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rpanzone@criba.edu.ar

In memoriam Alberto R. Galmarino

RESUMEN. El problema clasico de Dirichlet en una regién de Jordan plana D de contorno J admite una

sucesién de autovalores y autofunciones, w, € C>(D)NC(D), w, =0 enJ, —Aw, =A,w, en D,

. 1 dreaD 1 longJ 1
n=1), tales que siJes C 2 vale —= - + g(2), holomorfa
(n=l), ales q D T R Sy QAL

n

en el semiplano derecho. Pleijel demuestra en particular esta formula pero para curvas C~. Sea

areaD

N(A)=# {),j A< l}. La férmula asintética de H. Weyl, 6(A) = N(A) — A =0(A), puede

4n

mejorarse si J es bastante regular de manera que 8(A) = BA"? +0(A'"?), como conjeturs el mismo Weyl.

Berry sostuvo que si el contorno no es regular esa expresion es todavia vélida si se cambia 1/2 por otro
exponente relacionado con la dimensién de Hausdorff de J. Pero esto no es cierto en general. Lapidus insiste
en que lo que importa no es esa dimensién sino la dimensién de Minkowski del contorno que coincide con la
anterior en muchos casos. En este trabajo presentamos también una ligera discusion sobre este tema.

Palabras clave: distribuciéon de autovalores, serie de Dirichlet espectral, conjeturas de Weyl, Berry y

Lapidus.

ABSTRACT. We consider Dirichlet's problem in the classical sense for the Laplacian in a plane Jordan

region D with boundary J. If {l j} is the set of eigenvalues of that problem, the counting function

areaD

NQA)=# {/l A ;i S l} satisfies H. Weyl asymptotic formula: 8(A) := N(A) - A=o0(1).



Related to the monotonous function N(A) is the spectral Dirichlet series:
P(z)=2)~;z =Jx_sz (x),Rez >1. Weyl's conjecture states that if J is sufficiently regular then one
0

should have §(A) = BJA + 0(\/% ) . This has been proved, for example, for regions with C -boundary.
The behaviour of P(z) follows from that of N(A) but results about P(z) can be obtained without a priori
knowledge of the counting function. A theorem of A. Pleijel deals with this type of results. He proves that if

_areaD 1 length) 1
dr  z-1 8t z-1/2

o l.
D has a C” -boundary the following formula holds: zl_z +g(2),

g(2) holomorphic at least in Rez > 0. In fact, g(z) is meromorphic in a wider region and has simple poles at
some negative half integers. In this paper we discuss some points related to the Weyl (§1) and Berry

conjectures (§4) and collect some results on eigenvalues, eigenfunctions and Green's kemel that hold for
plane membranes (§2). We show that the preceding formula holds for a Jordan region with a C 2 -boundary
(§3). We present a simplified proof for this case. We show that if N(A) admits a second term in its
asymptotic formula then it is determined by the second term in Pleijel's generalization. In §4 we also
introduce the concept of € -semiregular region. §5 and §6, are partly of expository nature. There we prove
that the variational eigenvalues and eigenfunctions and the classical ones coincide for general Jordan regions

proving then that in our framework we can use the results obtained by the powerful variational method.

Key words: distribution of eigenvalues, spectral Dirichlet series, Weyl, Berry and Lapidus conjectures.

1. INTRODUCTION. Our objective is the study of the behaviour of the eigenvalues of
the classical Dirichlet problem in Jordan regions. In this paper region will always mean a
bounded open connected plane set. A Jordan region D is a simply connected region whose
boundary J=dD is a Jordan curve. One problem is then to determine the asymptotic

behaviour of the counting function N(A) =#{),j ‘A, S)»}=the number of eigenvalues of
Dirichlet problem not greater than A counted according to their multiplicities. For a Jordan
region D the following important result due to H. Weyl holds: if |D|=area of D then

N ~A, 0<A—eo, ie, A~TE
D] D]

second term in N(l)=7L|D|/ 4m+0(A) can be determined and behaves as A if the

n, n—o. Weyl's conjecture asserts that the

boundary of the region is sufficiently regular. In fact, Ivrii proved that if J is very smooth



l:%l - %;Z VA + o(ﬁ ) where <J ) =length of J. Moreover, Kuznetsov proved

then N(1) =
that if the eigenvalues can be determined by the method of separation of variables then the

same formula holds. For a region with a wild boundary the problem could be restated as to

D
find an estimation of the discrepancy 6(A) =N (l)—%—ll. Sometimes the behaviour of
T

some function associated to N(A) gives information about the behaviour at infinity of the

counting function. For example, the Laplace transform Z () =J‘e"}"dN (l)=2e'l"’ , also
0 n=1

called the partition function, or the spectral Dirichlet series z/l;’ defined by the function

P(s)= Ix”st (x),Res>1. In fact, it can be shown using abelian and tauberian theorems

1+

that N(A)~AA, A — = is equivalent to Z(t)=2e”1"’ ~A/lt, 0<t—0+. Here we must

n=1

have A=|D|/4n:. On the other hand, if N(l)=A7L+Bx/I+o(\/I), A > and

Z@t)=alt+b/Ji +o(r™*), t 1 0 hold then a= 4, b=B+/m /2. We prove this proposition
in the APPENDIX (§ 9).

For the spectral Dirichlet series we have the following result

s—1/2
with c'(s) holomorphically extendable to s 21/2 then a'= A, b'=B/2.

THEOREM 1. If N(A)=AA+BVA +0(V4) and P(s)=L'l+ +c'(s), s>1,
o

K
PROOF. Let F(x)=(B+o())}vx=(B+ f(x))}Vx. Then, P(s) =—‘-4-1-+ lim [x~dF(x).
s— R
The limit is equal to constant+ sJ'F (x)x™'dx=cnt.+ Bs/(s—1/2)+ sj f()x™ " dx=
1 1
M
B/2(s—1/2)+cnt.+ s(j+ j ) ()x~ 2 dx=B/2(s—1/2)+ p(s)+q(s) where p(s) is
1 M

holomorphically extendable to Res >0 and ¢(s) =s_[ F(x)x7"2dx. Let |f(x)|<¢& for
. M

3



x2M >1. Then, sj < £s if s >1/2.For s >1 we have
o |s—1/2|
0= A_cll + B/2175 + p(s)+q(s)—c'(s). It follows immediately that 4=a'. Therefore,
s— s—
B/2-b'
0= + p(s)+¢q(s)—c'(s). For s >1/2 we have

s—1/2
b'-B/2=(p(s)+q(s)—c'(s))(s—1/2). That is, for s41/2,

b'-B/2|<€/2 holds and this

inequality is valid for any € > 0. In consequence, B/2=5", QED.

2. GREEN'S KERNEL. In this section we suppose that D is a Jordan region with

boundary J and consider its classical Dirichlet problem. That is, we understand by classical

eigenfunctions (eigenvalues) functions (mumbers) w, (A, ) such that w, € C*(D)nC(D),
w,=0 on dD, —Aw, =A,w, on D, (n21). In the following theorems, except for the

continuity of the function defining the boundary, no regularity hypothesis on .J is needed

(Observe that there are Jordan regions with fractal boundary or with boundary of positive

area.) Assume that A=-y?, ¥>0. A radial function u(p)=¢ﬂp|) is a solution of

Au+Au=0 if and only if @(p) is a the solution of 1d pd—¢ -x’¢=0, p>0. Let
pdp\ dp

r=xp>0 and K(r)=¢(p). Then the differential 'equation may be written as

—rt

1d e

rdr

(rd—K)—K =K"+1K’—K =0. Kelvin's function of order 0: K (r) = dt,

dr r Ve -1

r>0, is a solution of this equation. In fact,

K (r)-K,(r)= JVtz —le™dt= It (P =1)"*e" dt/r=—K,(r)/r. Let us record some
1 1
properties of Kelvin's function. K,(r)= j(e'" /tydt + ‘[(e"’ P+t =1—=1))dt . Let
1 1

X(t,r) denote the last integrand. We get K (r) = J(e" /t)dt + JX(t, rydt =
r 1



1 oo 1 oo
L I(e" /t)dt + cte.+ J.th =—logr+cte.+ j(e't -t 'dr+ Jth =—logr+ P(r), where
r 1 r 1

P(r)eCl([O,oo)). For r—0, K,(r)=-logr+P(0)+0O(r). If r>g,>0 then

0<Ky(r)=0(e""*). A similar bound is valid for |K,'(r)| but 0> K,'(r)2-Me™™"*, M a
positive constant. We also have rK,'(r)=0(1) for »r - 0 and .[KO (r)dr =%.
0

Let Au—x*u=0, -4 = x> >0. Define Green's kernel G(p,q;A) as

G(p.g; )=5—K (xlp-dal)-H(p.g:;A).  p.ge D
(1)7(A +AH(p,g;2)=0, H(p,.;A)e C(D)NC*(D)
L H(p,q;/l)=EKo(xlp—tJ|) if ge oD, peD

THEOREM 2. In a Jordan region D, G(p,q;A) satisfies the following properties.

i) If ue C*(D)NC(D), ¢ L™ (D), (A+Au=¢ on D, u=0 on J, then for any pe D,
u(p) =~ Gp.q:1)9(q) dg.

ii) Forany p,qe D, p#q, G(p,q;A)=Glq, p;7).

iti) Let ¢ L™ (D), pe D, u(p) = J-DG(p,q;)v)q)(q) dg. Then, ue C(D), u=0en oD and

g.“_e C(D),i=1,2, — j—(p 7:M)(q)dq .
pl

iv) Given ¢ e C‘(D)ﬂL""(D), let u(p)=-— jDG(p,q;/l)¢(q) dq. Then, ue C*(D)NC(D),

(A+A)u=¢ onD, u=0 on dD.

v) The following propositions are equivalent:

a) 9 L(D), ¢(p)=p| Gp,g:1)$(9) dq.

b) e C*(DYNC(D), —(A+A)p=u¢ enD,¢=0 en aD.

vi) If 1, denotes the distance between p and 0D then for any gqe D:

o(x ) O<G(p )‘ o(X‘p ‘I|)

OSH(p,q,



vii) Let M =diam D. Then, IEGZ (p,q;A)dg < ﬁjﬂﬂw}]{"z (xlq[)dq = C*(A) < oo.

viii) Y3 (1) = ”DXBGZ (p,q;A)dp dg < C* (l).|Dl < oo,

(As a matter of fact H(p,q;A)e C(DXB) . Its derivatives admit, on compact sets, bounds

with an exponential decay with respect to /,,.)

Define for x =0, G(p,q):=G(p,q;0), as:

G(p,q;0)) =L10g—-M——H(p,q), p,g€ D, M =diam D,
2 |p——q| B
(2){ A, (H(p,g))=0 enD, H(p,)eC(D),

H(p,q)z—Llog—M— si qedD, peD.
L 2n "|p-q|

If M denotes the diameter of D then 0< G(p,q) < (2r)™' log(M /lp —-q), (p.9)e DxD.

THEOREM 3. Let y 20, A=~x". The Green's kernel G(p,q;1) defined by (1) or (2)

K, (X|x|)
2

whether ¥ > 0 or x = 0 verifies the properties i)-viii). The functions E* (x).=—

for x>0 and E°(x) :=—2Llog|1—|, defined on R*\{0}, satisfy, in the sense of
T |x

distributions, the equation (A—y*)E* =8 . Besides, all the solutions of (A+p1)u=0,
ue C are analyticon D .

The proposition v) in Theorem 1 shows that any eigenfunction ¢ of —A is an
eigenfunction of an integral operator with a positive symmetric kernel
G(p,q)e L’(DxD), that is, of a selfadjoint completely continuous operator G of Hilbert-
Schmidt type: yt G¢ = ¢ . Moreover,

THEOREM 4. The eigenvalues of the classical problem —Au=Au on D, u=0 on oD,

are positive of finite multiplicity and, when repeated according to their multiplicities, can

be ordered in a non decreasing way: 0<A <A, <., A —>oo. The corresponding

eigenfunctions: ¢,(x) (-A¢, =A,¢,, ¢, =0 on J), may be chosen real, orthogonal and



normalized:

?, 2=(J.¢n2(p)dp)”2 =1. They belong to C(B)ﬁC‘”(D), and form a
D

complete orthonormal system. Moreover, they satisfy the following equation:

n=|

o 2
2#=J‘G2(p,q)dqscz<oo. If u=Gf feI’(D), then the expansion of u in
n D

eigenfunctions converges absolute and uniformly on D. This is the case, in particular, for
a function u in C 2(D)r\C(B), null on the boundary, such that Aue L™ (D). All the
content of this theorem holds for the operator — A+ x instead of —A.

The functions ¢,(x), n =1, 2, ..., are also eigenfunctions of the y -harmonic operator
—A+y* since 4,>0 and —(A+2), =(A, —1)¢,, A =—x2. Therefore, the spectrum of

the y -harmonic operator, O _pyt> is equal to o_+x’. If peD, we have

o, (A, —A)= J;; G(p,q;1) ¢,(q)dg . If {c } are the Fourier coefficients of G(p,.;A)

with respect to the complete orthonormal system {4),,} then, for x*>=0,

¢, (G(p,;A)=0¢,(p)/(A, —A). In consequence, from vii) it follows that for any pe D,

i&%%%FSC%M<w'

THEOREM 5. Let {p, } be as above. For any pe D it holds that 2(¢n (p)) /A —1/4m.
A <A

Therefore, A,~4mn/|D|.

In fact, N(A)/A ~|D|/4x is a consequence of the limit. Then, for pe D, n— o,
Q.02 (p))/n—>1/D|.
=

THEOREM 6. i) For pe D, the following series on all the family of eigenfunctions

converges on q€ D absolutely and uniformly to the continuous function in q, F(p,q; 1) :

G(p,q; 1) —G(p,q) = F(p,q; A) =12%_



i) If F(p,A):=F(p, p:]) then F(p,A)= AZ% =1im (G(p, 1)~ G(p.4)).

F(p,A) is continuous on Dx (C\c,) and is a meromorphic function of A for each p-

3. 1. THE SPECTRAL DIRICHLET SERIES. In this section D is a C?-Jordan region.
In particular, J is a Jordan curve defined by means of functions y,(s),y,(s)e C* with a

tangent versor at each point. The precise definition is in II of this paragraph.

We focus on the functions F(p;l)=7ti(pf (p)/A,(A,-A) and IF(p;?L)dp
1 D

=Ail/7tn(ln-—l), A=-x®, x>0. By Th. 6, §2, we have F(p,q;\):=
1

G(p,g;M)~G(p,q) =K, (x|p—q))/ 2% — H(p,q;A) —(1/2m)log(M /|p—g|) + H(p,q).

Using the fact that K, (x|p —q|) = log—~—-M—+P(x|p —q|)— logM , we get F(p,q;A)=

xlp—ad|
—(logx)/27r—H(p,q;l)+H(p,q)+P(x|p—q|)/27r —(logM)/2r . Hence, for g — p,
(1) F(p:A):= lim F(p,q;A) =
=—(log x)/2rn —(log M)/ 2n + H(p, p)— H(p, p;A)+ P(0)/2n
where

(1Y H(b,q;A)=Ko(xp—4q)/2r >0, ge D, be J.

Since K,(r) is a decreasing function HIEXKO (x|b—q|) =K, (x dist(q,J)). Thus, by (1")

and the maximum principle for ) —harmonic functions, if pe D and g€ D then

(2) 0< H(p,q;—x) < K, (x dist(q,J))/ 27 .

To estimate H(p, p;A) for y — o observe that if dist(q,J) > >0 then (cf. §2),

(3) H(p,gi—x*) < C(8)e™",

It will suffice then to estimate H(p, p;A) on DN (dD);. Our objetive is to prove the

following formula (6) for Jordan regions C’ and for this it is essential to prove next



formula (4). From (6) we may conclude that the set of the eigenvalues determines the area

of the region and its perimeter. Define, I= IH (x, x5~ 1) dx .
D

From (1) and what we said above we deduce that for w = x* and C a constant it holds that

D) S

F(x,~w)dx=—"logw+C—-J =—w ~————. We shall prove in 3.1I that,
Dj( ) 4z Zz,,(/l,,+w) P

(4)1=@+0(1°—g£) 7=
8y )

Then, assuming (4),

1 _iof /) 1 ylogw
1 - .
A,(4, +w) 4r ogw +C 8 w2 +0() w

(5) h(w) =~ Z

We shall obtain next formula after integrating this equality along a curve y of the plane w

1_@vay 1o 1 ()
(6)2,1;_I X 4rz-1 8z z-1/2

b

+g(z), g(z) holomorphic on Rez>0.

Or, what is the same (cf. [P1]),

1 1
6' =————-—"———4G(z), G(z) holomorphic on Rez>0.
©) ! 47 z-1 8z z-1/2 (2), @) P

7 is the contour shown in fig. 2 with r such that 0 <7 < inf(4,,1) . Let I be the region at

the left of y. Let us prove (6). The function k(w) = wz(+ i1s meromorphic on

the plane w with simple poles at the points A,. For a =—'D|/ 4r, b=—<J >/ 8 and C a
constant it verifies on ¢ > 0,

(7) k(=) =h(t)=alogt +bt™> +q(t)+ C,

where ¢(f) is a continuous function on 7 e (0,00) such that g(¢)=O(t"'log?) whenever

t >, (cf. (5)). Wehaveon s>1,

kW) @ s =1
I IZ (/1 ZI PR Y

n




1—~s

In fact, let ¢ =|w|. Because of Weyl' —
| I Y A(t+2)

dt <o . This allows

to prove the second equality. For the last equality in (8) observe that the region I' is the
limit, as R — oo, of the region contained between the circumferences k and K of radii » and
R except for the points on the negative real axis. The integrals over K tend to zero when
R —eo since s>1. Thus, the last equality in (8) follows from Cauchy's theorem of
residues.

Let k'=ym{z:|z|<1} and l:)/\{z:|z,<1}=ll+l2 (see fig. 2) with /| from - to —1
where argw=m and with [, from —1 to —e where argw=—x . The function

fo(8) = El—jmdw has an entire extension. Then,

) -3 = jﬂdwwfo(s)

- k(W) 1 M k(W) = 1 T _ -5 —iﬂ.\‘_ ins
(10) mj—dw j dw+j 2 dw 2m_!k( Dt (67 — ™ )dt

: 2mi L) w’ LW
w o o« -1/2 _
_ senﬂ:sJ'k(st) . senmsJ-h(t)dt _ senﬂ:SJ-alogt+tCs'+bt dr+ sen7s ¢ (t) ”
1 T 1 T

1

The last term defines a function g,(s) that has a holomorphic extension to Rez > 0. Thus,

< 1 senmsTFalogt+bt™V2+C
an Y —= j g

- dt+g,(s) =M(s)+g,(s), s>1,
T

1

where g,(z)=-f,(z)—g,(z) is holomorphic in Rez>0. The integral is equal to

? b+ C . Then M(s)=-—_+ BI"

——+ +
(s-1)° s-1/2 s-1 s—=1 s-1/2

+g,(s) on s>1 where g, is

holomorphically continuable to Res > 0. Thus, on Rez >1 it holds that

= 1 a b/mw
12 —_— =+ +g(z), g holomorphicon Rez>0,
1) Y ==t te@ e P

and (6) follows, QED.

10



If N(A) had a second term in its asymptotic expansion, because of Th. 1 §1 one should

have N(A)=—-aA+2bA"* /7 +0(A'?) = (|D|/ 4m)A - ((J)/M)JI +o(A?).

3. II. LOCAL COORDINATES. To deal with regular regions it is convenient to
introduce local coordinates around the boundary in the following way where we follow A.

Pleijel, (cf. [P1], [B]). Let s be the parameter arc legth on J starting at the origin O, (see
figs. 3,4).

The points in J will be denoted by y = y(s)=(y,(s),3,(s)), 0<s< <J > . We assume that
y,(s)e C? ([0,<J>]),y,. O)=y, (<J>). Let n, = #n=#(s)=(n,,n,) be the interior normal
versor at y. Suppose & > 0 sufficiently small and let I be an interval such that <I > < (J >
Define the map T: (s,t) > x:=y(s)+t #n on the rectangle C(/) = Ix(—6,5) to the strip
Js ={x:dist(x,J)<8}. We denote with & :=(£,,€,) a point of the rectangle C(I) and
with x=(x,x,) its image in the strip J;. Then, T is written as T:& =(£,§,) =
x = (6,%) =01 (€)1, €N+ & (i (E), iy (E))), 0, <(I), €| <8 . Thus, if &, =0 then

xe J . Given 1=(n,,0) its image will be represented by y = y(1],) to underline that it is in
J. One can get, taking & sufficiently small, that the map T of the rectangle
fe=,.6,):0<E < (J)|E,| <6 } with vertical sides identified, be a homeomorphism onto

Js. In fact, since by hypothesis J is C 2 Tisa C' map and can be written as (note that
n,=(=3,(6):3.(5))>

xl(é)")’l(él)_éz)}z(é)
x2(§)=J’2(§1)+éz)}|(§1).

Its jacobian B is the modulus of the determinant of the following matrix,

a(xlaxz) yl(él)_gzj}z(é]) —yz(§1)
- =1-6,¢c(G))-
BCE) @) +an @) e [T

c(&,) is the curvature of J at the point T(€,,0)e J . For § sufficiently small 1-¢,c(§,)>0

n|=1 because of £, =5 ):

(13) T(§)={

(14)

whenever |§2| < & because of the continuity of c. In this case 0<B=1-,c(&,) and T is

11



locally a homeomorphism. Let us see, perhaps by using a smaller § , that our T is globally

a homeomorphism. Let y(s)eJ and & such that T is a homeomorphism from
(s—2¢e,5+2€)x(~8,8) onto U =T((s —2¢,5s+2€)x(~8,5)), a neighborhood of y(s). Let
V={xeU:dist(x,J\U) > 2dist(x,J)}. Then, V is also a neighborhood of y(s) and there
exists 0<8 <& such that U = T((s—e,s+8)><(—-g,g))c V. Since J is compact it is
possible to cover it with a finite number of such neighborhoods, {17 pih=1--- N } Let

0, = mhin g,, . We claim that T is a homeomorphism from

{5 =(£,,6,):0<¢,<(V), l§2|<51} onto J; . In fact, let xe J;, to prove that there is a

unique ye J such that dist(x,J) =|x— y| assume that y,,y, verify dist(x,J )=|x— Vi

k=1, 2. If ye UnNJ then, by construction, y,e UnJ. Writing y, =y(s,) and
defining &, :==*dist(x,J), (with the sign + whenever xe D), we deduce that
x=T(s,,§,)=1(s,,&,) . Since T is a homeomorphism on U, we get s, =s,, i.e. y,=Y,.
Thus we have proved that 7 is one to one and onto J; . Given x= y(&,)+&,n,(§) € Fy, %
denotes the symmetric point with respect to J: %= y(€)—&,n,(§,)).

THEOREM 1. If Je C? then on Rez >1 it holds that

aN() 1D 1 () 1
¥ 4w z-1 8m z-1/2

(6" j +G(2),  G(z) holomorphic on Rez>0.
1+

J
PROOF. It only remains to prove formula (4): JH (p, p;—xz)dp=¥+0(logzx ) If
D X X

F,=DnJ,, because of (3) we have

(15) I=IH(x,x;—xz)dx = jH(x,x;-xz)dH JH(x,x;—xz)dx=

F, D\F,

W
:J.O déz J‘H(x(é),x(g);—xl’)[l_0(51)52 ]d&l + O(e—xhlz),

12



where we suppose < 8,. We assumed that Vxe D, 0<&, <h there exists £¢ D and this
holds if 4 is small enough. Also B=|B|=1 —c(€)E, >0 on F, . If the boundary were the
real axis and D the superior half plane we would have (cf. (1), for b=(4,,0)€ J, that
H(b,q;=x*)=K,(x|b-4])/2n. Then, from the -harmonicity of both sides:
HE,q;-x%) =K0(x|§ ~4))/2n on D={Im& >0}. We shall see that even for D a Jordan

K, (Xlx - ]3|)

> 1s small when peF,, xeD. In fact,
v/

region, R(x,p)=H(x,p;—x 2) -

(A,—x>)R=0 on D and R is ¥ -harmonic. Besides, if xe J ,

(16) [R(x, p)=|KoCtlp—x)— K, (x|p— x|/ 27

We shall deduce from (16) that for pe F, it holds that

(17) |R(x, p)| < Minf(1/ y,e ¥4 p-D/4)y for xe J, with M independent of p, x.
Assuming (17) for a moment, it follows from the maximum principle (i.e. ¥ -harmonic

functions take their positive maximum and their negative minimum on the boundary) that

(17) holds also for xe D . Thus, if R(p):=H(p,p;i—x*)-K,(x|p—p))/2%, then

(18) lR(p)| < Minf(1/ y,e ¥%512-1)/4) for pe F,.

Therefore,

[R(P)dp|< [IR(P)dp < [IR(PY Tigutprye 1o+ (IR gapryeesdp =T+ 1L,
F, F, F, £,

where (cf. (18)): I< M|Dle™*'*, 11< M'e/ x . Taking € =:‘—'—log)(2 we get,
X

_ﬂR(p)ldp <C'/x*+C"(logx)/ x*. Then, for y great enough we obtain,

Fy

(19)  [IR(p)p=00) 2B

DnJy X
Let us prove (17). Given pe F,, let V' be a neighborhood of O e J, O the middle point of
the segment pp (see fig. 5). After a change of cartesian coordinates such that p =(0,x,),

p=0,—x,), JNV = {x =(x,, f(x))): |x1| < 5}, we can write f(x,) = ax +o(x) . Choosing

13



& > 0 sufficiently small we can achieve that | f(x,)| < Clx, |2 for |x,|<& with C independent

of pe F,. In fact, in the new coordinates the equations of J are:

{xl (5) = ()= 3, (007, (0) + (¥, (5) — ,(0)) 3, (0)
%,(8) ==(3,() = 3,(0) ¥, (0) + (¥, (8)=y,(0)5,(0) .

%,(8) = 31(8)31(0) + 3, (5)7, (0) =1+ (31 () = 3,(0)) 3, (0) + (3, (5) = ¥,(0)),(0), and there

exists € >0, depending only upon J, such that x,(s)>1/2 for lsl<£. We can choose

Then,

€<2h. Then, x, =x,(s) has an inverse function s=s(x,)<2x, defined at least on
bo|<8:=€/2<h. Thus f(x)=x,(s(x,)). From the identities f'(x,(s))%,(s)=%,(s),

I (NxXI(s)+ 1 (x, (5))X,(s) = X, (s) we conclude that f'(0)=0 and | f(x, )| <K on
lei <6 with K independent of O. Moreover, f(x,)= f f7(@®)(x,—t)dt implies that
0

| f(x, )| <(K/2)x}. Now we can replace 4 in formula (15) by 6 =€/2 without changing

the formal expressions of this formula or those that follow. Notation:
), r:=+x] +x’, (see fig.5). Then,

, , ‘
p2=x12+(x2—|f(x1)l)22x12+x72—f2(x1) and it follows that p®>x!+x}/2-Cx/.

P :=inf(|x—p,|x—f7

Therefore, p* > (xl2 +x; )/ 2 if § is small enough. That is, p >r/2.If £= e=f (%)

represents here the symmetric point to x with respect to x, =0, we have: |x— ﬁ| = |fc— p|.

Thus, ||x—p[—|x—ﬁ”S]x—fc|=2|f(x1)|. If xeJNV,

(20) d:=|K,(xlp—x) - Ko (xlp - 5| < 221 )|y 0B,

where p is a number between |x— p| and |x— ﬁ| Because of p>r/ V2 we have

p> ri2 = |x2!/\/5 = dist(p,J)/«/E). The right hand side of (20) is equal to,

21 @VF)KO'(X/?)ISCMeﬂWZ ScZ\/E—|f(xl)| e*P? <
p

2, 2
NEa =
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2
x _ _ - | . —ydi
<c' 21 - e xri242 SC'|JC1|€ xri2\2 <c're xr/4 <c" lnf(—,(dzamD)e xdzst(p,J)/4).
X, +x2

If xe J\V then |p——x,ﬁ—x|26/2=h/2 and

(22) d"=K,(x|p—x)+K,(x|p—x) <c"e™* <cVinf(1/ e PN,
olX olX V4

2C—dist(p J)

From (21) and (22) we get |R(x,p)[$ sup(d,d")/2n < M inf (l/gg,e—4 "), that is (17).

Finally, we evaluate what should be the first approximation © of jH (p, pi—x*)dp .

O:= Jw jdé IK (1262 ML - e, )éz]déz

2T
(J) 2hy 2hy
=§j{§;j Ky(t)t - c@) ;Ko -

oo

0 2xh

. ()
[ = [ Ko e, + 0™ 1) +00 1) =(x >> )= | ol 0{5{%}
0 0
1 ). 7 T :
=+ O(———z—) since IKO (r)dr =—2—. Therefore we obtain,
4 0

! e )y of L
(23) EF{Ko(xlp—pl)dp— 8 +0(x2 )

(23) together with (19) yield (4) and the theorem follows, QED.

4. WEYL, BERRY AND LAPIDUS CONJECTURES. In this section we assume again
that D is a Jordan region. We know that if J is sufficiently regular then

N(A)= AXT™P'2 4 pAAmDT2 4 o(AmPD2y - 4= |D|(4m)™, B=—(J)(4r)". Here dim
represents the Hausdorff dimension. But dimD-1=1=dimJ. Then we have,
N(A)= AAT™P%  BAS™ /2 4 o(2%™//2) | Berry's conjecture says that an asymptotic

expression like the last one must hold when J has no additional regularity. Unfortunately
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this is not true with all generality. Lapidus conjectures that dimJ should be replaced by the

Minkowski dimension of J. A reasonable objective is to determine 7] in an expression like
N(A)=AA+o(A") if such an exponent exists. This amounts to estimate the discrepancy.
Let be A(f)={ze D:dist(z,J)< t}. We write |B| =m(B)= exterior plane Lebesgue

measure of B. k=k(dD) denotes the Minkowski’s interior dimension of the boundary,

loglA(¢
k(oD) :=di1m oD =2 —lirxollgl—i)l , if the limit exists. A parameter that always exists is
> Og
I(D) = inf{or > 0:|4(r)) = O(F**),t - 0+}. It holds that if k can be defined then

k(dD)=1(dD). If the limit does not exist we can still define the superior interior

log|A(?)|
logt

dimension as k*=k*(dD):=dimoD =2 -lim ,t — 0+ . It is not difficult to prove
1

that k*(dD)=1(dD). It is harder to prove the following result.

THEOREM 1. /(D) =k *(aD) e [1,2].

Instead of using the dimension theory sometimes it is more convenient to deal with simpler
analytic or measure theoretic concepts. We shall say that D is & -semiregular, €< (0,1],
whenever |A(t)l=0(ts). If D is €-semiregular then m(dD)=0. If J is rectifiable then
A(t) =t . In this case D is 1-semiregular. But note that there are Jordan regions that are not
€ -semiregular for any € € (0,1]. Let us observe that

l(oD)=2- sup{n :0sn <2, A(t)‘ =0@" )}. Now it is easy to prove next theorem.

THEOREM 2. i) If k*e [1,2) then 2—-1(D)=2-k*e (0,1].

i)) If 0<e € (0,2—k*) then D is € -semiregular.

Assume that 2>0 >s=k*(J). Then, it can be proved that the discrepancy verifies the
inequality &(A) =N(),)—(|D|/47t)7t >-2""? for A>A,(6), (cf. [F]). But in this case D is

an € -semiregular region for € € (0,2 -—5). Therefore, there exists an € in that interval such

1-£
that A°'> > MA 2, M a constant, whenever A >A,. In fact, because of Theorems 1 and 2
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we can pick up an € such that 1>0/2>1-€/2>5/221/2. Next theorem improves

slightly the inequality about § mentioned above.

THEOREM 3. If D is €-semiregular then there exists a constant M such that the
discrepancy verifies 8(1) 2 — MA'™'? whenever A > Ay ().

PROOF. We follow the argument in [F]. Let W be the Whitney's decomposition of D in

half open binary squares. Let us denote with S(i) the union of those squares of W of side

k o
27,i=12,---. We have, S(k+1)CD\US(i), D=US(k), (see Fig. 1). If £>2 then
1 1

S(k) c A2 \/5). Therefore, because of the hypothesis, if n(k)=#squares in S(k), we get
n(k)27* < lA(Zl'k «/5)‘ =0(27%). Let be D(k)=union of the interiors of the squares in S()),

J=1,...k and N(A,k)=#eigenvalues of D(k) not greater than A . Because of D(k)c D, it
holds that N(A,k)< N(A). (We shall prove this inequality in Theorem 7 of next
paragraph.) Since D(k) is the union of disjoint open squares we can estimate N(A,k) just

counting the eigenvalues of each component square. If D is a square we have
NQA)= (|D|/ 4mA -y (L), 0Sy(A) < <8D>\/I /2x . (In fact, the classical eigenfunctions
of the Dirichlet problem for a square of side a are (senmm x/a)(sennmy/a) except for a
non null factor. The corresponding eigenvalues are A, , = n’(m*+n*)/a’ , m,n>0 with
multiplicity #{(m,n) :0<m,n; m*+n* = azlm,n /71:2}. In consequence, N(A)=H#F,

F = {(m,n):0<m,n;

(m,n)|<avA/ 71:} The union of squares of side 1 with superior right
vertices in F has area N(A) and is contained in C = {(x, y):0<x, y;|(x, y)| <r=a'a/ 75}
Hence N(A)< |D|2, / 41t =area of C. Similarly C= {(x, y):1< x,y;|(x, y)| <r= aﬁ/n} is

contained in the union of squares of side 1 with inferior left vertices in F. Therefore,

N(A)zareaof C 2 (nr’/4)-2r =|D|A/4m — (3D)VA /2m.) Thus,
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N2 N> i%/ln(i) - ﬁ%—ﬂ n(i) =

|D| 2’ N =2i v 2 1/2 < =i . ID| A« - —i 2 1/2 . (1~
:___2{___ i _= i >> _ ey _ “~ 21(1 £) >
4 4r ;2 ") nl ZZ ") >>47t)L 4r szO(Z ) nl Z‘O( )2

lﬂ'l—cﬁd"‘e —-c'?L”ZZ"“‘E).
4

Choosing 2" < A2 < 2", it follows that N(A) 2 (|D|/4m)A~ MA™"?, QED.

5. WEAK SOLUTIONS. We say that the function u defined in the region U (not

necessarily a Jordan region) is a weak solution of (~A+Au=f,u=0 on oU where

fe}(U),if ue H\(U) and for any ve H\(U), jvuxvvdxmjuvdx:jfvdx holds.
U U U

Recall that H,(U) is the closure of Cy(U) in H'(U). One can prove that if fe C”(U)
then ue C*(U).
THEOREM 1 (Lax-Milgram). Let H be a real Hilbert space and B a bilinear functional

B:HxH — R continuous (|B(u,v)|$a||u||H||v”H) and coercive (i.e., AP >0 such that

B“uH: < iB(u,u)l ). Given F, a real continuous linear functional on H, there exists a unique

u€ H such that B(u,v)=F(v)Vve H.
We shall apply this result with H=H,(U) and B= B, (u,v)=1(u,v)+ )/<u,v> where Y20,

I(u,v) = jVuvadx. The functional B is continuous and coercive:
U

B, (u,u)= Jqu]z dx + y“u”i 2 f ”u“il . Most of the results of this section will only be stated.

THEOREM 2. i) Let y20. For any fe L’*(U) there exists exactly one weak solution of
(A+y)u=f,u=0 on U .

ii) The application L;,l fel’ su s € H, is bounded.

iii) L;’ I} > I? and is completely continuous.
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PROOF. 1) There exists a unique u, € H, , such that Vve H (U), B, (u,,v)= < f, v>. That

is, IVufovdx+yJufvdx= _[fvdx.
U U U

i) If fn—éf,uf”—m then B, (u,,v)— B, (u,v), <fn,v>—><f,v>. Therefore, L;l is

closed with domain L*. Thus, [u,| , = ”L;1 f HHl <K|f],-

Uy

iii) The immersion of Hy(U) in L*(U) is compact, H} cc L*, since U is a bounded
region. Then, K = L;l is completely continuous of L*(U) in L*(U), QED.

THEOREM 3. The boundary problem: (-A+A)u= f,u=0 on dU has a unique weak
solution for any f e L* or there exists a non trivial solution of the homogeneous problem.:
(-A+Au=0, u=0 on U . The corresponding null space N, has a finite dimension.
The non homogeneous problem admits a weak solution if and only if f LN, in I’.

THEOREM 4. The positive infimum 7Ll:=inf{1(u,u):ue H,, qu =1} is taken on a

function w e Hy(U), a weak solution of (~A—2)w,=0,w, =0 on 9U . It also verifies

I(wl,v)=7Ll<w1,v> for any ve Hy(U). Moreover, there exist w,,w;, - € H,, =1,

an

such that, for n>1, A =inf{I(v,v):ve H,,

v||2 =1’ <V,Wi>=0, izl,,,,,n—l}, O<l,' SA«";
is taken in w,. Besides, I(w,,v)= )Ln<wn’v> for any ve Hé ).

THEOREM 5. 0<A <A, —> and {w,} is a complete ortonormal system in L*. It

I(u,u . I(u,u
holds for u,wj,vkeHéDM that min (&, )=7Ln, ( ’2)= s
0#uLwy,...sW,_y "u dimM=n OzueM. “ulz

2
2

I(u,u)

max 2
oy V-l Yin.indep. 0#ulvy,..,v,_ l|u"
2

=A,, where L1 means orthogonal in L.

THEOREM 6. i) If o0UeC?, fel’(U) and (-A+wu=f,u=0 on oU then
”u"H2 s C(U)mf”z +|lu“2 ] Iff=0 then ||u||H2 < C(U)H“”z
ii) If U e C* then w,e H* "H,NC".
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Let o, be the spectrum of the operator —A, (-A-A)u=0,u=0 on dU, each A

repeated according to its multiplicity.

THEOREM 7. 4) Let Dc E. Then, Vj A,(E)<A,(D) and N,(A) SN ().
B) Let D, E, U regions such that DNU=8,DUVU=E. If 0'D={lj}, GU={l'j},
o, ={u,} then p,,, <supW,,A', fand N,(A)+ N, (W) <N, ().

C) If {D, ti=1,..,m} is a disjoint family of regions such that for any i, D,CE, E a
(bounded) region then ZN b, (M) SN Q).
1

PROOF. A) If M is a subespace of H(D) then it is a subspace of H}(E) > H)(D), (cf.
auxiliary theorem, §6.) Using the minmax formula of Theorem 6 we
obtain A, (E)< A, (D).

B) Let M=M+M,, M, =[,..v|cH)D) and M,=[',.v,|cH\U). Let
u=v+v,ve M, ,v'e M,. Then, I(u,u)=I1(v,v)+I(v',v'). Because of the minmax

I(v,v)+1(v',v")

min 5 >
M=M+M, OzueM “V” +||va|

formula we have u,,, <

max((v,) M + max2 ) A

min 2 2
ot M+

L ai; +bA',
If M, ={wl,...,wj}M2 ={w,",...w,'}, the last expression is not greater than T
a+

Therefore, u,,, < sup{lj,ﬂtk '},... QED.

6. CLASSICAL AND VARIATIONAL EIGENFUNCTIONS. We shall prove next that

the (weak) eigenfunctions and eigenvalues of the Dirichlet problem in a Jordan region

DcR? found by means of the variational method are equal to the classical ones,
corroborating that we have made a legitimate use in section 4 of the variational results of

the preceding theorem 7. For this we consider the Dirichlet problem in the unit circle

U={z:|z|<1}. Let ¢eCy(U). We write: E=pe?,x=re® t=r"e" =x/r’=1/%.
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Green's kernel for this region is G(x,£)= 2_—;log‘|lx_—~é_i|—| = 2_—; [10ng -&|- loglé - x‘ - log|§|]

whenever x#& #0. The function u(x) :=jG(x,§)(p(§)d§ is the classical solution of
U

~Au=¢: ue C*(UYNCW), u(z)=0 if ze 8U={z:|z|=1}. We show that u belongs to
H é (U). In this case the classical solution is also a weak solution such that
ue HyU)NH*(U) nC™(U) nCT), (cf. section 5).

THEOREM 1. a) If K(x,E) is equal to the Green's kernel of Dirichlet problem in U,

=4

G(x,&)= :—llog ——, or to some of its derivatives,
2 &

gg‘(x,é) =——1< X6, _ (X,I§|—§, /|£|)|§| , then it verifies
X;

27 \le-¢f  |xfg]-e ]

(D JlK(x,§)|d§ <C<eo J]K(x,é)[dx SC<e foranyx & in U, respectively.
U U

b) If e Cy (U) then u(x)=[G(x,E)p(€)dE belongs to Hy(U).

To prove this theorem we need the following result.

THEOREM 2. If K(x&), x&eU, satisfies the inequalities in (1) then

w(x) = J. K(x,y)p(y)dy verifies -“w(x)lzdx <C? ”q)”; .

PROOF. In fact,

2

() = <(fIK @y

) J|K e d) < C[|K (x| dv.

&G0y

Thus, j[w(x)|2dx < CJ‘dx_ﬂK(x,y)||(p(y)|2 dy < C2||(D

U

*, QED.

PROOF OF THEOREM 1. We have G(x,&) =O(loglx—£|) and
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a_Gz— a [10g|x_élz_loglé|2_log}x_ 22:|=___1 xl—éé _ (x1|€|—€l/l€|ZI§| —
ox,  4mox 27 | |x —¢&| ’x|§|_§/|§”
=O0(G—) . Therefore a) follows. From a) we obtain that ue H'(U ). Because of B) of

i 5'
next auxiliary theorem we obtain ue Hy(U), QED.

AUXILIARY THEOREM. 4) Let D and E be regions such that D c E. We define, from
the functions u in Hy(D) functions #, #(x)=u(x),xe D;i(x)=0,xe E\D. Then, in

the sense of distributions it holds that (—) _g_u and the extended functions define a

ox; X,
subspace of Hy(E) .
B) Let D be a Jordan region with boundary C' and ue C(D), null at the boundary. If
ue H'(D) then ue H,(D) .

For a proof of this theorem see the references in § 10.

THEOREM 3. Let D be a Jordan region with boundary J.

i) The classical solution ve C(D)NC*(D) of —-Av=y, yeC,;(D), v=0 en oD
belongs to H'(D).

i) If JeC' then ve Hy(D) and is equal a.e. to the weak solution of —Av=y,
yeCy (D), v=0 on dD.

PROOF. i) Let g be the map that applies D conformally onto U and applies D
topologically onto U, (Riemann-Carathéodory mapping theorem). Let ¢ C;(U) and
®(z) = ¢(g(2)). Then ®e Cy (D). Let u be as in b) of Theorem and y w(z) =u(g(z)). Let

us define, G =& +in=g(2)=g(x+iy) = g (x,y) +ig,(x,y). From —A, u=0(g)e C; (U)

2

it follows that —A, v= qo(g(z))% . The function %g_ (#0) is holomorphic on D. Thus,
/4 z

the following function belongs to C;’(D):
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@) w(xy) = m(g(z)){(af;) (ai)}

2
Therefore, —Av(x,y)=®(x,y) {( ag2 } V(x,y)e C; (D). v is then the

classical solution of —Av=y(x,y),v,, =0. On the other hand we have

v yvr = }(Vé,nu)(g (Z))IZIZI, |(V§n Mg (Z))‘ s, 77; Then, using Theorem 2 we arrive

In consequence, the classical solution of

at ’Vx,yv

< Mo

2oy “Vé’”u ) )"
—Av=y(x,y), v=0onJ,isin H'(D).
ii) follows easily from the auxiliary theorem, QED.

THEOREM 4. Let D be a Jordan region with J € C'. Then G=Lj .

PROOF. If w is the weak solution of —Aw=y(x,y), w=0 on J and v is the classical
solution of the problem then v=w because of Theorem 3. Thus, we have v=Gy = L'y for
any ¥ of the form (2), what amounts to say that the equality holds for any v e C; (D). If
Cy(D)>y, — f in I’ then G(y,)=L;'(y,) = L;'(f) in H} and to G(f) in L*. In
consequence, G=L;', QED.

Let D be a Jordan region with boundary J and y € C; (D). There exist Jordan regions D,

with boundaries J,eC”, J, —J, such that suppy cD,cD,cD,,cD,,

n+l n+l
cD=D,, n=1, 2,.. . (For example, D, = {(x,y) :G(x4, Y03 %,Y) > E, }, £, L0, where
G(xy,50;%,y) is the Green's kernel for D). If v, is the classical solution on D, from
—Av, =y, v,=0 on J,, we get that v—V, is a harmonic function on D\J,, continuous

on D . Therefore,

——-—0. That is, v is the limit in L”, and then in

I, of ¥,. In particular we have Vn <M <oo.

nil2
Let us replace by u's the V's to denote weak solutions. Thus, u, =v, . We shall see that ii)

of Theorem 3 holds with greater generality.

23



TEOREMA 5. Let D be a Jordan region with boundary J. The weak solution u of

—Au=vy, ye C; (D), u=0 onJ, coincides with the classical solution v.

“dxdy = [ Vi, Vi, = [[Vu, Vu, = fyu, <|y|,
D,

PROOF. jD fIvi, u,|, <My, =M.

Then,

U, o SK <oo. We use next, in H,(D), the equivalent norm | . associated to
[

Hy

the scalar product I(u,v)= jVuva dx . Define W, =u,, W, :=u, —u,_, in such a way
D

N
that Y W, =ii, . It holds that W, e H.(D,)0H\(D,.). In fact, let ge Cy(D,.,). Since
1

u, is a weak solution in D, we have I(#,,9)=[y(@-p)dr=0. Then,
D

N N
ZthKI(‘) =|L7N[2 <K? holds in H}(D). Because of this, ZWJ =1y, converges in
1 1

Hy —

Hé (D) to a function ue H (D), a weak solution. Because of u, =V,, the sequence
{#t, } converges in I? to the classical solution v, Thus, u=v, QED.

THEOREM 6. i) If D is a Jordan region then G=L;'.

ii) Let {w,.} be the family of normalized eigenfunctions of the Dirichlet problem obtained
via the variational method and o, ={u,} the associated spectrum. Let {0} be the family
of classical normalized eigenfunctions and & ={A.} its spectrum. Then 0,=0 and for
any i the eigenspaces (of finite dimension) coincide: N(U =N@A)). {goi}z {w,}: each
variational eigenfunction is a linear combination of classical eigenfunctions contained in

its eigenspace: w, = zck(pk a.e., and conversely.
=g

PROOF. Using Theorem 5 we can repeat the proof of Theorem 4 showing so that i) holds.

ii) is an immediate consequence of i), QED.

7. FINAL REMARKS. In this last paragraph we collect three bidimensional examples to
foster a non optimistic view of the conjectures. Assume that dim is Hausdorff or

Minkowski dimension. For the examples (a), (b), next formula (*) does not hold:
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(*) N@QA)=A4A+BA"? +0(A""?), d =dimoD, A= |D|/4ft and B a non null constant.

(a) Assume that D is a Jordan plane region with a boundary of positive area, i.e., d=2. If (*)

holds then we would have N(A)~(A4+ B)A, contradicting Weyl's asymptotic formula (§2,
Th. 5).
(b) Gromes considers a biangular region D on the unit sphere with vertices at the poles.

Here d=1. Let {x}=x- [x]-1/2. If the angle B between its (meridian) sides is a rational

Hl_<aD>+5(7L)J—
4 4

multiple of n, pB=r(a/b), then N(A)= A+0(1) where

o(A)=(@/ a){b\/7L+l/ 4-b/ 2}. Thus, instead of a constant B we have an oscillating
function B=B(1).

1
() Let D=S,;, S, ={in/2<x<(i+Dn/2}x{jn/2<x<(j+1)r/2}. Then, D is not a

i,j=0

Jordan region but d=1. For each n,m=1,2,... , the functions sin(2nx)sin(2my)I s, (x,y)

are four linearly independent eigenfunctions corresponding to the eigenvalue 4(n* +m?),

(I stands for the characteristic function of §). If Q= {x, y:0<x<m,0<y< n} then

sin(nx)sin(my) n,m=1,2,...are the eigenfunctions for the eigenvalues n’+m’.

Therefore we have the relation: N,(1)= 4#{n,m n’+m? < )»/4}=4NQ (A/4). For Q it
holds

(**) No(A)= | |A Ji (< >+o(1))

Then, N, (1) = ‘ |7L VA( < >+o(1)) But (dD) < 2(dQ) and (**) does not hold for D.

However, if D had the squares 3’; without points in common we would have

N (A)—‘ |7L «/—(< >+o(1))
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8. FIGURES.

Fig.l LI___H_'__(‘
A 5N
: 2\
b o
:
=~ 5
LI

Fig.5
O.5,)=p
0
7 — (< $[~r
F x=(x,t0x)
A
P

26



9. APPENDIX. Next we quote a tauberian proposition where we assume that 0(0)=0,
(cf. [T] and [W)).
AUXILIARY LEMMA. i) Let ¢(£) 20,06 >0,x — 0, T — 0. Then,

oo

A T
j eo(t)dt ~ = = j o()dt ~ A
0 x 0

o3

I'c+1)

i) If 9(x) is non decreasing and non negative and p >1 then
T
JoOdy~AT? = o(T)~4pT™
0

iii) Let ¢(x) be as in ii). If Y >-2 then

oo

T
[edo()~4/x = [to@ydt~AT™ [y +2).
0 0

The non negative jump function N(A), 0<A<eo, N(A)= 21 , 1s right continuous and
Pz

D oo
vanishes on [O,Al). Because of AA, ~ n, A=|4—|, the series Ze'l"x converges and
T

n=i
oo T

defines the function Z(x)= J. e ™dN(t) = Ilzm Je""dN () on (0,0).
0 0

LEMMA 1. N(ﬂ,)~|4£|l,/’teoo = Z(x)=ie"‘n"~g-,x—>o+.
T X

n=1

oo

In fact, integrating by parts we get Z(x)=xje""N(t)dt with N(#)~At. An abelian

0

theorem allows us to assert that Z(x)~x(4/x*), ((W], Ch. 8), QED.

On the other hand, for x>0 there exists Z(x):=J.e""dN(t). Thus, if Z(x)~A/x then
0

2
(cf. i), for ¥ =0, auxiliary lemma). Since N(¢) T we get, using ii) of the

T
j N@eyae~AT
) 2
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same lemma, that N(f)~At. Therefore, for A —> oo, x — 0, the following tauberian

proposition holds,

oo

LEMMA 2. Z(x)=3 e = [eran@~aix = N@y~4a.

n=1 0

LEMMA 3. Let N(),):A),+B\/I+O(\/I),l_>°°. Then, Z(x)=g+i+o(x_”2),
X X

Ix
BJn

x40, witha=4, b=—2——.

PROOF. [e™dN(t)=x[e™ N(t)ds =x[ e (At + BE + o(yTy)dr =L@, BTG/2)
0

0 0 X \/;-

oo

" .
x[eo(di=2++R(x). But |R(0)|<A [Ketdt+ [eeiar |, e>o0,
X \/; 0 M

0

+I'(3/2)¢

Jx
R(x)|<e(l+m /2)//x . Then, +x R(x) = o(l), QED.

M=M(e). If G(u):KJ‘\/; e’dv then |R(x)|.<_ G(xM) For x small enough
0

one obtains,
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