,ndi=1,0,).

te(-¢£,€) te(-£,¢)
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On the other hand, (cf. (6,16) and (6.17")), we obtain,

(6.41) j@(Q 0)dt| < M, J] (t)l_lng(—in_)‘d <M. |s:t| |l <

s — 1
<2, [} -t lol o= e

with M independent of s. Then, from
Q) =1,(0")+0(s) = [(Q°) £ I (Q,) £ I(Q,) + O(¢) = I(Q,) + O(¢) ,

we get the local uniform convergence and from this the uniform convergence on all J, proving that (6.38)
converges uniformly and then (6.39).

A consequence of this fact for our regions is that

(6.42) % ©,)eCW).

ow e
(6.39) and (6.42) imply that -a—(Q) is well defined and continuous on J°,  QED.
n

L' (DK (r) 1
1,(7) rly(r)

|)—')h(Qs,t) , uniformly in a small neighborhood of s and uniformly in

Since K,'(r) =

, (cf. i) (5.19)), we have, for ¢ outside a neighborhood of #=s, that

h(Q’,

P, whenever " ,0"00 remains bounded.
(6.43) THEOREM. i) Assume we have a family IT = {p} cC ([O,S ]) for which there is a constant C such

that for any p € II it holds that ||p||w < C <. Then given & there exists a  such that for any p eIl

and s,

Mo (gry- e
on, Q on,

ii) The same holds if for any p € I1, "p”2 <C<ow,

observation and using more precisely (6.40) and (6.41).

(6.44)

PROOF. i) The same proof as that given for iii) of theorem (6.37) but taking into account the previous
ii) In this case instead of (6.41) we use

8 |dng(n,.n,) =1 Y o

Jo Oy < Mol | e | < Mol Vo

M ) =\e. -9l

obtained by means of the Cauchy-Bunjakowsky-Schwarz inequality. With a similar approach we arrive to an
analogous of (6.40), and ii) follows, QED.

<M, ]]p(t)|
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CHAPTER 7

(7.1) GREEN's KERNEL FOR THE METAHARMONIC OPERATOR A — ,’(2 .

Green's kernel G(p,q;/'t), A=- )(2, % >0, for Neumann problem is defined as follows,

(
G(P,q;ﬂ)==El;Ko(le—ql)—H(p,q;ﬂ), p.geD
(a, + A )H(p, q;/’t)—O H(p,.;A)e 4*(D)NC(D)

0
. H(p,q ,1)— ) gedD,peD
Lo,

A

Because of theorems (6.35), (6.37), of chapter 6 we know that H(p,.;A) is uniquely determined and belongs
to MD)c C(D)NC*(D) and also to A*(D)N H'(D). Fixing pe D, the function G(p,;A) is
positive near p. If G(p,q;4)<0 for a g€ D then it would have a negative minimum on at a point

g, € 0D and (cf. (5.10)) its exterior normal derivative would be negative there, a contradiction. Thus, the

next result holds.
THEOREM. G(p,q;1) = ?I—Ko(llp - ql)—- H(p,q;4)20, peD, geD.
V4

(7.2) Recall that &D is, by hypothesis, a curve C* and that
J=0D,J° ={P e D:dist(P,J) < 8} and as usual, J; = {P € R? : dist(P,J)}< 5

We can introduce in Js, & sufficiently small, say 0< 6 <&, <1, coordinates (s,7) € (0,S)x(~6,5)

dist(P,0D), PeD

where P = P(s,r)en, and r = .
—dist(P,0D), P¢D

The mapping P = (x,y) — (s,r) and its inverse are C’-mappings with (non null) uniformly bounded
jacobians, (cf. note 3).

If Pen, and P e J we write P, instead of P, in accordance with our notation in Chapter 6. If P € 1, and

PeJ’\J, we write sometimes P* instead of P, as we already did. The following four lemmas collect very
useful auxiliary results.

(7.3) LEMMA (data lemma). There is a constant M independent of P € D such that,

] 1 &
i) hp(s) = EEKo(ZIP—QS

s
) verifies ﬂh,,(s)|ds =”h,,"] <M<ow.
0

ii) In general, for £ >0, ||h,, "M is not uniformly bounded as a function of P.
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0
OOF. i) — K \#|P -
PROOF. i) - (7P -0,

s

)= 0 log |P lQ +v(|P—Qs|) where, (cf. (6.21), (6.22) and note 33),

on,

w(|P -0, o

b

_xlP-g = -21P-Qslt -
)= 1-e B e &t ZaIP 0,
2AP-0) (V-1 -1+0

is a bounded function of (P,s). To prove that "hPHl < M < o, it is sufficient to show that if P eny,, n, is

s

the interior normal at Q, € J , dist(P,0D) < &, & small enough, then,

S
jlailoglP ~Q,|ds <C(8) <co.
n

0 s

But this is the content of the basic lemma (7.5) for @ =0, .
ii) see note 34, QED.

(7.4) LEMMA (area lemma). There exists a constant C such that for any PennJ °,

A(P) = J’

Jé’

0
o log|P - Q|

s

dQ <Cs logé =O(areaJ’® Ilogarea J‘SI) .

PROOF. Without loss of generality we can assume that P € y —axis, that the x — axis is tangent to oD at

the origin and that J = {(x(s), (5)) : s € (= §7/2,8/2]}, (see Fig. 1).

; Thus, %*(s)+ y*(s)=1. Since IVQ loglP - Q“ = V’%EI is bounded

¥ Fig 1l

ng // whenever IP - QI >a>0, we shall have
. e N 0
~— T [ [=logP-0ldo = fodg =0(s).

Pt J\{P-Q|>a} Je

- Therefore, it will suffice to prove that for P=(0,y),
0 = (x(s) = ry(s), y(s) + ri(s)) , the integral

g & 0
fas ﬂé;loglP —Qldr = 0(10g5).
-& 0

Taking into account that IP - le = (x(s) - rj)'z(s))2 + (y —-y(s)— r)'c(s))2 we have

| y = y(5) = ri(s) |

F(r,s)= = 2 e(s)’|
(r:9) |(x(8) = 13(9))* + (y = ¥(8)~ r%(s))’|

0 1|0 2
9 loglP—0| = =L loglP -
% og| Ql’ 2\ % oglP-0|
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For £ and & sufficiently small we get X(s)>1/2 and l(x(s)—rj/(s))/ x(s)|>|s|/ 2 whenever |s|<8

and r < J, (cf. note 35).

If A(s):= yx(y§ $) then,

Py <L _Q-yo-n | | 4= |_J Aw-r |
RO A+ (=Y =] NS 4 )| T s AGs) =1

S+A(s) I I

1° s Als) —
Hence — IF (r,s)dr < ﬁ > (5)—r 2| r= ——— dx . Thus, due to the auxiliary result below,
8} J|s? +(A(s) - )Y st +x

A(s)

)
% !F (r,s)dr < 4log(1 + H]

a+d
2x
(7.4") PROPOSITION. Let us define for a,se€R' and 6>0, G(a):= J'ZI—I—z—dx Then,
S +Xx

a

G(a)< 410g(1 + I IJ (cf. note 36).

5

o

Integrating '[ F(r,s)dr < 1610g[1 + H] with respect to s between — £, £, we arrive to,

s
0

jdst(r s)dr < 16jlog(1+l I]d —3256/151 ":l)du.

From Ilog(yi)du = ulog(lf—lj +log(l + u), we obtain,
u u

eld

£ é

Ids IF (r,s)dr <326 (ulog(ﬂlJ +log(u + 1)]
u

~& 0

0
The first summand in the parenthesis of the preceding formula is a bounded function on the positive axis. In

consequence,

jds j F(r,s)dr <325 (C+log 8;5)
Thus, for fixed £, & small, it holds that,

jds jF(r s)dr = O(8)(O(1) + log ™) = O(1)8 log; QED.

-&
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(7.5) LEMMA (basic lemma). Let Q€ J; and p, = p.(y)=P, + yn,, where P,€dD, -6 <y<é.

ds is bounded, as a function of y and Q, for &

S .
Then, the integral [ =1(y,0)= ﬂ%loglps _QI

0 s

sufficiently small,

PROOF. The definition of p, implies dist(p,,0D) = | yl . Therefore p, € J; and could be equal to Ps or
not. We assume that we have a coordinate system as in the previous lemma and also that Q =(0,v).
However, unlike lemma (7.4)), here the integration is with respect to the length parameter s. Recall that

1-x* = 7* = O(s%), (cf. note 35).

. —Q|ds=1,+1,. Because of |V, loglX - Y] =

Write 1=(]+ j) ai

s

IX 7"

-&  |s>e
follows that I, < M <o, M = M(¢€). To estimate I, , observe that,
~0f =)~ 3@ + (s)+ yits)-vF

2 loglp, 0] = a((x(s) = yp ()] + (¥(s) + yi(s) - v} /oy _
on, = 2((x(s) = yp(s)) + (¥(5) + yi(s) - v))

20O OREOV QN
(x(5) = yp(8)) +(¥(s) + yi(s) - v)

For |s| <& and g sufficiently small, we have: |x(s) - y_}'i(s)|2 > |s|2 /2, %(s)>1/2. After multiplying the

D, = (x(s) — yy(s), ¥(s) + yx(s5)) ,

numerator and the denominator of the last quotient by X(s), we obtain,
[6) +5i05) =) - p (1= 5) = 23|
(57 12+ (p(s) + yi(s) = v) )i(s)

|A(s)| +Cs?
s2124 A(s)*

P
Y _
| on, oglp, Q||

where A(s) = y(s)+ yx(s)—-v..

..ilo
on 8

5

12 —QI‘ <

1
Therefore, —
2

But A(S)=y-v+y(s)—y(1—-%(s))=y—-v+0(s’). So, the last denominator verifies
212+ A(s): = s2(1/2—c|y—v|) +(y—-v) = 5(1/2-c8)+(y—v)* forsome ¢ >0.
Choosing & such that c¢d<1/4, we have s°/2+A(s)®>s"/4+(y—v)>. In consequence,

|A(s)| + Cs? - |y~ |+ Cs?
S22+ A(s)? T SPlA+(y-v)'

21 1oglp, — 0| <
2|on 8P QI<
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Then, 1,/2 < Is /4|+(;l e ds+858. If |y—v[>0, by the change of variables S=|y—VIt, we

0

obtain /,/2 < '[

-

5 ds+ 1‘+85£ <o, QED.

(7.6) LEMMA (boundary lemma). Assume that p(Q,?) is a continuous function on D x (—- S72,8/ 2]. Let

P=P +zn,ze [0,6). Then,

§/2 §/2
-0)p(Q.tydt = j ~0Dp(@.0dt +mp(Q.5),
S -S/2 S/2
8§72 a
i) 2=2(z,5) = I 5—(loglP 0, l) dt < R <o, Rindependent of z and s.
-S/2

PROOF. i) Without loss of generality we can assume that we have the same framework of the preceding
lemma and that s =0, P. =(0,0).

For z positive, we have,

S/2 S/2
I(z)=— jp(Q Nlogl(0,2)-Qldt = [ p(@, r)—logl(o 2)-Q,Jdr=
-8/2 -S/2
S/2
_ z=y(1)
e ony
J — @i+ | 2D 0 =1+ L2
= ’ 2 , =14\Z + zZ).
ERIORORS 2O+ OO-27" :
§/2
If I(z) has a limit L for z 4 0 then Ip(Q,t) logl(O,z) - Q,Idt has L as its derivative at z =0. Then, to
-8

prove i) it will be sufficient to prove the following equalities,

j (1)

a7 liml, = | p(Q, )—————dt,

70 -8/2 2( ) Yy (t)

(7.8) h’ngl, = 7p(0,0).

Using the fact that Iy( )I < M for small ¢, one sees that the integrand of I , is uniformly bounded. So, (7.7)

follows from the Lebesgue dominated convergence theorem.
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Also, the integrand of I, is uniformly bounded in z for |tl > & . Then,

£

lim,=0+lim [——>
20 20 ox ([)+(y(t)—z

PO,

If ¢ and z are sufficiently small, the denominator in the last integral verifies,
@)+ () -2 = +0(*)) +(0(*)-2)* =1+ 0(2) + O()) + 2* > (t2 + 2z )/2 . We have,

after the change of variable ¢ = zu in the last integral, that

lim /, =lim I pQ,zu)
: w2 (1+0(2) + O((uz)?) +1

lulse’ z

The integrand is bounded by whenever & and z are small enough. Thus,

w +1
limJ, = | PO 4, 7p(0,0).
o ut+l1

i1) Using the same estimations one can show that

2=y |
X () + (1) - 2)°]

(7.9) Because of (6.30) and theorems (6.7), (6.31)-(6.35), we obtain from (7.1),

S/2|

dt is uniformly bounded in z, QED.

1 S
(7.10) H(p,q:2) =~ [p,(5). Ko(2la—Q,])ds =
%3 0

S C K -
=J( o) _ f Ko(z|p—QS])).—i(—Mds =r(p.q: )~ 1(p, 454,
Nom 27’ ém, 27

where, (cf. (6.7)),

1 %08
(7.11) (p.a: ) =7 !a—mKo(zlp—Qsl)-Ko(xlq 0,)ds,

O j( [0, —6977— K20, —Q,I)dtJ Ky(2lg-Q.)ds.

Recall that K(r) =log(1/r)+OQ1), K,'(r)=e"(-1/r+O(1)).
If Uand V' are the x -harmonic functions U(:) = Ko(zlP—- I), V()= Ko(ZIQ —-I) , P#Q, on the
bounded region A=D\ {S (P,e)w SO, 8)} then we have by Green's formula,

0= [UQA- W -V (A= x*)U)dx = fwv,-vu,)do .
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Then, 0= I v, -vu )do = _"(UVn—VUn)dO'. In fact, using the radial symmetry of
8DUAS(P £)UdS(Q.£) D

Ky ( ;(H) we obtain, IU,,V = IU v,, IU,,V = IU V, . Therefore,

aS(P,z) a(0.8)  85(0.6) aS(P.z)
n(P,0;4)—n(Q, P; A1) = 0 and a) of the following proposition holds.
(7.13) PROPOSITION. a) 7(p,q; 1) =n(q,p;A), p,qeD.

1
b) There is a constant c= ¢(A) > 0 such that (er (p,q;ﬂ,) dq)? <c(Al) <.
©) 7(p,q;4) € I'(Dx D) and ||, < c(1), /|D| .
PROOF. ¢) follows from b). To prove b) define
(7.14) T(A):=( L,,sd,-mu}Kg (2ld]) dg)"? < 0.
Because of Minkowski's integral inequality and the data lemma (7.3), we have

1/2 S
( IUZ(P,Q;l)dQJ <24 ﬂiKo(zlP—Qs
3 n” J|0n,

0

MT(A)

4’

ds <

) QED.

(7.15) THEOREM (properties of Green's kernel).
) G(p,q;4)=G(g,p;4) if p#q, p,geD.
i) y(p,q;4), H(p,q;A) and 1(p,q;A) are symmetric functions.

i) [G(p.q:4)dq = [IG(p.qs Dldg =1/ 1.
D D

iv) H(p,q;A) e C(DxD); H(.q;A)e A*(D) forany ge D.

v) Given re[l,oo), there is a positive constant C; = Cy(A,r), independent of pe D, such that
1
( LlH(p,q;/I)r dg)" < C . Besides, J’|H(p,q;/1)|’dq = 0(5).
JJ

vi) H(p,q;2) € L'(Dx D), forany 7 € [1,0), and |H], < C, £[|D] < ».
vii) G(p,q;A) verifies v) and vi) with a constant C = C(,r) instead of C,.-
viii) Let ©(p) = [ H(p,q;2) §(q) dq. ¢ € L (D). Then (A— 52)@ = 0.

ix) If supp ¢ := %x (g(x) # O}C D then @ e N(D), (sec definition (6.36)).



PROOF. i)ii). Assume that feD,7>0 and recall that B, (f):= f: e —1]< n},
5, () = {x:|r—f| =7} and 5,(t) = B,(t) UT, () < D Suppose that u & N(D).

(715" D,(t):=D\S,(t); do or do,, will denote de differential of the arclength.

@16 [ G.g:a) (A-2 )ulg) dg=

n

= [ (6B + Du(g) -u(a)(B, + HG(1,4;4)) dg =
= [ (G(t.:2) bu(q) - u() A, G(t,:)) dg

Since D is a C?-region and 0H(p,.;A)/dneC (F) , (cf. (7.10), (6.37)), we can use Green's theorem to

obtain,

(7.17) LG(t ) (A- ) u(q) dg= £(G—n—ug)d0=

0
= L(G—a—Z——u——) - L”(’)(Gg‘——ua-) do,=

= iGa—” do, - j (Ga—“—uﬁ) do,.
on t-ql=n\_ Or or

In particular, if u=1, we have,

oG
7. ~ | G@t.q:4) x’dg = —(t,q;A)do, .
(7.18) I woA = [ ZHtgdo,
From the definition of G and for v a continuous function in a neighborhood of t€ D, it holds that,
(7.19) j " (t @A) v(g) do,——> = ¥(t).
-q|=
Thus, from (7.18) and (7.19) we get iii):
2 . —
1- 2 [ G(.q:4) dg = 0.

Assumethat p= ¢, S=S,(p)US, (), S,(»NS ()=, ScD.If
u(s)=G(p,s;A), v(s) =G(g,s;A) then it follows as before that,

0= L\S(uAv—vAu) ds = (.L - LS )(u%—vg—:) do=- Ls(u—g—v;—vgl—l)d

Thus, for 77 10 ,

oG
0= _L_qh u(s)g(q,s;ﬂ) do + J;_pl=” v(s)%q(p,s;ﬁ) do+ f(m),
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and f(77) = o(1), (cf. (7.1)). From (7.19) we get, O=u(g)— v(p)=G(p,q;4)—-G(q, p;A), and i) is proved.
From i) and the definition of G we obtain the symmetry of H. ii) is a consequence of this fact, (7.10) and
(1.13).

iv). Assume that {pn}c D,p,—> peD. Then, {H(pn, . ;Z,)}C C(D) is a sequence of % -harmonic
functions on D uniformly bounded (cf. (6.2), (6.35) and (7.10)).

From %H(p,q;l)= é—i—-—z—l;Ko(llp - ql), g€ 0D, p e D, one obtains

q9 q

— H(p,,q;A) —aiH(pm,q;}t)l ‘qe 6D} -0 if myn > .
n n

Su a
P15

Thus, from (5.49), it follows now that {H (p, ,q;ﬁ)} converges uniformly in C(D). But, since for x,y in D,
H(x,y;4)=H(y,x:A) wehave H(p,,q;A) - H(p,q;A),qe D.

Then, H(p,,q;4)——> H(p,q;4), g € D . This implies that H( D-q;A) is continuous on Dx D . The
proof of the second part of iv) is included in the proof of viii)

v) We already know that there exists a constant M such that if P € D then ”h,,"1 <M < . Then, from v)
(6.35), there is a constant C=C(M) such that ”p,, IL <C.
From (7.10) and the fact that K,( )(Iq - Q,I is uniformly bounded if g € D\ J?, we get

H(p,q;A) e L*(Dx(D\J?)). For q¢=0°, IQS-Qs|=yS5, we have, (cf. (6.13) and note 3),

[P, 2| = | [ (ke (20" - Q)| = O1) + O [|o, (1), flogls — 4 .

s
Hence, ﬂH (P, Qs;/llrds < A4, with 4 = A(r) independent of P and y.
0

5 s
Then, Idy ﬂH (P,Qs;/l)lrds < AJ . Therefore, v) follows.
o o0

vi) is an immediate consequence of v).

vii) follows from the definition of G, v) and vi).

viii) From H(p,q;A) € C(Dx D) we deduce that if{ ”}CD, g4, >qe€D and pe K, K a compact

subset of D, then H(p,q,;1) —.) H(p,q;A). In consequence, (A, +A)H(p,q;A)=0 and H(.,q;A) is
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X —harmonic for any g€ D. From Harnack's inequality (5.47) we conclude that if
peK cintK'cK'cD, qe D, K,,K' compact subsets of D, then,

(7.20) .Ml <2 |H(p,q:4)|

6p,. (p.9)eK'xD diSt(Kl,aK’) ’

andif pe K cintK,, g D, K acompact subset of D, then,

<4 sup [H(p,g:4)| '

(raxekb dist(K, 0K, ).dist(K,,0K")

O’ H(p,q;A)
apiapj

That is, the derivatives of any order of H(p,q;A) with respect to the components of p are uniformly

bounded for p€ K cc D and g € D . Then, (cf. notes 27, 28),

i+j

oo oH™ |
a2 e (pep) Iﬁw((p,,pz),(qlaqz);ﬂ) #(4,,42) dayda

Therefore, (A~ 72) @ = [(8, - 2*)H(p,g:4) $(q) dg =0.
D
ix) Since ¢(g) =0 in J° for some & >0, the continuity of @ up to the border follows from iv). Also, for
peJ?, @( p)= IL-%(p,q;l) #(q) dq . But, because of (6.43), %( P»>q) converges uniformly for
on On on

g esuppp, p=P° — P, € J. Therefore,

oo * 0D
(7.21) —(p)—> —(P),
on on

QED.
(7.22) DEFINITION. We shall say that v belongs to Ny(D) if veC(D)NC*(D) verifies, for

O eJ?, dist(Q*,J) =y, that aév—(Qs) converges uniformly to 0 for y — 0.
7

s

Then, Ny(D) € N(D) and aﬂ(Qx) -0.
nS

(7.23) DEFINITION. G [(15]( p)= LG(p, ;1) 6(q) dq is the Green operator applied to ¢, evaluated at p.
(7.24) THEOREM. If u e Ny(D), ¢ L°(D), (-A-A)u=(-A+ x> )u=¢ then, for any pe D,

u(p) = [ G(p,q:4) #(9) dg=Gp)p).
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If ¢ € L”(D) then o¢p € C'(D), (cf. fundamental theorem, note 26).

If ¢geLl’(D)NC'(D) then o¢ e C*(D). Accordingly, we have ueC'(D) or ueC*(D),
respectively.

We get, because of iii) of (7.15) and the auxiliary proposition of note 26, that

ou  (0G
(7.27) 2 E(p.q; )b(q)dg ,
Op ap,

i D i

and i) follows. Let us prove iii).

iy If e C'(DYNL (D), v(p) = 2L LKO(Z|p —ql) #(q) dq € C*, as we have just shown. But by ii)
V/

of (5.19), we have (A - ;(2 X——v) = ¢ in the sense of distributions and therefore also in the ordinary sense.

Since L e A*(D), (— A+ zz)u = (— A+ y? Xv — L) = ¢ and i) is proved.

if) Assume {¢n (q)} is a sequence of functions of L*(D) such that ¢,(q) — #(q) almost everywhere and

“¢"”w < A”¢”w , with 4 a finite positive constant. —Then, for any peD,

u,(p):= LG(p,q;ﬂ) #,,(q) dg — u(p) . From (7.15) and Hélder's inequality, we obtain,

0,(2) - 4, (@)= 0(1)

¢, (@)~ ¢,(q)|dg <C

(7.28) ll‘l" (p) —u, (p)l < LIG(p’ q; ll

whenever m,n — . That is, {um} converges uniformly in D and converges to #. Assume now that [, is
the characteristic function of the closed set {x e D:dist(x,J) =1/ n} Call ¢, =@ 1,. From the definition
of G and ix) of (7.15) we have, u, € C(D). Therefore, the sequence of extended functions {un} converges

uniformly to an extension of «. In particular we obtain, # € C(D).

ou’

What remains to prove of ii) is mainly a consequence of ix) of (7.15); —5——(Q°) converges uniformly
n

ou’
because of (7.21') and that 6—(Q3) =0 follows from the definition of G. In consequence, #° € Ny(D),
n

s

(cf. (7.22)).
iv) If ¢ € C'(D)NL? (D), the sequence { ”(q)}, ”¢n“°0 < A||¢”w , can be chosen in Cy(D).

Thus, 1, € Ny(D), QED.
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PROOF. Using the same notation of the previous theorem and (7.16), we obtain,

_ L,,mG(t’qM) #(q) dg = Lm G(t,g:2) (A= x)uXq) dg= It _q|=”(u%(ri — G%r”-) do, .

For 7 = 0, we get, (cf. (7.19)),

- [Ge.a:0 oy dg = ~up)~iim [ Gl.gi-2)2 (@) do=-u(p),  QED.

|e~gl=n

(7.25) The relevant fact in the preceding proof is that for any t € D,

lim [G(t,q;—x")0u/or)q) do, = 0.
-0

[t~gl=n
We proved that G defines the left inverse (~A+ 7)™ on the space (—A+ 7 YN(D)) N L*(D), (see
(8-3)). In iii) (7.26) is shown that it is also a right inverse on C'(D)(L*(D).

(7.26) THEOREM. i) Let ¢ € L”(D), p € D. Then, G[g] e (C' " L*)(D) and for i=1,2, it holds that

@/ap) Gl j%(p,q;zw(q)dq .
i) Let us call u(p)= [ G(p.g:2)¢(q) dg=G[p)p) and v°(p)= [,G(p,g:4) #(q) dg., where

s
D’ :=D\J’? . Then, v’ € C'(D)n C(D) and “u‘s - u“ — 0 for § 4 0. Moreover, ?;—(Qs) is well
0 ns

s
defined on J° , is uniformly extendable to J and —g-u——(Qs) =0 foranys. Also u=G [¢] eC(D).
n

i) Assume that ¢ € C'(D)L”(D). Then, u € C*(D) and (- A+ y2)u =g inD.
iv) If g€ C'(D)NL*(D) then u(p) =G [¢]( p) is the uniform limit of functions u, =G [¢n] e N,(D),
¢, € Co(D).

PROOF. i) u(p) = i [X(lp~ab #(@) da- [ H(p.g;:2) 9(a) dg=v(p)~ L(p). From vii)

(7.15) we know that L(p) e A*(D). Therefore L(p)e C”(D). v(p) can be written in the following
form, (cf. note 26),

v(p)=0p(p)+ [ T(p.q) $(g) dg=0p(p)+7(p).

here T(p,q) = (lp - q|2 loglp - ql) R(Ip - qlz) + P(lp - ql) , R and P being entire functions. Then,

V(p)e C*(R?), (cf. note 28). That is, u(p) — od(p) = —L(p) +¥(p) € CX(D) .
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(7.29) THEOREM. Assume that ¢ e L°(D), u(p)= LG(p,q;/i) #(q) dg=G(p)p). For any
oY 2 . , ou
9 e C(D)NC*(D), it holds that lim j I(p)— (p)do =0.
540 a’ on,

PROOF. Let p=P* € J’ and & small enough. Then,

< == —GPS,q, 2)#(q) dg = j—GPS,q;ﬂ)¢(q>dq+ Lsai;sG(Piq;ﬂ)ﬂq)dq

- . {Ea_K"(

= I(P°) + B(P").

—ql)—a—isH(PSq;z)} $@)da + [, -GlP".q:2)8ta) dg -

From the definition of G and (6.43), we have {-n}(PS,q)—){---}(Ps,q):O, uniformly on

(5,9) €[0,8]x D . Then,

)| < & whenever

I(P) = ;n— [, GP.4:4) §(q) dg -0 and

(7.30) {Siﬁ):a Dj I p)I(p)do =0.

On the other hand, it holds that, (cf. (7.10)),

0

(7.31) B(P*) = J;J T

Ko(dP* - ) o) dg - [, F(P*,q:.2) ) dg =

=BT P) =By NP = BN - [ Jpq(r) —i, (P -0 )t

Let P',qeJ’.

a s -1 s .
- q’) = alog’P - q’ + qu - q’), with v(,x —y)] a
bounded function, continuous on x # y, (cf. proof of i) (7.3)).

-1
-—Ql dQ. From the area lemma (7.4) we obtain,

Call b(P):= I¢(Q ai

0
J<. [

(P

- QlldQ = 0(5log—;—) , uniformly on P° € J°.
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Therefore, lalf’g I.Q( p)b(p)do =0 and because of (7.31), we get,
ap’?

(132) lim [8(p)B,(J°)(p)o =0.
ap’®

* We want to prove that

(7.33) lim [8(p)B, (I )(p)do =0.
an’

41
P? —Q,I dt . Note that due to the data lemma (7.3) and V)

s
s 0
Define h(P*):= [#(Q)dQ [po(t)—1log
;o 5 on,
s
(6.35), ﬂpQ (t)ldt is uniformly bounded on Q € D. Thus, because of (7.31), it will be sufficient to prove
0

that {;zivg aDJ;S( p)h(p)o =0.

The basic lemma (7.5) implies that I
ap?

P’ —Q:‘

do s uniformly bounded on Q, € J and & small.

KN
on, €

In consequence, we obtain,

039 | [8(ppMiols @0 flpopit [ L-tog* ~0dor<
<o) IB(OIQ flop (Dfit <O) [lp(@)dQ = 0().
From (7.30), (7.32) and (7.33) the theorem follows, QED.

(7.35) One could describe the content of Theorem (7.29) saying that the normal derivatives of the functions in

G [L”] have a null weak uniform limit at the boundary.
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CHAPTER 8

(8.1) CLASSICAL EIGENFUNCTIONS OF THE NEUMANN PROBLEM.

The Green operator G=G ;=G _,» defined by G[f]( p)= J; G(p,q;/l) f(q)dq, is a Hilbert-Schmidt

operator. We show that the family of eigenfunctions of this operator is complete in I (D) and characterize

them.

(8.2) DEFINITION. The function feC(D)NC*(D) will be called admissible if for any

de Cy(R? )l it holds that llm ".g(p) 24 (p)do=0. We shall denote A=A(D) the family of

S

admissible functions.
Observe that always N, (D) < A(D) but it could be that Ny(D) # A(D), (cf. (8.6)).
To characterize the eigenfunctions we need the following extension of theorem (7.24).

(8.3) THEOREM. If u is admissible, ¢eL°(D), - (A + l)u =¢ then, for any peD,
u(p) = [ G(p.q;4) #(9) dg=G[p) p).
PROOF. Let us repeat well known arguments. Assume that n>0, §,@)c D’ and call

D,‘; (t)=D° \'S, (£) . By hypothesis u € C*(D). Then,

[, o GEaA) (A+ Du(g) dg= [, (G.a: 00+ 2)ug) - (A, + ) G(1,q:1)) dg =

= [, (6.q:0) (@) - () 8,G(1,4: ) dg.

Since D is a C?-region and OH (t,-;4)/0n e C(J?), we obtain using Green's theorem, (cf. (6.43) and note
39),

LG(tq,ﬂ)(A 2u(@)dg= [ [Ga—ug—f)da—

'LJ(G@—uQEJ do —J; G%—uﬁ)da =
D on on 1 O\ Or or

=£ JGglidO' +o(l) —j g _,% do,,
D’ on 1 t-al=n\ " OF or
where o(1) is for § — 0.

Letting 6 — 0,77 — 0, we get, because of the hypothesis and (7.19),
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- [ G(.4;:4) #(g) dg = 0 - lim | G(t,q;—zz)?a—lf(q) do, - u(p)=0-u(p), QED.

lt~gl=n
(8.4) THEOREM. Assume that £ # 0, fnonnull and — A = »?, ¥ > 0. Then, the following propositions i)

and ii) are equivalent and imply iii), (cf. also (8.20)),
) f e L(D), f(p)= | Glp.g:4) f(g)dg.
ii) f is admissible, — (A + /1) f = yf onD.
iii) fis the uniform limit of a sequence of functions of N,(D).
PROOF. Suppose f satisfies i). From vii) (7.15) and the Cauchy-Schwarz inequality we obtain f € L*(D).
From i) (7.26) we get that f € C'(D). From iii) (7.26) it follows that f € C*(D) and — (A + /?,)f =uf .
of

Now, theorem (7.29) implies that laiw I H( p)g—-( p)do =0 and i)=ii) is proved.
ap® n

5

From iv) (7.26) we know that fis the uniform limit of a sequence of functions of N (D), (cf. (7.22)), and
i) = iii).
Moreover, from ii) (7.26) it follows that it is also the uniform limit of the sequence of functions

fP=u ij dq, 8 =1/n, with null normal derivative on the boundary of D.
DJ

ii)=1i). ¢ := yf € L” . Because of (8.3) we have f(p)=G [¢](p) =G [/tf](p) ,  QED.
(8.5) Since fis admissible, /' € L*(D). We also have Vf € L', (cf. (8.8)). In fact, it follows from i) (7.26)

oG
and the next theorem where we prove that — e L'(D x D).

i

THEOREM. [[V,G(P,Q)|dPdQ <K <.

DxD

oH
PROOF. Because of the Fundamental Theorem of note 26, it is sufficient to prove that o e I'(DxD).
We have, (cf. (6.37)),

N

Viv =V [K,(2|P-0Dp(0dt = [ 7K, (2P - O)VIP -0 |p(0)dt

This implies that _[K (;(IP Q,I)p(t)dt .[ZIK (XIP Qxl)“p(t)ldf< J’l IP( )l|

where C is a constant. Then, if p = p,,
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IPQ( )‘

V,.H(P,Q)| =V J.K (P - Qp,(t)de| < 4C j Jip- dt= (v,HdgpPsC [loo(0)a.

Using the data lemma (7.3) and (6.35), we obtain,

IVoHls 5y < C' floo], 40 < C" MID|= &, QED.
D

(8.6) EXAMPLE. There is a function F=F(p), p = (x, V), admissible, such that OF /8n = 0 does not hold
at each point of the boundary. We suppose that D is any C’-Jordan region such that:
Vi=[11]x01]c D c{(x,y): y>0}, [-11]x{o}caD.

Call p(x)eC7(-LD), @(x)=1 for —1/2<x<1/2 and for y20, y(»)=p()y* 0<ax<l,
7(y) = y*'%. Define, F(x,y)= v(We(x/z(y)) for (x,y)eV, F(x,00=0 and F(x,y)=0 for
(x,y)€ D\V. Then, FeC(D)NC*(D). Besides, F(x,y)=0 for | =7(y), or equivalently,
F(x,y)=0 if 0< y <|x". Therefore, if x #0, then F,'(x,y)—> 0 for y 4 0. On the contrary, for
x=0, F,'(0,y) =¢'(y) > . Thus F ¢ N,(D).

Finally, on D, F,'(x,y) ="' (»)p(x/7(y)) =y (0" (x/7(y)x7'(3)r > (»).

Hence, for y <1/2, F,'(x,y) = ay” p(x/7(y)) - (a/2)xy*'*'¢' (x| 7(»)) . Therefore,

ﬂF (o y)dr<C ,f oy ) = ey Ty ) s Oy

-7(y)

1
Choosing a such that 3a/2 > 1 we get ﬂFy'(x, y)ldx — 0 for y 4 0. This proves that F is admissible. We
A

conclude then that F" € A(D)\ Ny(D) = .

NB. F satisfies iii), (8.4). Assume that the sequence of functions y, € C* (O,oo) verifies 0< 7, (¥) <1 and
also that %, =0 on (0,1/n], x, =1 on [2/n,0). If we define F,(x,) = w(»)x,(3)o(x/7()), we
have F, e C(D)(NC?(D). lts normal derivative on 8D is null. Moreover, IF - F;,I < 20<Sy212)/ntl//( y)l

That is, "F - F;,”w 0.
(8.7) DEFINITION. We call a function f a classical eigenfunction of the Neumann problem for the

metaharmonic operator — A + }(2, corresponding to the eigenvalue p, if f is admisible and

(=A+ x*)f = 1.f . We can also say in this case that fis a classical eigenfunction of the Neumann problem
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Jor the operator — A, corresponding to the eigenvalue [ — Zz = U+ A . Variational eigenfunctions for the
operator — A were introduced in (1.13).
(8.8) THEOREM. Any classical eigenfunction of the Neumann problem for the metaharmonic operator

corresponding to the eigenvalue g is a variational one for — A and the eigenvalue u+ A . (Therefore,
u>-A=y>0).
PROOF. Let f be admisible and (—A+ y*)f = g f in D. Assume that 9 Cy’ (RZ)ID Applying Gauss'

theorem to Vf x V& = div(9Vf)— JAf we obtain I Saai - ISAf = IVf x V3. Then,
D¢ D°

op? e

(8.9) - I9§i+D£3(y+l)f=D-[foV3.

oD’ i

Observe that for § small enough the interior normal n; at O, € J coincides with the interior normal #; to

0D’ at the intersection of n, with oD°, n_=n,, (cf. note 39). Therefore, since f €A(D), we have

lim [ 9220, Letting & — 0 in (8.9), we obtain —(u+2) [9f + IfoV3=O, VIeCo (R .
NOaD" on D D b

But Cy (RZ)ID is dense in H'(D). Thus, fis a non trivial weak solution of (—=A + (- —A))f =0. That

is, f € H'(D) is a weak eigenfunction of — A corresponding to the eigenvalue g+ A :
—-Af =(u+A)f, QED.

(8.10) THEOREM. Any variational Neumann eigenfunction for a bounded C 2 _Jordan region is also a

classical eigenfunction.

PROOF. Let f be admisible and (~A + »*)f = 2 f in D. This is, by theorem (8.4), equivalent to say that f
is an eigenfunction of the metaharmonic Green operator G=G ;=G o corresponding to the eigenvalue
1/ p. That is, f=,uG(f).

A function ueCy(D) verifies Ou/0n=0 on J and also —(A+Au=¢el”. Then,

U= IG¢dq =G[¢]. In consequence, G has a range dense in L. Since G is symmetric, 0 is not an
D

eigenvalue. Let E= {ek} be the orthonormal family of classical eigenfunctions such that G(e,) = 4, lek .
Any function in the range of G admits an expansion in the eigenfunctions of the operator. Therefore, the

family E= {ek} is complete.
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Because of Theorem (8.8), E is also a complete normalized family of variational eigenfunctions.,
QED.
Taking into account (8.7)-(8.10) we get i) and ii) of next theorem.

(8.11) THEOREM. Assume that the Neumann eigenvalue problem is posed on a bounded C ?_Jordan region
D. Then,

i) Classical and variational eigenfunctions coincide.

if) The eigenvalues of Neumann problem for the metaharmonic differential operator are positive and of finite
multiplicity.

iG_,=G=L.

PROOF. iii) Observe that for e, € E we have (—A+ 7 )ek = e, . Theorems (8.3) and (8.8) yield

respectively G(u,e,)=e,, and IVek x Vv dx+ y* Iekvdx = kaekvdx Vve H' (D). Therefore,
D D D

L, (me) -G (pe) =e, —e, =0, (cf. (1.17)). Hence, iii) follows,
QED.
(8.12) COROLLARY. i) 0 <z, T oo, j=01.2,+; g? =yt <pyy St <--- .

i) 6 (G)={1/p, 1 j = 0,1,2,---}.
iii) f#0=>(Gf,H>0.

W) 1/t = sup [[G(p.q.2) (p)f (g)dpdg ~(@)-operator norm of G

v 27 =@N<|Gl, =  [[G*dpdg =Hitbert-Schmidt norm of G.

PROOF. i) In fact, — Af, = (=3 + 44) f,, — 2° + s, > 0, (cf. Introduction).
ii)-v) follow from i), properties of Hilbert-Sehmidt operators, (cf. [RN]), iii) (7:15) and the faet that the

eigenfunction for 4 is a constarit function, QED.
(8.13) COROLLARY. i) G(p,q,4) = Y_pt;'e,(p)e,(q), L(Dx D).
0

iy If fel’ then G(f)(p)= Z ,u;'( fse)e(p), where the expansion converges uniformly in

P € D and absolutely for each p.
PROOF. In fact, ¢, =e_j and Iszq <C? <o with C independent of p, (cf. vii) (7.15) and [RN]),

QED.
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(8.14) THEOREM. Let D be a bounded C?-Jordan region.

N
i) The integrand in H(P,Q;A) = (1/27) j Ko(|P-Q,)py(s)ds, P,Q € D, (cf. (7.10)), is such that the
0

function p(Q,5) = p,(s) € C(Dx[0,5]).

ii) p(Q,s) belongsto I' ([O,S ]) uniformly in Q and to I/ (D) uniformly in s.

iii) k(P):=
iv) p(s) = [£(Q)p(Q.5)dQ e C([0,S} if feL”.

v) F(P)=G[f](P)= LG(P,Q;/I)f(Q) dQ, f e L”, verifies S—F(Ps) =0 atany P=P eJ.
nS

PROOF. i) p,(s) satisfies the equation

y h(s) 1
815  —p,(s)+ JK(s,t)pQ(t)dtz—Q;z_—=§—a——K( AP -0,

where X is a bounded kernel defined on [0,5]x [0,5], (cf. (6.33)). Because of this and iv) (6.35), it follows
that
(8.16) Py (s) = p(Q,s) is a continuous function of (Q,s) € D x [0, S ]

§
ii) Because of the data lemma of Chapter 7 and (6.35), we have ﬂpg(s)|dsSM <o where M is
0

independent of Q.
Since K is a bounded kernel on [O,S]x [O,S], the integral in (8.15) is bounded by ”KILOM . Thus,

flot.s)jdo < M'[IDI + ﬂQI“dQJ = M"<o0.
D |Ol<diamD
iii) From (6.2) we obtain,

N
k(P) = [Ky(x|P-0,

s
= IKO( ;(IP -0, l)l ds < N <o with N independent of P € D . Moreover,
0

keC(D).
iv) Let us write @(s) = [ £(Q)p(Q,5)dQ + j £(@)p(Q,5)dQ = I(s)+R(s).

pvJ?
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Since D\J? is a compact set included in D, from (8.16) it follows that J (s)YeC ([O,S ]) It remains to

prove that R(s) = j F(Q)p(Q,5)dQ € C([0,S]). But,
R(s)=~- jf(Q)dQ jK(s D) py(1)dt - jf(Q) K o(Z|P, — QDO = L(s)+ M(s).

N
since K(.,.) € C([0,5]x[0,S]) and ||pQ||1 is uniformly bounded, j K(s,0)p(Q,1)dt is bounded on (s,0)
0

and continuous as a function of s for fixed Q. Therefore, L(s) isa

continuous function.

6

S

) is of the form cos(n,,Q — P)(c(lP -oD+ IP QQII)

S

J with ¢(x), b(x) continuous

and locally bounded functions of x € [O,oo) , (cf. (6.16)). Thus, M is also continuous.
v) We have, G(P,(0; 1) = K, (x|P - Q) /27 — H(P,Q; ) . Then

[G(P.0: ) £(@)dQ = (1/27) [Ky(2P - QD F(@)dQ - [H(P,0:2) £(Q)dQ .

Because of ii) (7.26), the first integral defines a function in C (5 ). The second integral defines a continuous

function of Pe D, as it is easy to see. Therefore, the third integral defines also a function belonging to

C(D) . Thus, to prove v) it suffices to show that,
0 0

(8.17) -~ [G(P.0. ) f(Q)d0 = [—G(P.0,2) /(0)4Q,
n, 5 5on,

since the last integral is equal to IO. fag.

From the fundamental theorem of note 26, it follows that,

0 (K{eP-0) (xIP a)

on, 27

f(@)dQ = j —E =V 1(0)d0,

then, to prove (8.17) we need to show that next equality holds,

(8.18) —a—@— [H.0:0£©d0 = [ZHP,0:1) £(@)0.
n, 7 5 0n,
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0 0
But, = j H(P,0,2)f(Q)dQ = o} Do, ()dt=

== j Ky (2|P-Q,Ddt jf(Q)p(Q 1dQ = j Ky(AP- Q) p()dt.
Because of iv), since f'is a bounded function, @(s) = I F(@)p(Q,s)dQ is a continuous function on [O,S ]
D
Then, ¢ is a bounded function. Because of (6.34) we have,

(8.19)

S
Dot = [ Ky (P00t - mp(s) =

;
- :an(s,r)( [1©@p(Q.0d0)dt - [r@p@d0.
We have seen that p(Q,s) € L'(D x [0,S]) . Therefore, the last member is equal to,
=7 j f(Q)CjK(s,opQ (1)t - p(Q, S)JdQ-
The last expression is equal to, (cf. (8.15)),

= jf(Q)———K (2P, -Q)dQ = ff(Q)— P,0,4)dQ,

and v) is proved, QED.
(8.20) THEOREM. Assume D is a bounded C? -Jordan region.

i) Let u>0, -A=2"7>0 and 0% feI*)(D). If f(p)=,uLG(p,q;Z,)f(q)dq then
FeC*(D)NC(D), -(A+A)f = yf onD, f eAD)and gl(gs)=o,QSeJ.
nS

ii) g, ~n, n>0.

PROOF. i) is a consequence of theorem (8.14) and is a complement to theorem (8.4).
ii) follows from (2.26), QED.
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CHAPTER 9

(9.1) In this chapter D will denote a bounded C?-Jordan region as in chapters 6-8. Recall that these regions

have the uniform ball property: there exists a positive number R such that for any point x of the boundary of D

there is a disk of radius R, K, , contained in D such that K, M0D = {x}.If y # x belongs to K. andis
on the interior normal n, then p will denote the symmetric point of y with respect to the tangent at x.

If R is sufficiently small then $ ¢ D and $ = % implies y = z, (cfr. Note 3). We shall assume that R is so

chosen. We shall eventually add extra conditions, making R smaller.
(9-2) Recall that for such a region, the metaharmonic Green's kernel for the Neumann problem and y >0

verifies:

D G(x,y=2") = Q)" Ky(xx - y) - H(x,y;-x*) 20, x,y e D,
D-AH(x,y=x")+ 2’ H(x,y;-3") =0, (x,y)e Dx D,

3) H(x,;—y*) € A*(D)NC(D) for xe D,

4) H(x,y;~x*) e C(DxD)NL'(Dx D), re|l,),

5) H(y,x;-2*)=H(x,y;-x*) on Dx D,

6) —@—H(x,y;—zz) =—l—iKo(zlx—y|) forxedD, yeD,
On 27w On,

1
N ([ G*(xy2) dy)? <M =M(A) <, A=-4,

8) (-A, + 2°)G(x,y;=1") = 6(x = y), x,y € D, (cf. (5.19)).

The function H, (x) := H(x,x;1) € C(D) . We shall prove that H, € L' and also estimate its integral,

©3) I=I(-") = [H,(x)dx = [H(x,x=" ).
D D
For this we shall use the approximation ,
9.4) H(x,y;A)=-K, (,1'|x - j1|)/27r +I(x,y; 1),
and find a bound for the integral of the error I".
- _L(R) — . o
(9.5) Define Q( y,R):= m, O(x) =0(x,1). The behaviour of Q for ¥ > y,>1 is O~1/y,
yAIRV

i.e., there are constants 4 and B such that 4/ y <Q < B/ y . We restrict

ourselves to prove only the following lemma.
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(9.6) LEMMA. i) There is a constant B such that for x = & > 0 it holds that
. B
0(x)=0(x]) < 3
ii) Also Q(y,R)<B/y, xRz .
PROOF. i) For x > 0 we have, (cf. [MO}, p.32),

L)t
o) I ()Kq(x) = j CHu¥
where tJZ(f) < M, M a constant.
On the other hand the wronskian, (cfr. (5.19)),
9.8) I'(x)K,(x) - I,(x)Ky'(x)=1/x.

o 2
From (9.7) we obtain, (I,' K, + I,K,")(x) = —2x J‘( ()
X
0

2 + t2)2

Then, (/,'K )(x)—— xoj[( (t) > dt . Therefore,

ftJZ(t) dt

L(0)Ky(x) _ x*+r

xI,'(0)K,(x) l_xzoj[._t‘]_oz(ldt
2 7GRy

09 9k =

® (]
The numerator is not greater than I—z——dt =——. The integral in the denominator is not greater than

2
oX +t b o

@© M _M"
()l.(x2 +t2)2dt_ x’
M'Ix M'/x

0<0(x) < < = B/x, with B=4M".
1/2-M"Ix ~1/2-1/4

i) Observe that Q(x,R) = RQ(xR,1). Using i), one gets Q(x,R)< RB/(Ry)=B/y for yR>a.
QED.

. Thus, if x > a :=4M" one gets from (9.9):

(9.10) If (-A+ y*)u=0 on D, ue C(D) and du/0dn, exists at each point x € 8D, the subordination

principle (5.50) can be written as

sup|u| <§— sup — Ou
xeD X xedD|ON,

for y>al/R.
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From (9.4), T(x, y;- %) = H(x, y;-2°) + K, (x}x - $|) /27 . Define,

or 0 0 o
011) A=A(x,y;4)=—(x, ;1) = ———KO(ZIx - y|)/27r + —KO(;(|x - yl)/27r ,
on on, on,

see Fig. 1 where 7 = -n,

Our objective is now to find a bound for A .
Recall that, (cfr. also notes 32 and 33),

K,"(N+K,'(r)/r=K,(r).

«© e—lr °°e-l
K (r)= dt= |—dt+ F(r),
o= [ mdi= [Fra F@)
F(r)= | e dr.
1

t(t+P 1)\/t -1
Then, for r>1, K,(r) =0(e™").

® 1 ©
But, if 7 € (0,1], Ie—t—dz‘s E—dt+ fe'dt =log(1/r)+e.
r r 1

Therefore, if r € (0,00) then

(9.12) Ky(r)y=log*(1/r)+0(e™").

On the other hand, we have,

©0183) K,'(r)=—- ¢ dt="%" 1 0@ )= (L +0q)),
S (S YW r r

Ky ()| <e"C+1/r).
From the differential equation satisfied by K, we get,
0.14) K)"(r)=e"/r* +0M)e” Ir+0(1)e™ +log*(1/r) = e-’(l/r2 +0()/r+ 0(1)).
Thatis, K,"(r)=e™" (0(1)/ rt+ O(l)). In consequence, there is a constant C such that,
|K0"(r)| <e'C(A+1/7%).
(9.15) Assume that y e D, d =dist(y,0D) < R. Take coordinates in such a way that y=(y,,0),
J=(=2,0) (hence O =(0,0)€ D). Suppose x €D, |x,| < R. Call p=-n, and ¥ the symmetric

point of x with respect to the tangent at O, (see Figs. 1 and 2). Call 7, := lx - yl , B = |x - j/l = IJ? - yl. Then,
i =l = e = =% = ¥ < - 5.
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Besides, 72 = (x, — )} +x2 2 x2, rf =(x, + 3)’ + X} 2 x;, inf(5,,7,) 2 |x,|.
Observing Fig. 1, we see that

|Ar1| =cosa, ali_—j}'=lim——|%-l=—cosﬂ'

9.16
19 A7 on a7

 Since,
o) B2 ()= 2K, () 3= 2K, ) osa 22 s) =K, Gy cos .
from (9.11), for dist(y,0D) < R, we obtain,
©.18)  27lA|< |(cosa — cos B) xK,' (1 2)|+](x cos AK,' () - K, (r, ;5))] <
< zla - K, Gl + 27 - mlK" ).

where 7 is a number in the interval determined by #; and 7, . Then, 7~ 2 X3 .

On the other hand,

X
- N 5 -l <be—7]=| =00,

in fact, (see Fig. 2),

x=f(x), feC?, f(0)=0=1"(0),

implies that
Y=y 0) ‘ U5 019 f(x)=005), (1) =0(x).
0 (XT*O) Yy Thus, (C denotes constants),
Fig.2

©9:20) |5 —n|< Cx} <Cinf(r’,1,").
We also have,
92Y). x; = f(x) =%,/ (%) = O(xg)
Therefore, |x1| + le| =0(x}).
From Fig.3 we see that, .
G=a+y, B=p~7, |a—ﬂ|s|&—/7|+2|7|.
- If R is small enough then for |x2| < R, it holds that,

n | — %] n Cxl <ﬂ5i§.

— <— <
2 inf(r,,rz)—|x—37| 2 |x2|—2|xl| |x2|

|§—,§\s—72£\sen(§—ﬁ)|s < Clxy) s
bl + 7|

|x2|

| < (w/2)jseny| < % <Clxy|.
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(Notice that C may have different values in different formulae!). In consequence,

(922) lor - | < | - |+ 2| < Clxy

From (9.18) and the preceding estimations, (cf. (9.13), (9.14), (9-20) and (9.22)), for x€ 0D, ye D,
d =dist(y,0D) < R, £ >0 and small, we obtain,

27A(x, y;A)| < zler = BYK, ()| + 2 - mlK"F )| <

<Ce " (yinfr, +1)+C,(yinfr, f K,"(Fz) <

<Ce*(yinfr, +1)+ Cz'e"ﬁ((,z'infrj)2 + l)s Coe ™" (1+ yinfr, + (xinfr,)*) <
< Ce *0-8)infln.n)

Then, for M = M(g) and y >0, itholds that,

(9:23) IAGx, y; 2)| < Me #0797,

(9.19), and also (9.20) and (9.22). are valid whenever
|le < R, independent of the position of O on the

boundary. Therefore, the constant A of (9.23) can
be chosen to hold for any x and y as far as they remain

in the same relative position.

Thus, under these conditions M = M (&) depends

X onlyon &£.

5 Let () be the square of side 2R with center O and a
Flg; 3 } side parallel to the tangent atO .

Assume thatx ¢ O, x € 0D . Thus, Ix - yl > R >d where dist(y,0D) =d . Then,

(9.23Y) |A(x,y;/1)l < Ce#-oM C = C(¢) independent of x and O.

In fact, by (9.13), we get,

] 1 Ce—l|x‘)’|
<|2K,' (zx = | < 2Ce 1+ )< (xpx=y+D).
2 -yl

0
—Ko(l|x_}’b |x_y|

on

Thus, because of |x - y| > R > d , we deduce that, (cf. (9.11),
(9.24) |A| < Ce B < Cerx -0 € = C(g).

From (9.23) and (9.24), it follows that there exist C and R such that for any x € 8D and y verifying
d =dist(y,0D) < R, next inequality holds,
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(9.25) |AGe, y;4)| < Ce #9409

Therefore, I'(x, y;— 1) = H(x, y;—x°) + Ko(x|x — 3|) /27 verifies g—r < Ce #9079

(9.26) From (9.10) we obtain, for any x € D, d = dist(y,0D) < R, the estimation,

Ir(x, yi—x* )I =O(y e ¥} As a consequence of this we have, for x € D, d = dist(y,0D) <R,

K(xx-3)
27

027 G(x,y;—x*) = —H(x,yi-7") =

_ Ko(llx_yb Ko(l|x"j’l)
= +

_ 2y =
. Zy T(x,y;i-2°)
_ K- yl) Ky (lx - yl) ("‘“‘E"’)
27 2r r

(9.28) From (9.27) and for x € D, dist(x,0D) < R, we obtain, (cf. (9.3)),
H, (x) = —K,(x 2dist(x,0D)) + O(1/ ) = O(|logdist(x,8D))) + O(|log z]) + O(1/ x) .

Taking into account that H ; is continuous, we conclude that
.[|H1|dx <o forany y =,/|4|>0.
D

(9.29) The normalized eigenfunctions of the Neumann problem for the metaharmonic differential operator

verify for 4, := 4+ p, , (cf. (8.11)-(8.13), (4.20) and note 38),
(_Ax + Zz)%(x) = (ﬂh + Z2)¢h(x) = /uh(oh(x)a h = 091323"';/uh > O )

0, 10n, =0, x€dD; o], =1, [G(x,y-2")0,(D)dy = 9, () /(4 + 27).
D
From (9.2), (9.29) and the Cauchy-Schwarz inequality, we get forany x € D,

©30) o, ()4 + <M, G(x,-;—x2)=i% (L(D)),

h

(9:31) ﬂG(x,y;ﬂ)lzdy Z (") S <M?,
D h=0

032) (l6laxd -y < M?D|.
D;‘ll 4 h=0(/1h+lz)2 | |

Therefore, G(x, y,—Zz) = Z% (L2 (D X D)) holds, (cf. also i) (8.13)).
=0 At X
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Then,

2y _ ey 2N (2 ¢h(x)¢h(y) 20D x
0:33) G(x,y-2") - G(x v~ )= (1" - )Z(/1 Nt 2T (I*(D x D)).

The series in (9.31) converges uniformly on D, (cf. note 37). This implies that the series in (9.33) converges

uniformlyon Dx D .
(9.34) Recall that there are positive constants, 4, B, such that (cf. [M] or Chapter 2),
A+yt 4
nt X N ar '
n |0

n>0=>An<A + y*<Bn, n—o0=

However we shall not use the last result, on the contrary, we shall prove it at the end of this chapter.-

Our next step is to study the behaviour of (9.33) for x tending to y.
(9.35) LEMMA. lim (Ko () - Ko (o)) =log(x,/ 7).

PROOF. We have,

—ut;( ~ut10 —utz —"’Zo
KoY - K, (zot) = J.*—du— }( T g™ dy + J.—du The
1

\/_

function inside the square brackets belongs to L' (1,00) . Hence,

‘“’Z —ulyy ©, o8y _e‘"lo *® e‘"l _e'“lo

lim (Ko (22) = Ky (28)) = lzmj——du lim ¢ "¢ 4 = [———du.
~ u 0 u
The last integral is equal to
wdx XX © X0 Xo ©
J—— Ie”dt= Idx Ie"‘"du= Idu je'”dleogzo—logz, QED.
0 X Xy 0 )4 x 0

(9-36) Letting x — y in formula (9.33), taking into account that A, =0, ¢, =1/ ,”DI , the first formula in

(9.27) and Lemma (9.35), we arrive to

1 2 2 2% 2 (»)
—(log z, ~log ¥) - H(y,y;=2" )+ HW,yi~2) =\xs — 2 =
2 ’ ’ ( ’ )Z(:)(lh + 204+ 20°)

2 _ a2 © 2
=ﬁ—2—lz-+(loz— 2) (gh(y) —.

IDIZO X w1 (A, + 27 )4, +X)

After integrating on D, we obtain, (cf. (9.28)),

9.37) Ilaogzo—logz) jH(y,y, Ny + [H(p, vz, )y =
D

S

YA 4, (A, +x )(1 + X )
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D
(9.38) DEFINITION. F(z,):= J——llog Xo+ IH (v, y;— Zoz)dy + —1—2
27 4 Yo

Thus, from (9.37) we get, F(x,) = L(¥, X,) » Where

0

_ IDI _ 1
Ly, %) = log)(+ .[H(y’y’ X )dy - Z +( i )z;(}v +x )(2' +Zo)

Letting %, 30 inthe preceding formula we arrive to

D| @ 1
L(x):= lim L(%, _ 1o, H,(p)dy+—5 - 2> —
()= lim L(z. 20) =7 0gz+[ )y~ 7 E,(l it

Thus, the function L(x) =1limF(x,), Xo 4 0, is independent of y ; thatis, L(¥) = 4 and 4, given D, is

a real constant. Now, the preceding equality looks like,

9.39 1= A(D) = I ‘II dy — 2 1 |l | o
* .

(9.40) THEOREM (A. Pleijel). If D is a C?-Jordan region then on Rez>1 it holds that

“j@’_@zzﬂz L2 S CA N

. +G(z), where G(z) is a holomorphic function on
A Ar z-1 87 z-1/2

0+

Rez >0, (cf. (9.29)).
(9.41) For a proof of the theorem we need some results that are interesting in themselves.

THEOREM. There exists # > 0 such that for y = u it holds that,
J

.[H—z’ (p)dp=-— <—Z + O(l_o_gzl} .

5 8% X

PROOF. Recall that J" = DN J, . Then, if h< R,

1= [Hdp - jH () de[B,() de= [HL (s ()

D\J*

In fact, to prove that the last terms are equal, it is sufficient to show that for great values of Yy and

dist(q,J) = h >0, one has,
(9.42) H(p,q;4) = 0(e™).

If dist(Q,J)=h then,

a—H(Q Qi A) = l————K (20 - 0| < CxlK,' ()| = O(xe™).
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Because of the subordination theorem (9.10) we get, H(Q,P;A) = O(e™"*), for

PeD, y>al/R.Thus, (9.42) is proved. Then, IH J(X)dx =0(e™* ".
D\
Ko (e - B)
2z

In (9.26) we have prgvggl that the function I['(x,p;A)= H(x,p;— ;(2) + verifies

‘F(x,p;—zz)l = O(Z—le—zdu) for d .= dist(p,0D)<R, x € D and % 2 1. Hence,
(9.43) lF(p,p;l)| < Minf(l/Z,e—}:dist(p,J)M) .

where M is independent of p. Now we write, with 0 <2 < R

[H.(p)dp = [T(p,ps A)dp— [Ko(x|p-Php/27 .
_]" Jh . Jh

Then, for s <h<5,

IF(p,p;l)dp < ‘ﬂl_‘|dp < ﬂr| I {dis!(p,.l)Ze}dp + _ﬂrl I {dist(p,.l)<£}dp =I+IL
" Jh Jh Jh

But, I< MlD]e"’El4 ,IISM'e/ y.Choosing y greatenoughand & = ilog z° we arrive to
x
'ﬂl"( Ds p;l)|dp <C'/ y* +C"(log )/ y . Therefore, for great values of ¥,

1
9.44) re. pjar -om="¢.
Jh

- n lo
Thus, I:= [H,dp= [H,(p)dp+0(e™) =~ [Ky(|p-pdp/27m+ O(—le ] :
D Jh s

IKO(Z|p )
T

Define ® :=— dp. ® could be called the first approximation of IH ,(P)dp . Recall that
D

Jh
. " T . : :
K,(r)=0(e™""*) and IKO (r)dr =5. Using the coordinate system on J, that we introduced in note 3,
0

we obtain,
1)k

049 0= [t [K,(z28)l1 - )6l
7 0 0

c(f') f K, (f)tdtydé, =

__1() 1 M
—EJZ—J o(#)dt —
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)

_-1 °° b _
-— Oj{% OjK ROY 2, J‘K (e dé +O(1] 12 =

2hy

(J) © (J)
_1 1 —zh 2 — — 1 =
o Oj(——zl JKO(t)dt)d§1+O(e | )+O01] ) =(x >>1) = J_dSz §,+0( J

b%ho(%j.

J
Hence, for great values of ), we have, ] = —g—> + O(Lz) + O[IEg—z-Z-) +0(e "y,
V4

V4 V4
The theorem follows, QED.

(9.46) Define k(w) := wzm
W

k(w) is a meromorphic function on the complex plane w with poles on the positive real axis. Because of

- 1
—,<co.Then,K:= — <.
(4, +1)° 21:/1,,2

Thus, if w=— ,1'2 , from (9.39) e have,

(9.32) we have Z

9.47) k(=) = A—lﬂllog)(2 —%— J‘Hldx.
dr X

v

S (9.48) LEMMA. Assume that 0<A <4,
&im K= z]:/% <w, k(w)= WZ (7= W)/i; and  the
parameter §>5. Then, therc cxists a scquence of positive
K=k numbers R, T such that Iw‘xk(w)dw —>0 for
wl=k,
Jj> .

PROOF. Call A, = sup{/i2 )2 n2N } Then A, = o0 . In fact, if it were not so it

n+1

would exist C>0 such that A, —A <C. Then, for any positive integer p we would have,

2. <2+ pC. Therefore,

n+p
@ @
@=2 Z
/1, =

p=l

"~

r

+p
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Observe now that if N(p) :=# {/’L < } then

019 X (p <Y =K<
1 h

Choose R, (/1 +4,,,)/2 for n such that A2

el /ﬁ 2 j . In consequence, for any 4,

(9.50) 2|Rj—/1,,]2/1,,+,—,1,,>/1 J ___J

n+1 n J

Let p = R, . Thus,

(9.51) 5— ﬂw “k(w)jdw| < z -

iR, Plflh
P °NQ2p) 2-sn 1
= oot e < +2 niig
ﬂgzzp Agzlp {h{i}},qlh - Pl&,) i le 2

Taking into account (9.49)-(9.50), it follows that —21— [ k(w)|janl = 0(p*>*), QED.
/4

wl=p
(9.52) Assume that p = R ; as in Lemma (9.48) and let U be the region shown in Fig 4. Let ¥ be an arc as in
Fig. 5. Define, y,, =y N{Rez< -1}, y, =y \y,.

LEMMA. Suppose s > 5. Then, there is an entire function g,(w) such that

1 k(w) > 1 s
W+ g (s)==) — == |1T"dN(A).
27” :': go(s) ZZ’: 0'[ (4)
N(R)
PROOF. From the formula (1/27) J.k(w)w ‘dw = - Zl/ A, , using Lemma (9.48), one obtains,
U h=1

(1/27n)_[k(w)w‘sdw——21/ls But, g,(z):=(1/2m) Ik(w)w ‘dw is an entire function of z

Yo

QED.
D/ (J)/8
(9.53) LEMMA. Assume § > 5. Then, —— [£0%) g1, _|plraz _{7) %+ hy(s), where i (w) is an
27 7w’ s—1 s-1/2

£

holomorphic function on Rew > 0.



(w PROOF. In what follows we shall denote with the

X

; letter g entire functions and with the letter %
ACW=T
—_ -1 /JT\ ~ holomorphic functions defined on the half plane

o - +— o) }
AgW=—T7 v 7‘1 Re(z)>0.

Because of formula (9.47) and theorem (9.41), for {t Zu, t= 1}, we have,

N _H' (J) (l+logtj
(9.54) k(-t)=A4 47r.10g1‘+8\/;+0 . .

It follows then that the same formula holds fort > 1.

On the other hand, we have,

_ 1 i -5 1 ¢ =5 -irs
Q)" [twyw*dw = = [luf*e" “(pwhaw+ — [lul "¢ k(fuhaw =
-1 -0

Yo

- ﬁ:]‘t—sk(_t)(_ e'"s +e—i7rsyt = %:]‘t‘sk(—t)(—senﬂS) dt =

- TS j(—glogt+A+ ) +O(1+logt))_c£t_=
1

T 4 8/t t t

=_Sen7w(— 12 A ) J+h'(s)'

7 Ar(s—-17 s-1 8(s—1/2)
. senzs .
. Taking into account that = -7+ g,(5), (1) =0 and senms =1+ (s -1/2)g,(s), g,(1/2)=0,
s —

we get,
' D| )

2m)" |k “dw = ——L—+ +|—— + , QED.

(271) j (w)w™*dw ( G- g3(s>j ( o o1/D) g4<s>J h(s), Q

(9.55) PROOF OF THEOREM (9.39). The following equality, whenever s > 5, follows from Lemmas (9.52)

and (9.53), '
i 1 _|D[/47r+<J>/8ﬂ

~A s—-1  s-1/2

+h(s), h(z) holomorphic on Rez > 0.

Then, the Dirichlet series has 1 as an abscissa of convergence, that is, Zl;z converges on Rez > 1, (cf.
[Wd]). Therefore,
=1 _|D|/dz  (J)/8x
2= +
A, z-1 z-1/2

+ h(z) holds for Rez > 1, QED.
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Observe that 1 is also the abscissa of absolute convergence since A,>0ifn>1.

D
(9.56) THEOREM (H. Weyl). For 7 —> oo, ,% N y.
T

n

PROOF. From (9.40) we have,

iy D
9.57) IM = u L +F(z), F(z)holomorphicon Rez>1.
N 4r z-1
D
From the following theorem, (cf, [C]), we obtain, -]%A—) L—I .For A =1, we have,
<o 4o
D
—’ﬂ - ,——l » and the theorem is proved, QED.
A, o4

(9.58) THEOREM (S. Ikehara). Assume that a(x) is a nonnegative, nondecreasing function, defined on

(l,oo) and
9.59) f(s)= ]‘x"sda(x) = oj.e"sdcz(e’) .

If for Re(s) >1 the integral converges and if there is a constant 4 such that the function,
A

©9:60) 8)=1(5) =,

is holomorphic on Re(s) >1 and has a continuous limit on Res =1, then

(9.61) lim @) _ 4 .

X—>0 X

81



CHAPTER 10. NOTES.

" 1. A bounded open set 4 has property C if there exist constants 0 and X such that

i) if x € 04 there exists a versor h such that for y € B(x,8) A4 and ¢ such that 0 < ¢ < K, it holds that
v+ the A s

if) the convex hull of Kh + B(x,8)N A is included in 4.

A bounded open set 4 has property C' if there are a finite number of open sets 4, < 4, i =0,1,...,N, such
that

1) 4, A, =0,

()4

2) for i =1,...,N there existsa C ! diffeomorfism, 6., from a neighborhood of Z onto an open set of R?
such that 8,(4,) € C.

THEOREM (T. 5.12, case 3, [M], p. 188) Weyl’s theorem holds for Neumann problem in an open bounded
set A whenever 4 € C' and |6A| =0.

2. A bounded region 4 will be called strongly Lipschitz if each point X, of its boundary can be covered by a
neighborhhod U with an adequate coordinate system that verifies:

U= {x : |x,.| <d,i= 1,2},

Unod={x:|x|<d, x, = F(x)},

Und={c:|x|<d,—d, <F(x)<x,<d,},

where F satisfies a Lipschitz condition: IF (x)—F( y)l <K Ix - yl . Because of the boundedness of the

region a finite family of U's cover the boundary for which the same K can be chosen. It follows that 0A has
finitely many components and therefore 4 is a plane region. Moreover, 4 has property C'.

3. To deal with a regular region 4 it is convenient to introduce local coordinates around the boundary in the

Fig. A

(XpXy)

_ P~ & =(§1s§2) ii(y)

=m0  c@
:v’=(y1 )
j

O

following, way. To avoid unnecesary complications we assume next that 4 is a Jordan region with a rectifiable
boundary. Let s be the parameter arc legth on J starting at the origin O, (see Figs. A, B).

The points in J will be denoted by y=y(s)=((5),y,(s)), 0<s< (J ) We assume that
y,(s)eC 2([O,(J >]), y;,(0)=y, ((J >) Let n, = n="#(s)=(n,,n,) be the interior normal versor at y.
Suppose & >0 sufficiently small and let 7 be an interval such that <I>S<J > Define the map T:
(5,£) > x:= y(s)+1 7 onthe rectangle C(I) := I x (- 8,6) to the strip J,; = {x : dist(x,J) < 5}.
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We denote with &' :=(&),£,) a point of the rectangle C(/) and with x = (x,,x,) its image in the strip J.

Then, T is written as T: & = (,,4,) = x=(x,,%,) =(1,(£)), ¥, (£)) + &, (7,(£)),7,(£)), 0<4; <<I>’
|§2| <& . Thus, if & =0 then xeJ . Given n=(7,,0) its image will be represented by y = y(1,) to

underline that it is in J. One can get, taking & sufficiently small, that the map T of the rectangle
{é‘ =(£,£,):0<¢, < <J ), §2| <0 } with vertical sides identified, be a homeomorphism onto J;;. In fact,

since by hypothesis J is C?, Tis a C' map and can be written as (note that n, =(=y,(&) (&),

ln,.] =1 because of £, =5 ):

T(§)={xl(§) =y(&) - &, ()
x,($) =J’2(§1)+§2)"1(§1)‘

Its jacobian B is the modulus of the determinant of the following matrix,

3(x1,x2) _ j’l(fl)_fzj}z(fl) _5’2(‘:1) =l—af C(f )

0(¢1,6,) () +4EIEG) (&) S

¢(&;) is the curvature of J at the point T'(£,,0)e J. For § sufficiently small 1—&,¢(&,) >0 whenever
Ifz, < & because of the continuity of c. In this case 0 < B=1-¢,¢(&,) and T is locally a homeomorphism.
Let us see, perhaps by using a smaller &, that T is globally a homeomorphism. Let y(s)€Jand £ be such
that T is a homeomorphism from (s—2g,5+2¢)x(-5,5) onto U = T((s -2g,5+2g)x(-0 ,5)), a
neighborhood of y(s). Let V = {x eU :dist(x,J\U) > 2dist(x,J )} Then, V is also a neighborhood of
y(s) and there exists 0 < 5<68 suchthat U=T ((s -&,5+&)x (—g .0 )) c V. Since J is compact it is
possible to cover it with a finite number of such neighborhoods, {(7 yih=1-- N } Let 6, = mhin gh . We

9‘2[ < 51} onto J, . In fact, by the

claim that T is a homeomorphism from {f =(£,6,):0<¢4, < <J ),
construction, for every x € U , if y e J verifies dist(x,J) = |x - yl then y € U and x is on the normal to
J at y. Assume that dist(x,J) = lx - y1| = ]x— y2|. Writing y, = y(s,) and defining &, := +dist(x,J),
(with the sign + whenever x € 4), we deduce that x =7(s,,£,) =T(s,,&,) . Since T is a homeomorphism
on U, we get 5, =S$,,i.e. y,=y,.Thus we have proved that T is one to one and onto J 5

Moreover, x € normal at y, = y(s;) and Ix— y1|<radius of curvature at y,. Let 0< p <radius of

curvature at ¥, forany y, € J . Assume that § =inf(5,, ). Then, if R < 5/2, there is a circle contained
in A tangent to Jat y,.
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Because of the definition of T we also proved that in J;; = {x 1 dist(x,J) < 61} two different normals at J
have no points in common and therefore the same happens in J;.
DEFINITION. Given x = y(&,)+&,n,(&) € F; = AN J, X denotes the symmetric point with respect to

J x=y(&)—-En ().

4. The simply connected plane region D is said to be uniform if there exists a number £ € (0,1] such that the
following conditions W) and T) are satisfied:
W) For any two points of D, X;,X, , there exists a rectifiable arc p — A whose end points are x,,X, such

that (p)slxl—lelf:,
x, — x| |x, — 5| .

T) For any point x € p, dist(x,0D) > ¢
ey = xy|

5. THEOREM (Lax-Milgram). Let H be a Hilbert space and B a continuous bilinear functional
B:HxH —>R (|B(u,v)| < a“u“ H"v" 41 )» strongly coercive (38 >0 such that ﬂ"u“: < IB(u,u)' ). Given

a continuous linear fuctional F on H there exists a unique ¥ € H such that B(u,v) = F(v)Vve H, (cf.
[ED.

6. For the set of eigenvalues of Dirichlet problem in a Jordan region 4, H. Weyl's theorem holds:(cf. [L], [M]
or [BP]): NA)/A—>a= IAI/ 47 . There is a Jordan region D that is not a quasidisc such that for the
Neumann problem one has N(4)/A — (lD| +1/2)/ 4z . However, there are Jordan regions that are not
quasidiscs for which the behaviour of N(A) is as in Weyl's theorem. It is interesting the fact that there is a

Jordan region not a quasidisc such that N(1) ~ cA*? ¢, p positive, (cf. [M]).

7. The operator S = L;l is symmetric and it has domain L*(U). Because of this, as an operator in I’ it
verifies S=S*. S™' exists and has a domain dense in L*(U). Then, (S™')*=S"", (cf. [RN]). Therefore,
St = L, (=-A+y) is a selfadjoint operator such that dom(L,)=range(S)c H ") nHEU), (cf.
(1.19)). Besides,

domL, =domL * = {y :dy*;VxedomlL,, (L,x,y) = (x,y*) }

8. A quasidisc is the image Q of the unit (open) disc B by a quasiconformal mapping f. Q is contained in the
Riemann sphere. We shall be interested only in quasidiscs such that —Q— c R?. The boundary of a quasidisc is
a quasicircle: 0Q = f ({z : Izl = 1}) = f(X). By definition, a quasiconformal mapping f is a one-to-one,
sense-preserving transformation of the Riemann sphere such that a parameter called maximal dilatation
associated with fis finite. If X is a finite number greater than or equal to the maximal dilatation then fis called
K-quasiconformal. Always K >1.

There are several useful characterizations of quasidiscs, for instance, a quasidisc is a Jordan domain whose
boundary satisfies the arc condition, (cf. [Le], Ch. 1).

A disc with a Lebesgue spine removed is a Jordan domain but it is not a quasidisc.
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9. Let g, = {z eU :dist(z,q) < g} be the open set (8 — neighborhood of U)NU, &>0.

q.]

M u = @[a” —2J is the so called x — dimensional upper Minkowski content.
£ €

The Minkowski dimension of ¢ is defined by D= D(q)=inf {,u 20:M,(q9)= 0}. Or, by

D= Sup{d 20:M,(q)= 00}. More precisely, they should be called interior p — dimensional upper

Minkowski content and interior Minkowski dimension. One can define analogously the exterior content and
dimension.

10. PROOF OF III) THEOREM (2.22): Let Q be a quasidisc defined by a K-quasiconformal mapping.
Then, there is a number 1 defined below, ¢ = p(K) € (1,2), such that D=D(q) < u and M (q)=0.
Let h={Y € Q:dist(Y,q) <t}, H=f"'(h).If Jis the jacobian of fand p e (1,00) then it holds that
1/p
lhl = Idudv = Idedy < |H I”p'[ IJ ”dxdy} , lim IH I =0. A theorem due to Bojarski asserts that J is
P I " 10

locally p-integrable for a certain p = p(K) such that
o>K/(K-1)2p(K)>1, K>1.

Thus, [i| = o(|H|"”") . Observe that this holds for any p & (1, p(K)]. If K =1 the mapping is conformal
and [ ~ |H| and || = o(H|""") forany p e (1,).
For x,y € B we have |f(x)— f(y)| chx—ylﬁ, (cf. [GV]). Then, if x€ H and y€X we obtain
dist(x,2) < Ix - y] < Qf(x) —f(y)l/c)”ﬁ. If y € X is such that ]f(x) - f(y)l <t then it follows that
forevery x € H , dist(x,£) < (t/¢)""¥ . In consequence, |H| = O(""¥ ) and
1) W =lr e Q:dist(¥,q) <t} =0(s""¥%), tl0.

log|h log1/[n|

But D=2-lim——, (cf. [L], Corollary 3.1). Then,
logt logl/t

t=1,40. But, in this case, 7P < lhl = o(tkllp"JE). Thus, 2—D+8—1/p'\/E >0 whenever
£ > 0. Therefore,
@) D<2-1/p'JK = p(K)<?2.

<2-D+¢g, £>0, for a sequence

)

—p ®
t.“

Since K =1 we get (K) > 1. On the other hand, M, (9)= lim t4 0. From (1)

o) *

and (2) we have M (q) = lim Pt

ie, M,(q)=0, QED.

11. If we restrict ourselves to the first term of the asymptotic aproximation of N(A) for a second order

elliptic differential operator then Lemma 4.4 of Lapidus [L] says that it is sufficient to consider only the
principal parte of the operator.

Moreover, Corollary 5.11 of Métivier [M] asserts that what is known about the first term of the asymptotic
aproximation of N(A) for the operator —A will be enough to know what happens with the first

approximation of N(A) for most of the elliptic second order differential operators.
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Thus, in a sense, the operator — A is a paradigm with respect to the asymptotic behaviour of the eigenvalues,
at least for the main term of the asymptotic expansion of N (A1)

12. Assume that X is a Banach space of infinite dimension; G”" will denote the famuly of subspaces of X of
dimension n.

DEFINITION. Let A, A'c X . The deviation of 4 measured from 4'is E ;(4) = sup{dist(x, A):xe A}.
The nth-diameter of 4 is defined by (Kolmogoroff),

d (4)=d,(4,X)=inf{E,(4):Y €G"}, n=0,1.
Obviously d, is non increasing. If Z € G" and d,(4)=E, (4) then Z is an optimal approximation to 4 in
G" and is called an extremal subspace. It can be proved that if 4 is a compact set then d,, (A)—>0. Also
that d, (B,(0)) =1. Moreover, (cf. [Lo]),
THEOREM (Gohberg and Krein). If ¥,,,(0) is the unit ball of the subspace ¥ of dimension n+1 then
4,7, (O) =1.

2
| X

Let X =% real, 0>, 28, =--->0 and D be the ellipsoid xGIZ:Z(—gl‘—] <1;. Then,
T \ %% :

THEOREM. d,(D)=35,,,, n="012,.

13. Assume that J < R? is a convex open set and that 4, B — J are measurable sets.
The following result holds, (cf. [L], [M]),

THEOREM. If f € H'(J) then I = fdy flre - I dx < 2( 4|+ | B)(diamJ |1 -

B 4
14. In Métivier [M], chapter VII, Corollary 7.2, an example is shown where n(A) = A*¢, £>0. For plane
regions € E)we have n,(1) = 0(4).

15. Asuume that a(x,y) is a real symmetric bounded bilinear form on the real Hilbert space ¥ such that
a(x)=a(x,x)20.Let us define "x" = ,/a(x) . Then, the parallelogram law holds,

(1) e+ 51+ =1 = 2051 + D)

If A is a non null real number then

@ 0<lx - =l ~24ax.) + 2D
We wish to prove that

©) laCx, )| < ]

If "x" =0 then 2|a(x, y)| < |/1|2 ||y||2; thus, |a(x, y)| =0. Assume that 0 <|a(x, y)|. Then "x||> 0 and

from (2) for A= "x"2 /la(x, y)l we get 0<-1 +||x"2|| sz /|a(x, yl2 and Schwarz inequality (3) follows.
From this we obtain, Minkowski's inequality,

@ e+ o <5l + 1.
Assume that a also satisfies
) a(x)=0=>x=0.
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}isa

1

”} is a Hilbert space with scalar product a(x,y). In fact, from the

Then, ”" is a norm. (5) holds if a is strongly coercive. In this case ”” ~ ””V . In consequence, {V,

Banach space. Because of (1), { v,
polarization process we know that the scalar product has to be equal to
x+y 2 x- y ’
2| |2

(6)
But (6)=a(x,y).

16. We give next an example of a plane region  such that the inclusion mapping of H'(Q) into I*(Q) is

not completely continuous. Let /; < (0,1) i=1,2,... be a sequence of disjoint open finite intervals of length

|I J‘I = 812. ~L,28!2. < 1. Let us define, (see Fig.),
Q= {(x,y) xe(-LDif yel,,xe(-10) ifye(o,l)\UI.},

0 six<0
8;,=10siyel,
x si yel,x>0

Then g, € H'(Q) and verifies,
“g,-“H, =¢,(1+1/3)"”, ”gf|le =¢,(1/3)".

V3o . .
_ Thus, the set X = {fl =—g,;j=1,-+-} is bounded in
; ] €
Q - H\©Q). However, Vi

2
P =2. Therefore, £ is not

|5~ 70 =10 +1,

precompact in I?(QQ), QED.

©0.0)

17. As a matter of fact, in the cited Corollary, Lapidus shows instead of (3.13) that
Q
N(A) = Uz +0(X"?),
4r

where N{A) is the counting function of the eigenvalues of Dirichlet problem. He also proves that

n”(1) ~ N(A). The main objective of our Chapter 4.will be to prove that 7#(1) = N(A) for the Neumann
problem, (cf. Th. (4.13)).

18. PROPOSITION. dom(4)= © := {x eH=0:Yx% < oo},

1
G)CW={er:Zx,2/1,.<oo}.
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N 2 N
PROOF. Assume that x€® and x" =Zx,.e,.. Then, x" —>x and ”Ax” " =Zx,.2A%. Thus,
1 H i 1

Ax" 7{) y= Zx,.A ;. Ax =y since 4 is selfadjoint and therefore a closed operator, (cf. (4.13)-(4.17)). In
1

consequence, ® < dom(A).
Let us see that ®@ Ddom(A). If gedom(A)=range(R) then g=Rf, feH. That is,

g=i%ei=igiei. Then, ifi2=igi2A2i_<_||f"§<oo. In particular, igflf<oo and g€ 0,
i=1 4 i=1 1 1 1

i

QED.

19. PROOF OF PROPOSITION (5.21). Assume that ¢ € Cy' (K,),0< ¢ <1, ¢ = 1, in a neighborhhod of X.
From ¢2|Vu|2 = div(¢2uVu)—- 20 uNuxVg — ¢2(Zzu2 + uf), we obtain

[#*IVul dg <0+2 [lpvalluv g|dg - [#*Cau+ £ 127V dg + [#(r*1427)dq <

D D D D

L 67

<2 oVuluVv +

2
a
Using the inequality 2ab < > +2b” and the Cauchy-Bunjakowski-Schwarz inequality we see that the last

expression is not greater than
1 1
3 [V’ dg +2 [u?|V | dg v [£2dq.
D D K

1
2y’

Therefore, f¢2 |Vu|2dq <4 J.uz |V¢l2 dg + J'fqu . Then,
D D I8

ﬂVu|2dqu(K,K1) ju2dq+2—12— j f2dg,  QED.
K K\K VA3

20. We state without proof the following result,
THEOREM. Let f(t)e Cy (27 —a), ae€(0,7). There exists a function u, which is a solution of
(A - ;(z)u =0 in the sector Q= {rei"’ O<r<p,a<p<22r —a}, u is continuous on é and it verifies

for x =re" € Q the relations,
ux)=0ift=a ort=2z—-a; u(x)=f ifr=p.

21. Let §=X+i¥ ={£(z)=&(x+iy) be a conformal mapping in the plane. Assume that

A w- 7'w=0. Then, u($):=w(z) is not necessarily a y-harmonic function since

2
d
AX,,u=32— Agw. I E=X+i¥ =£(z)=cz+d,||=1 and as before A, ,w—y’w=0 then
Ayyu—y*u=0.
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22. y SUBHARMONIC FUNCTIONS. Assume that ¥ € C(D) and S=S ,(x)c D, D a plane egion.

If £(z) =X +i¥ =1/z then Ay yu— z*|&[*u =0, but we have, sup( )

b

Define for y=x+re'?,
u(y), yeD\B,(x)

u = 1% it
=00 =1 [2,0 -+ peyt, ye B, (1)
0

Uy is continuous in D and

1 1 2z .
— u(x+ pe") dt = u(x+z)do’(z),
L(zp) 27 § I(zp) |,,=I,, ’

o is a unit mass uniformly distributed on ,(X).1f x =0, we simply write &”.

ug(x) =U(x) =

We call y -subharmonic a function u € C(D) such that for every xe D and S=S ,(x) € D verifies

u<ug on D. Whenever u= u, for every x and any S =S ,(x)c D, we shall say that u is y -harmonic.
That is, uis j -harmonic if u and —u are ¥ -subharmonic. This definition of y -harmonicity coincides with
that already introduced. From this definition we have again that if >0 is % -harmonic in D and u(x) =0
forxe D thenu=0.
For ¥ 20, SUB*(D), will denote the family of y -subharmonic functions in the
region D. If y =0, we simply write SUB(D). If for some y >0, u € SUB* (D)), we
shall say that u is metasubharmonic.
THEOREM (maximum principle for j -subharmonic functions). Let u € C(D)(\SUB* (D), D a plane
region. Then, u does not take its positive maximum at a point pe D.
The following propositions hold,
j) max u>0=> maxu=maxu,

oD D D

iy  maxu=0=maxu=maxu,
D oD D
i) u=z0, ngaxuSO =u<0 onbD.
D

PROOF. Assume that u takes its maximum value at pe D and u(p)>0. Then, for certain £>0 we

Iu(q) do;(q) <u(p), because of I,(r)>1 for »> 0. Thus, u does not
|p-al=2

would have: u(p) <
Iy (xe)

take its positive maximum at a point p € D . From this 7) follows.
i) implies max u > max 1 = max u < 0. In fact, if maxu = u(x,), u(x,)20,x, €D then from the
D

preceding argument we get maxu = u(xy)=0. This implies #=0. And this is in contradiction with

max u > n%ax u . The proved proposition is equivalent to #7).
D D
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iif) If max u >0 then from ii) we obtain maxu <0. Thus, maxu=0. If ml_glxuSO and u is not
D D D

identicaly zero then u(x) # 0 for x € D. Then, u(x) <0 for x € D, QED.

23. We prove next a result which is precisely theorem (5.10) in the particular case where A=A, a =— }(2 .

THEOREM. Let D be a plane region with the ball property. Assume that # € C*(D)NC(D), verifies
Au— Zzu =0 and m is its positive maximum on D . Suppose that Y, is the centre of a ball

B= {x : |x— yol < R} of radius R, contained in D, whose circumference intersects 0D at x, where

u(x,) = m .Let n = lx—y Then, if ¢(¥,R) == M we have,

A I(xR)
O, U
= (x0) Z (g, RYu(x,)
on
Lz =2
I,(xR)
harmonic function on {x # yo} and because of (5.23) on the whole plane. w(x) is such that for x € 0B,

w(x) =u(x,) 2 u(x) holds. Thus, if x € B we have w(x)2>u(x), (cf. Th. (5.6), (5.8)). Therefore, it
u(x,) —u(x) W(xo)_w(x)

e R

DEMOSTRACION. Recall that x, € 0D . Define w(x) :=u(x,) . Then, w(x) is a y-

follows for x € (xo, yo) the inequality . In consequence,

lim u(xy) —u(x) > —(xo) =c(g, Ru(x,), QED.
X%y |x A’Ol a

24. NORMAL FAMILIES OF y -HARMONIC FUNCTIONS. We say that the sequence of functions

{un (x):xe D}, D a plane region, converges almost uniformly to the function u, u, —>u, if the sequence
a.u.,

converges uniformly, 2, —> ¢, on compact sets of D. A family F' = {u, e A} will be called normal if any

sequence contained in /" has a subsequence almost uniformly convergent. Next we prove theorems A and B
analogous to theorems of Harnack and Montel, respectively.

THEOREM A. Let {u, tn=12,. }C A*(D) . Assume that for any n and xe D, u,(x)2u,_,(x). If the
numerical sequence {un (2, )} , Xy €D, converges then the sequence of functions converges almost
uniformly to a function u(x) € 4% (D).

PROOF. Without loss of generality assume that x, =0 and $=S (0)  D. Let

C, = sup{PZ (r,p;ty:r<p—gte [0,27:]}. Then, 0<C, <o since P,(r,p;t) is a continuous
function on {(r,£) [0 p-¢lx[-=, ]} Therefore,

0<(u, —u,. 1)(re"”)——— IP (. p;0 = 1)(, — 1, Kpe") dt < <L I(u —u,  Kpe")dt =

=2C.I1,(zp)u, —u,,_])(O). The last equality is a consequence of the formula of the mean value for

metaharmonic functions, (cf. (5.44)). Thus, it follows the existence of 1 € C(D) such that 1, —>u . From
au.
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2z 2z
un(re""’)=l [P, psp =1y u,(pe"y dt , 7 < p, we obtain u(re™®) -1 [P, pi0— ) u(pe™) dt .
7 7y

Thatis, u =ug forany Sc D, QED.
THEOREM B. Let {un n= 1,2,...}C A* (D) be a sequence uniformly bounded by a constant M. Then,
there exists a subsequence {unj (x)} and a function u € A% (D) such that u, =u for j—> oo,

a.u.

PROOF. Let r',r" <r < p. Assume that 0€ D . Using (5.31) to obtain a bound for the remainder of the

series that defines the kernel Pz , We arrive to,

le (r',p;s—-9)=P,(r",p;s—@")| <& for 'r’e"’" - r”e"’"l <6 =46(er,p).

u,(r'e”)—u, (r"e”")l <2Me and {un} is relatively compact on S,(0) because of the

In this case,

theorem of Arzeld-Ascoli. Therefore, {un} contains a subsequence almost uniformly convergent whose limit
is necessarily a y -harmonic function, QED.

. 0
25. Observe that if ue N(D) then lim Vuxn=a—u(xo) and Vuxn is continuous on (yo,xo].
n

X%,

Moreover, if u satisfies the hypothesis of theorem (5.10) and has a positive strict maximum at X, then

ou
0> a(xo) .

26. We cite in this section and the next one some auxiliary results that we use in the main text. In particular,

1 1
about the fundamental solution of the Laplacian. Let s(a,x) = —2——log|———|, a,x€R*, a+x. Then,
/4 X —da

A, s(a,x)=0 in R*\{a}.
Assume that the function f(x)e L*(R?) is of compact support that is contained in the compact set K,

K’ # . Under this hypothesis the following theorem holds. Its content is known and we shall not prove it
here.

G, {K } denotes the functions of C(R?) with compact support contained in K.
D'(Rz) denotes the space of distributions on R?.
FUNDAMENTAL THEOREM. ]) If x = (x,,,), ¥ =(»,,,) and
1
u(x) =0 )= [s5.9) ) dy=— [f(log— 3] dy.
RZ RZ
then u(x) € C'(R?). Forany x € R?, one has,
Ou Os 1 ¢x,—y,
X)) == —(x, dy=— |—/—3 dy.
o j o, NI = | O
II) Assume that D is a plane region, D> K, f,e€ L*(R*), f,=0 on R>\D, f, € C'(D). Then,
u (x) =(of, (x) e C*(D) and Au, = f, onD.
) C(D) N L*(D) ¢ AC*(D).
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1v) o(C,{k}) « C*(D).

2

& 3 \log) (s
(6x12 +6x22)( = =5,(D(R?)).

VI) Assume fis null on R?\D and Hélder continuous of order @ on D. That is,

feC*D),ac(0,], f=rI,.

Then, of is a function with continuous second derivatives on D.

8* (loglx] X2=x} 8 2
h —_ —~—+— (DR ),
V) It holds that, ( } - —wp |x|4 + 5 ( ( ))

27. AUXILIARY THEOREM. Let a<t<b, 0e(a,b), f(t,y) absolutely continuous with respect to ¢
for almost every y and ﬂ £(0, y)l dy <.

b
If j'dt ﬂ% f(t,y){dy <o then f(t,) is (absolutely) integrable for any f € [a,b], F@) = J. f@,y)dy is

absolutely continuous for # € [a,b],

and F'(t) = 1[1 (t,y) dy, almost everywhere on [a <t< b].
ot
Moreover, if I% (t,y) dy is continuous with respect to ¢ then everywhere on [a <t< b], it holds that,
d of
— \fE&.»dy=F'(t)= |==(t,») dy.
e =FO= [

PROOF. f(x,y)— f(0,y)= Ig(u, ¥)du holds for almost every y. Then,

/(e p)| |70, )|+ ﬂ (u,y)du,

(u,y)dydu < .

flf ey < lr,play+ | ﬂ
Therefore f(x,) € L' for each x & [a,b]. Moreover, for x € [a,5],
F(x) = [£(x,)dy = [£O,)dy+ j( j%(u,y)dy)du.

F is an absolutely continuous function since the function inside the braces,

1) = Ly,

is (absolutely) integrable. Thus, for almost every x,
of
F'(x)= |=—(x,y)dy.
()= [y
IfI()eC ([a,b]) then the last equality is verified at every point x € [a,b], QED.
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28. The preceding auxiliary theorem can be applied to obtain I) of the fundamental theorem of note 26. The
following lemma is also a consequence of it. Applications of this lemma can be seen in the proofs of (7.6) and
(7.26).

AUXILIARY LEMMA. Assume that f(#,y) is an absolutely continuous function with respect to the

variable 1, a < t < b, for any fixed y, and

b b
Jdt _ﬂ f(, y)] dy <o, !dt ﬂ% fQ@, y)i dy<ow, I% (t,y) dy continuous.
Call F(t):= [£(t,y) dy. Then, F'(r) = [r.y)dy . Precisely,

%J'f(t,y) dy='|'—gft—(t,y) dy for any ¢ € (a,b).

1
29. EXAMPLE. The function (x, j(x)) defined in a neighborhood of the origin by j(x) = x’sen— e C?,
X

describes a rectifiable arc I". It can be completed in such a way as to be a part ofa C 2_Jordan curve J, like
the boundaries we consider here. For its interior domain D, it holds the theorem (8.14). However, I is not
convex at either side of the origin, (cf. [P]).

30. PROOF OF (5.8). i) Case c=0.Let 0< @ e C;(B), J.(o( y)dy =1, where B is the unit ball and define
B

u (x):=¢e" fu( y)(p(ic;—y)dy on D.

D
Then u, € C*(D(¢)), where D(¢) = {x € D : dist(x,0D) > &}.
It verifies, Au, = f, 2 0. The hypothesis implies, for £ small enough, that
mﬁczx) u,(x) > 0. Therefore, by (5.6), it follows that,
XE€ &

m[_ﬁx) u(x)= ngg(x)ug(x) < max{u(x) :x € D, dist(x,0D) < 23}.

Letting & tend to zero one gets for x € D, u(x) < max u(y).
ye
iy Case c(x)e L'(D), c(x)<0 ae. Define D:= {x eD:u(x)> O} and 7:=f—c(x)u. On any
connected component of D , Au= f 20 ae. Thus, by 4 and the hypothesis,
0< max u(x) = maxu(x) = max u(x) . Noting that for x € DN\ 8D necessarily #(x) =0, one obtains
X€ xeD XE

= ED.
max u(x) max u(x) , Q

© 2 n+2k
31. LEMMA. The derivatives of the modified Bessel function /,(z) = Z (z/2)

————— verify the inequalit
SRyl oY e nequatly

J C.
——slr;)/pl —rf’),forr<r0 <p,where C, =C;(r,/ p).
0
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(r/2)"™*  (n+2k)!
K (n+ k) (n+ 2k — ))!

PROOF.Let 0<r<rny<p. I (r)=r" 2 <I9(r) =
k=

ro 2\ (p/2)"H[ (1 ) (n+ 2k)!
SR+ k)| (n+2k-j) |

Observe that the square bracket is zero for 7 + 2k < j. 1t is bounded by:

2k 2k ' . . i X
[(’b(/rfz 21Etn—+j)! : ] < (n+2k) (/ p)* < mx(n+x) (5/ PY-

It F(x):=m+x)(x/p)", F'(x)=F&)j+r+ x)log(r,/ p))(n+x).
If j+nlog(r,/ p)<0,then F'(x)<0 forall 0<x and

(1) F(x)<FO)=n’.

Else F'(x,) =0 for x, = —n— j/log(r,/ p),and

] ) j J . j j _
@) F(x) L F(xy)= (——————_ og(r, /p)J (rn/p)* < (——log(p/ro)) :C;.

So, in any case F(x)<C, + n’, QED.

© P -n
32. From (5.13)-(5.16) we obtain — K'(r) = J‘ ¢ . Using the identity
iV -1

{ 1 e’ % e

—— =1+ , we have —K)(r)= dt. So
N (t+r -V -1 ’ ro {1 -1

¥ 1
K,)(r)|<e | -+ <Ce ( —).Inpaﬂicular K,)(r)—> 0.
) [f lj(z‘+r W -1 J r P e
. 1 1 :

33. Using =-+ , one obtains

JA-1 t ta+JP-DVP -1
«© e—rt
K,(r) = [—— :
’ lj\/tz—l £+ -1) 1
1
1

©
Therefore, K,(r) < Iert+e" jt3+t2 N dt< J’ Zdt+ je ‘dt +Ce™"
r r - n\l rvl

-r

ot ®
dt= Ie—t‘dm IX(t,r)dt,where X(tr)=
M 1

=log*(1/r)+0(e™").
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34. Suppose that the boundary of D contains the segment {(x,O) =1<x< 1} and that P =(0,y)e D for
O<y<l1.Then

dx =

1
Y
dxzﬂz
1

148
ds > 2_Jjaz o’ + (=2 lde 2 [lorr

z=0
1y
-’ Jm)’ @2 yC 5.

35. Let s be the length parameter of a C? curve {(x(s), y(s)):se€(-S/2,8/ 2)} such that
(x(0), y(0)) = (0,0) and suppose that (0) = 0, (see Fig. 1, Ch. 7).
Then %(0) =1 and ¥(0) = 0. In fact, the first equality follows from %*(s)+ J*(s) =1, and the second one
from its derivative: 2x(s)X(s)+2y(s)J(s) =0. Therefore, for s = 0, we have x(s)=s+0(s*),
X(s)=1+o0(s) and y(s)=O0(s*), 3(s) = O(s).
36. PROOF OF PROPOSITION (7.4"): for ~0 <@, s <o and 6 >0,
a+é 2

G(a) = J. | ]

S +Xx

a

>dx < 4log[1 + —é—)
si

In fact, G(a)—>0 for a—> o and G(a) is increasing for small positive a. So, on the half-line

0 <a <, G(a) has a maximum at a (= a,,,) such that

G'(a) _(a+d)(s*+a*)~a(s’+(a+68)?) _ s*—as~a’ _
2 (s’ +a*)(s* +(a+6)?) (@S +(a+8))
J +4s -5 2s?

. Therefore, G(a) < G(a,, ) for a>0. From

This occurs at a,,,,

TS 44 45
the identity G(a) = G(~a - &), valid for every a, we get G(a) < G(a,,,) alsofor a < -5 .

at+é

0
On the other hand, if —8 <a <0, G(a) < I +J‘ <£2G(0). Therefore, G(a)<2G(a,,,) for any
0 a

aeR' . DBut
2
G(dt,y,) = log s+ (o +0) _1og14 ————5 * 25”""0*)
s“+a,, s’ +a,
. o e \/u2 +4—-u 2
Calling 1 := — one gets = = and
| I IS' 2 Vi +4+u
1 8 +24a,, - 5’ +28a,, 14 W+’ +4 -
S+ e 25% — &0ty g 2——211/(\/112 +4 +1)
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N +d v vdu | d u'+4 2 w+4-u 2

=1+ =l+—+u =1+u"+u <(1+wu)
Wit +4 2 2
2
2
Thus, G(a) £2G(a,,) = 2log(1+£2—+}é‘;—'”£] < 210g(1+|6—lj , QED.
s +a,, N

37. A PROOF OF THE UNIFORM CONVERGENCE OF THE SERIES IN (9.31).

J‘G(X Vi De,)dy = ¢, (X) (4, + 2%) holds even for X € 0D, (see (9.29)). In fact, since @, is
D

continuous  on D, it is enough to prove, for x—>X, that we have

[G. vy > [G(X, y3-27)p,(3)dy . This is true if we put K, in the place of G . If we
D D

had H instead of G, we arrive at the same conclusion making use of iv) and the second part of v) of (7.15).

(Observe that ﬂH ( p,q;/l)rdq < C§ holds for pe D as it follows from Fatou's Lemma.) Because of
J5

this, (9.31) holds for x € D .

Using the same argument, it is possible to prove that for X,Z € D, ﬂG(X LV A)—G(Z,y,: /I)Izdy -0
D

whenever X — Z . Thus, ﬂG(x, y;l)rdy is a continuouus function on D . Because of this, from a result
D

due to Dini, it follows that the convergence in (9.31) is uniform.

38. We have, (A, + 1))@, =(4,+ 1290, = 1, (e 1, >0, {% th= 0,1,2,---} a complete
orthonormal system in I*(D). Then, (0<)A4, does not depend of 17°. Besides, — A0, =A4,0,,

d¢p,/0n, =0 for x € D . Because of this, 4, =0 and ¢, =|D‘—”2.Then, O<A4 sS4 <

39. Let s be the arclength parameter on J = 0D and 6 >0, small. Call D’ := D\ J;. Then, dD° can be
parametrized in the following way, (see note 3),

oD’ ={(3~c(s),i(s)) :=S/2<5s< S8/ 2} where  X(5) = x(5)=8 y(s), Y(s)=y(s)+5Xx(s). The
parameter s is possibly not the arclength o of oD’ , however,

do? = (k-5 §)2 +(+ 8 £ Jis*=(1- 26 (3 - i) + 6° (¥ + 57 ))ds® ~ds* for small &. Besides,
the interior normal 7, = (—y(s),%(s)) to 0D at (x(s),y(s)) is also the interior normal to oD’ at
(¥(5),Y(s)) since (—(5),%(s))x (X(s) = J(s), y(5)+ 6 X(s)) = 0.
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