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RESUME
A ce travail-ci nous considérons en a < x < b 1'équation différen
tielle de 2éme ordre y" + (sz—q(x))y = 0 avec de conditions de con

tour de la forme:
P(s)y(a) + Q(s)y'(a) = 0 = P(s)y(b) + Q(s)y'(b) ,

N = ~ . -
ou P,Q,P ct Q ce sont decs polynomes dans la racine carrée du va-

leur caractéristique X = s?.

Sauf par peu de restrictions, pratiquement imposées par la nature

du probleme, ces polynGmes sont arbitraires.

Traitons ici, au cas ou les polynomes sont réels, le comportement
asymptotique des valeurs caractéristiques, le développement en
fonctions caractéristiques des fonctions de carré sommable, la 1i
berté de choissir des coefficients dans le développement d'une
fonction donnée et d'autres problémes qui surgent naturellement
dans 1'étude de cette sorte de systemes différentiellles de Sturm-

Liouville.

- Fal . - . P
Au cas ou les polynomes sont linéaires en X, on analyse les z&€ros

des fonctions caractéristiques.
Quelques détails especiaux sont traités dans le cas:

p=1 , Q=0 , P=s , Q= a réel.

Recibido Agosto 1980.
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1. INTRODUCTION.

Boundary value problems like

y'+(A-q)y =0 , -@<a<x<b<+s,qelL(a,b),
(1) P(M)y(a) + Q(N)y'(a)

P(A)y(b) + Q)y' (b)

a
0,
0

b

were studied by many authors, among others by R.E.Langer, C.Miran
da, R.L.Peak, E.Hille, R.Davies, R.V.Churchill, W.F.Béuer, W.Dﬁch,
W.D.Evans, J.Walter, Ch.Fulton, E.M.Russakovskii, E.N.Guichal,
and the authors of this monograph. Most of the applications invol
ve only linear dependence on the parameter A and were considered
by almost all the authors mentioned. Some appear already in books,
e.g., B.Friedman "Principles and Techniques of Applied Mathema-
tics'", A.Tijonov and A.Samarsky "Ecuaciones de la Fisica mateméd-
tica'", S.Timoshenko and D.H.Young '"Vibration Problems in Engine-
ering'", etc..

Some characteristic features that distinguish problem (I) from

an ordinary boundary value problem, i.e., one with P,Q,5 and a
constants, are: a) the eigenfunctions are not orthogonal with
respect to Lebesgue measure on [a,b], b) null series are present,
i.e., non-trivial series that converge to zero in the mean. (It

seems that one of the first authors that considered these series
was J.Tamarkin).

Well-known results on the eigenvalues or the eigenfunctions that
hold in the ordinary case are not valid any more; for example ,
the eigenvalues are not necessarily real for q,P,Q, P and 6 real,
and the number of zeroes of the eigenfunctions in (a,b) do not
increase necessarily with the eigenvalues, even in the most sim-
ple cases where the eigenvalues are real and simple. This is shown
in Appendix I. In Appendix II we prove that if the spectral para-
meter enters via polynomials in the boundary conditions these do
not fall into the class of ''boundary values for a differential

operators' considered in [DS] , where it is shown that such a



boundary value can be reduced to a linear relation between the
values of the function and its first derivative at the end points
of the interval [a,b]. But, as is shown in [BP], p.162,for Q # 0

P)Y(a) + QMY () = ] < y 3@y, mo= (2p)vizgen),
.

with cj constants independent of y, and p = deg P, q = deg Q.

The boundary problems that interest us in this paper are those
ones where boundary conditions in (I) are replaced by

0,

~

an P(VN)y(a) + Q(VN)y' (a)
0, P,Q,ﬁ and Q polynomials.

P(vN)y(b) + QU/X)y' (b)

Problems of this kind were studied by H.Hochstadt, Y.Li and
others for P,Q,s and 6 linear. The methods of proof that we fol-
low in many places are the same that were used in [BGP], and the

details are much the same as those in [G].

A particular case of (II) is

y" + (s?-q)y = 0, qe L} (0 <x <) real,
(I1I1)
y(0) =0, ay'(m) + s.y(m) = 0, a#0 and real.

~

Here, P=1, Q =0, P = s, a = a. Most of the propositions in
sections 3-7, where problem II is considered in detail, apply to
this particular case. At this moment we make some comments on
problem (III) borrowing results from [H}, part I.

The eigenvalues are of the form

S =n+ 9 , = - l tan”!

1 _ .
n n n - a + O(H) , N = 0,%1,%2_ ..., ,

and the corresponding eigenfunctions y,(x), that satisfy the boun
dary conditions and ys(0) = 1, verify
sin s_X 1
yn(x) = —— * O(_z) s n = '0’i1>i2""

Sn n

For the remarks that follow, it will be enough to consider the



case q 0. The two O's appearing above are now identically zero,

and v

¢. The normalized eigenfunctions are

(Iv) Vv _(x) = yn(x)/"yn"2 = sin (n+¢)x/(% - % sinnzg(n+¢))1/2

b

n=0,%1,+2,...

Firstly, we observe that the sistems {v2/m cos nx: n = 1,2,...},
{vV2/m sin nx: n = 1,2,...} are orthonormal and the second one is
complete in LZ(O,w). We call

Isin nxj,
1+C_ = , C = sup |C_]|
" Isin (n+e)x), >0 D
N 2.1/2
and for d_ complex numbers , n = 1,2, N, dll = (] Idnl ) .
n=1

Then, we have

N N
() d, (Vv -v2/7 sin nx)|, < V27w | ¥
n=1 -

. dn(1+Cn) ( sin(n+p)x-sin nx) "2 +

1

N N
+ | ) d_ Cn»/_277r_ sin nx"2 <277 I} d_(1+C) sin mx (cos ¢x-1) lz +
n=1 ' 1

N
+ VZ/m |} d_(1+C_) cos nx sin x I, + c.ldl =R+ s+ coudl,
1

Therefore,

N
R < llcos ox-1l_.I} ¢27ﬂ(1+Cn)dn sin nxl, < (1+C) (cosh 7|e|-1).01dl ,
1

N
S < lsin ex|_.1V/277 } d_(1+C_)cos nxl, < :sinh wle|. (1+C) Idll .
1

In consequence,
N

vy 1} dn(Vn—/27ﬂ sin nx)I, < [C+(1+C)(sinh|¢m |+ cosh |me|-1).IdI=
1

= K.udl.

If the number a in (III) tends to zero, so do ¢ and C. Therefore
if |alis small enough, (V) holds with K < 1. A theorem due to Pa-
ley and Wiener assures then that system (VI):



(VI) {(V:n=1,2,...1}
is biorthogonal and complete (cf. [RSzN], pp.205-7).Then,we have:

There is a positive number € such that if |a| < e, system (IV) is
not biorthogonal and any function Vj(x), j=0,-1,-2,..., has at
least two expansions in L2(0,n) with respect to the normalized

system of eigenfunctions (IV), one involving only positive j's.

(Observe that the argument given in [H] between formulae (24) and
(25) is in contradiction with the last statement).

2. NOTATION AND BASIC RESULTS.

We assume q(x) € Ll(a,b), -0 << a <X S<b <+, and o = sz, s a

complex number. q(x) will be assumed complex too until further
notice. By a solution of -y" + (q-o)y = 0 will be understood an
absolutely continuous function y(x) with absolutely continuous de
rivative that verifies the equation almost everywhere. P(s),Q(s),
5(5) and 5(5) will be complex polynomials verifying:

i) at least one of them is not a constant,

ii) g.c.d.(P,Q) =1 , g.c.d.(P,Q) = 1.

iii) if P(Q) is identically zero then Q(P) is identically one.

~

The same property will be shared by the pair P,Q.

In what follows we shall study the following boundary value pro-
blem:

y" - (q-0)y = 0,
(1) P(s)y(a) + Q(s)y'(a) = 0,

P(s)y(b) + Qs)y’ (b)

A solution ¢,(x) of the differential equation satisfies the fol-

lowing integral equations for s#0:



. X .
6.(x) = ¢ () cos s(x-a)w)(a) T0EC2) JaSI“ SGY) qy)e, )4y
©) )
6,00 = 6_(b) cos s(b-x)-oy(b) TREEXL 4 JXSID SO qy)e, 04y

which for s=0 reduce to

609 = Bo(@) + 8() () + | x-¥)a0g(y

a

2 )
000 = 0 (®) - 60 B + | X0y -

Let us call

E (s)
(3)
F4(s)

P(s) + isQ(s) ,
3(5) + isa(s) .

P(s) - isQ(s) , F,(s)

B(s) - isQ(s) , F,(s)

Then if m = deg F, v deg F,, n = deg Fy v deg F,, and p = degP,
q = deg Q, 5 = deg P, a = deg 6, we obtain for Q # O:

(4) m=rpv (g1) , n=pv (@1).

(1If P,Q,F and 6 are real then deg F, = deg E,, deg F3 = deg F4).

We also have:

LEMMA 1. ii) implies g.c.d.(Fl,Fz) = 1 or s, g.c.d.(F3,F4) =1
or Ss.

The comverse is true in case |P(0)|+|Q0)| # 0, |P(0)|+]Q(0)[# 0.

Next we define for s#0:

u_(x) = (F;(s) eis(x-a) _ Pz(s)e'is(x‘a))/Zis

(5)

U_(x) = (Fy(s) o~ is(b-x)_ F4(s)eis(b_x) )/2is

and for s=0:



ug(x) = -Q(0) + P(0)(x-a) = lim u_(x) ,
(5') s>+0

ug(x) = -Q(0) - P(0)(b-x)

lim u_(x)

s+0 °

We shall denote with Us(x) and Es(x) the solutions of y'"-(q-0)y=0
defined by the following initial conditions:

(6) U@ =-Qs) , U@ =P(s) ; U (B =-Qs) , U1(v) = B(s).

(5) and (5') correspond to the particular case q = 0.

We shall define the characteristic function of problem (1) as
= U = U - U

() w(s) = WU_,T) = u (0T, (6) - Ul ()T (b).

Then Us(x) will be a solution of (1) if and only if w(s) = 0.

The zeroes of w(s) will be called etgenvalues although the name
"eigenfrequencies" could fit them better. By the multiplicity of
an eigenvalue s we understand its order as a zero of w(s). An
eitgenfunction is a nontrivial solution of (1) for s an eigenvalue.
Observe that Us(x), Gs(x) are entire functions of s for fixed x
and continuous functions of (s,x). The same holds for Ué(x)

b

ﬁs(x). Therefore w(s) is an entire function of s (cf. Appendix IV).

The notation that we use coincides, as far as possible, with that
of [G]. In this way we avoid unnecessary repetitions of proofs
that the reader could find in that work. Then, if a result is not
accompanied by a proof and no reference is given it will mean
that the proof is very simple or can be found in that paper. Un-
til now we have only one deviation in notation: our ¢ is equal
to -X where X in [G] is the spectral parameter for the equation
y"-(A+q(x))y = 0.

LEMMA 2. If s = u+iv then

|US(X)| 0(1)e|V|(b-X)lS|n-l ’

b

0(1) elvlGx-a) g m-1, T, (x) |

U (x) | o(1yelvI=x)gn

o(1) elvl(x_a)[s|m ; |ﬁé(x)|

uniformly on [a,b] for |s| — o.



In particular they hold for u_, ul, u_ and Gé. For a proof, check

S
this last case and use the formulae

X .
U 00 = u )+ [ RSO gy U ey, st
(8) @
U (x) = u_(x) + Jb sin sGreX) q(y) U (y)dy , s#o

X

We shall denote with 8§(s) the wronskian W(us,as). We have:

LEMMA 3. 6(s) = (Fj()F,(s)e™®P7%) Ry (s)Fy (e P72y /21
and w(s) = §(s) + o(e|Vl(b-a)_[ My

s|7), M = m+n-2.

Recalling that the polynomials in the boundary conditions are of
the form:

B}sJ ,

o~

P . D .
(9) P(s) = Ja.s?, Q) = gtst , P(s) = EELSJ , Q(s) =

we shall introduce another Aypothesis on them:

degree F; <m - = degree F3

1]
=]

iv)

[}
=]

degree F2 <m = degree F4

From this and lemma 3 it follows that 6(s) and w(s) are nontrivial
entire functions of finite order.

Observe that if q(x) = 0 and P(s) = is = P(s), Q = 1 = Q, then
any complex number is an eigenvalue. iv) avoids such a situation.
By the spectrum of problem (1) we shall understand the set of

eigenvalues where each eigenvalue is repeated as many times as
its multiplicity.

THEOREM 1. The characteristic function w(s) is completely deter-
mined by the spectrum and the boundary conditions.

PROOF. According to lemma 3, w(s) is an entire function of order



one. If IlI(s) denotes its canonical product, from Hadamard's theo

rem we obtain: w(s) = eas+8.skn(s). The factor sk.H(s) is deter-

mined by the spectrum. If Wy and W, are the characteristic func-
tions of problem (1) with fixed boundary conditions and for q(x)
equal to ql(x) and qz(x) respectively, then we have: wl&ﬂ/w2&ﬂ=

= Ce'® whenever the spectra coincide.

From the hypothesis it follows that if F, has not degree m then
deg F, = m and deg F; = n, and if deg F, < m then deg F; = m,
deg F, :

n. Therefore we can assume without loss of generality

that in Lemma 3: deg F,.F3 = m+n. In consequence, if s = ih ,

h > 0, we obtain: wj (ih) ~ Fz(ih)F3(ih)eh(b_a)/2h, j=1,2, and also
that w; (ih)/w,(ih) ~ 1 for h — +w. This implies that y = 0 and
C = 1, and then that'wl(s) = wz(s). Q.E.D.

3. THE EIGENVALUES FOR THE REAL CASE.

From now on we assume that P,Q,E and‘6 are real polynomials and

that q(x) is a real function. Now m = deg F, = deg F,, n==deglg=

= deg F4, and iv) is always satisfied.

Besides FI(E) = Fz(s) and F3(§) F4(s) and also §(35) = 6(s).

Moreover, Us(x)=U§(x) and ﬁs(x) = Ug(x), and therefore

(10) w(s) = w(s)

Next we prove some results on the behaviour of the eigenvalues.
Since §(s) is the dominant term in the expansion of w(s), we be-
gin considering that function.

-is(b-a) N
e Fl(s)F4(>) ] F2F3
2is F1F4

H

(11) S(s)

+ e2is(b—a)] -

i

F(s).[-e™¥+ 0(%) + g?is(b-a);



ip . :
where v € [0, 2n), F,F,/F|F, ~e™ for s — «. Let us define Cy,

for N a positive integer, as the boundary of the square with cen
ter at (¢/2(b-a),0) and side equal to T(2N+1)/(b-a).

ip_g2is(b-a)) oy C; = Cy n {Im z > 0}

and the relation 6(s) = §(5) we obtain the following result:

From the behaviour of |e

LEMMA 4. If N is great enough there exists a positive constant A
such that for s € Cy it holds that

|8(s)| = A.elvl(b_a).[slM+1 , M=mtn-2 , s = u+iv.

If C

Ls,J

= 4 mJ . .
ACED) * p-a » J an integer, the following results can be

denotes the circle of radius e < w/(b-a) and center at

Py
proved as in [G], pp.10-12.

LEMMA 5. If |J| is large enough and s € C_ ; then there exists

A(e) independent of s and positive such that

[6(s)| = A(e). |s|"H.

COROLLARY. If N is large enough, w(s) and §(s) have the same mum-

ber of zeroes enclosed within Cy. Idem for Ce |[J] = N.

»J°
LEMMA 6. There is a p such that for |s| > p, 6(s) has only real
and simple zeroes. They are of the form Py * 0(1/J), J integer
of modulus sufficiently large.

We shall denote with S the discrete set of zeroes .of w(s). If
s € S then also § € S,

THEOREM 2. There is a p such that w(s) has only real and simple
zeroes for |s| > p of the form py + 0(1/3) for all integers J
with |J| sufficiently large. The distance between consecutive
zeroes tends to m/(b-a) for |J| — =.



Next we define an auaxilzary function A(z). First we choose two
real numbers a,B such that D(z) = aUZ(a)+BU;(a) = (BP-aQ)(z) ve-

rifies D(z) # 0, V z € S. Then, if D(z) = aﬁz(a)+85;(a) we call

(13) A(z) = D(z)/D(z)

For each value of z, A(Z) = A(z) holds.

THEOREM 3. Assume that hl(s) and hz(s) are polynomials and such
that the function f(s) = hl(s)A(s)+h2(s) is null at each eigen-

value of modulus sufficiently large. Then hy =0 h

i

2
PROOF. We can assume that HET?T = hj(s). (In fact, f(3), f(s) +
+ £(3) and i(f(s)-f(3S)) verify the hypothesis. Then if the theo-
rem is true for these last two functions then it also holds for
£(s)). If for |s| =R, w(s) = 0 implies f(s) = 0, we define k(s)
as the product: k(s) = H(s-sj)(s-gs) wheré the sjs involved are
the zeroes of w of modulus less than R.

The function &(s) = k(s)f(s).D(s) is an entire function null at
at each point of S and is of the form:

(14) o(s) = H;(s).D(s)*+H,(s).D(s), with H = kh; and H, = kh
real polynomials.

2

Then ¢(s) = O(elvl(b_a).|s]w) for certain integer w. Since
1/w(s) = O(e"v|(b—a).|s|'(M+l)) on Cy, we obtain ¢(s)/w(s) =

= O(ls[p) for s e CN and p an integer. Since ¢/w is entire this
estimation holds inside Cy and also in all the complex plane.
Therefore, there exists a polynomial G(s) such that a(s) =

= w(s).G(s) ¥ s. (Since 9(3) = ¢(s), G is real). From the pre-
ceding relation o(s) = (-Q(s) ﬁé(a) - P(s) ﬁs(a)).G(s).

So, in view of (14),
(15) H(s) = Ul(a).2(s) + U, (a).n(s)

where H,7 and I are the real polynomials: H = H,(-8P + oQ) ,
I = GQ + BHl , I = GP + aHl. The function A(s) verifies ﬁs(b) =

10



= A(s)U_(b), UL(b) = A(s)UL(b), v s € S, and therefore w(s) = 0
implies A(s) # 0. If £ and II are identically zero then H, = 0,
and also h, = 0. From the hypothesis, h, =0 implies that h(s) =0
for an infinite number of eigenvalues, and so h; = 0. Assume then
that at least one of the polynomials £, is not identically zero.
If M = g.c.d.(Z,1) we get:

(16) U_(a).P,(s) + Ul (a).Q,(s) = (H/M) (s).

Assume V (x) is the solution of y"-(q-o)y = 0 such that Vé(a) =

= Pl(s), Vs(a) = —Ql(s). Then W(VS,US)(a) is the wronskian of a
problem (1) with the first boundary condition replaced by
Pl(s)y(a) + Ql(s)y'(a) = 0. (It could occur that 5,6, and P;,Qq,
are constants but then in each pair not both are simultaneously
null). W(Vs,ﬁs)(a) is a function with an infinite number of zeroces

and beccuse of (16), equal to —H(s)/ﬁ(s). Then H(s) = 0 and as
before h2 = 0 and also h1 = 0. Q.E.D.

4. EIGENFUNCTIONS AND KERNELS.

b
For s,t € S, (s’-t?) J U (x)U_(x) dx = W(U_,U,) Z , U (b) = -Q(s)=
a

= A(s)Ug(b) and UL(b) = P(s) = A(s).UL(b). The following lemma
then follows:

LEMMA 7. Assume s,t € S and s? # t%, If we call:

V(s,t) = R(8)Q() - P(BQLS) | §(s,¢y - 5(5)6(t)s:t5(t)6(s)

then we have,

b ~
(U_,u, ) = J U, 00U, () dx = (U_,Up) = - WS, 1 V(s,1)
a ® s+t A(s) A(t) s+t

11



LEMMA 8. a) If one of the boundary conditions in (1) is ordinary
then for fixed t € S the number of s € S such that (US,Ut) =0
is finite.

b) If neither boundary condition in (1) is ordinary then for

fixed t € S there is an infinite number of s € S such that
(Us’Ut) # 0.

PROOF. b) If (US,Ut) = 0 for all s € S of modulus large enough
and |s| > |t|, then: A(s)(s+f)(US,Ut) = h,(s) + h;(s).A(s), where

h,(s) = V(s,T)/A(T), hy(s) = -V(s,t), verifies the hypothesis

of theorem 3. Therefore h; = hy, = 0. In consequence V(s,f) =0 =
= V(s,t) VY s. But this is imposible because of the hypothesis i)
and ii) on the polynomials P,Q,F,a, (cf.[G}, App.II,p.68). Q.E.D.

Next we define the kernels gs(x,y) = g (x,y;8), G (x,y) = G(x,y;s)
as follows:

r 6%5) Gs(x) u ly) ,» y<x<b,
(17)  g(x,y;s) = 1
( 5?5) u (y) u (x) , a<x<y,

N
o

ity U U ), v <x

1
A

(18) G(x,y;s)

L atsy U, 00 U (), a<x<y .

s_l.G(x,y;s) and s_l.g(x,y;s) are the Green kernels of problem
(1) for q(x) € L! and q(x) = 0 respectively,

THEOREM 4. Assume ¢ € Ll(a,b), a<x<band 0 <8 <b-a. Then

i) JC [J: G(x,y;s) ¢(y) dylds = J

b
[Jgumﬁ)ﬂﬁ®l®+aﬂ),
N Cy “a

- b (x+6)Ab
i) | [J g(x,y;s)cp(y)dylds=J (] g(x,y;$)0(y)dyl ds + o(1)
< 7Cy ‘a Cy (x-8)va

12



where the ¢'s are uniform in x € [a,b] for N — =,

iii) If ¢ is of bounded variation on [a,b] and a < x <b, for

N — o we have:

1 b 1
=T Jc [Ja g(x,y;s)o(y)dyl ds = 5(&(x+0) + o(x-0)) + o(1).

ml

If ¢ is also continuous on [a,b]l, ¢(1) is uniform on compact sets
in (a,b).

iv) If ¢ is of bounded variation on [a,b] then the following re-
lation holds uniformly on compact sets in (a,b):

b )
‘ j [J B(X,Y58) 4(y)dy] ds = o(1).
C a S

2ri

PROOF. i) Can be proved in the same way as Th.1,[G],p.18, and ii)
as Th.2, [G], p.19. The proof of iii) follows the same pattern
as Th.3,[G], pp.20-22. The proof of iv) is an easy adaptation of
the proof of iii). Q.E.D.

COROLLARY. i) holds with ds replaced by ds/s, and iv) with g re-
placed by G.

PROOF. This follows repeating the proof of i) Th.4, and then
using iv) of the same Theorem. Q.E.D.

Next result is a complement to the preceding theorem.

THEOREM 5. If ¢ is of bounded variation on [a,b] and real, then

b
(19 g | s Ja G(b,y;s)0(y)dy —za L(6).0(b-0) ,
N

where L(b) = 0 if Q=0 or a < 5—1, =1 if a > E and Q # 0, and
~ (gq)z

= — — if q = D-1 " Q # 0.
(ba)2 +(a'p~)2 P Q

13



PROOF. According to theorem 4, it suffices to prove (19) with G
replaced by g. For s € Cy» v=Ims >0, 0<8 < b-a, we have:

b = b
. = -s Q(s) =
jb_ég(b,y,S) y = =519y Jb_éus(y) dy =

F.F eis(b—a)U_e—isG)+F F e—is(b—a)(1_ei35)

_ . iQ(s) (173 27°3% _ 1
TR [ o ] Oﬁﬁﬂa.
3 s) -2isé(s)
Moreover, for fixed s, [...] is bounded and tends to zero if

§ — 0. Besides,

b

(20) jb Gg(b,y;5)®(y)dy = ®(b~0)J

b b-0

(b,y;s)dy+0(y<7) - V ®( )
| B (Payis)dy T_T y

as it can be seen making use of the second mean value theorem,
(cf. [G], pp.21). Therefore,

b . b-0
(21) 7%I~jc+ds Jb_ag(b,y s)e(y)dy = 2L2-0) j . ;ngg --1ds + 0(1). V 8)

N N

To prove (19), it is sufficient to considerer (21) since

e [
.-_'S
271 . b§

b -
80,3910y = (oog [ a5 [ g(xyi)THay)
N CN 8

The theorem will be proved if we show that the i..zegral in the
right-hand side of (21) tends to I (b) if N — o, where L'(b)=0
if Q =0 or a < 5-1, L'(b) = wmi if Q #F 0 and q p and

L'(b) = ba/(as - iba).

In fact, if Q # 0, from lemma 4 we get

e -is(b-a)

o~ ~ F . R
1 - 2is(b-a) ,q__-isS, ds
(22) JC+—F§—[...]ds - J ?9- S ds ¢+ fc+0(1)e (1-e715%) £ 4

N N

14



R J o(1) eiss ds
ot s
N
Let us estimate for example, the third integral in the right -hand
side of (22):

J 0(1) eisd ds . J £ (s) eis((2N+1)T/2(b-a))8 ds
+ S N

CN C

where {fN(s)} is uniformly bounded on C;.

From Lebesgue dominated convergence theorem it follows that last
integral tends to zero for N — . The same thing happens to the
middle term in the right-hand side of (22). But the first one is
equal to:

is(b-a)

~ F.F, e
. Q 14 _ 1 is((2N+1)7/(b~a))$ ds_
-1J = —(1+ —5= )ds = L (b)+J 0(Ne ===
C; P-isQ 2isé(s) CT S

= L' (b) + o(1).

From this last result, (21) and ii) of Theorem 4, (19) follows. Q.E.D.

An application of the theorem of residues shows that:

b b
(23) 2;1 j dsJ G(x,y;s)e(y)dy = ] Res J G(x,y;s)e(y)dy.
Cy "2 sESN s a

where the summation is over the eigenvalues in S that are -inside
Cy- The details of the proof of equality (23) are the same as
those given in [BP], pp.172.

If s is a simple zero of w(s) we have

b b
(24) Res [ 60x,ys0)00n)dy = H().U, () , Hs) = EMEL [y ey,
t=s “a a

Then the following result follows easily from theorem 4:

15



THEOREM 6. If & is continuous and of bounded variation on [a,bl,
null in neighborhoods of a and b, and if all the zeroes of w(s)
are simple, then ¢(x) can be. represented on [a,b] as a uniformly
convergent series of eigenfunctions of problem 1.

COROLLARY. If the eigenvalues are of multiplicity one then the
set of eigenfunctions is complete in Lz(a,b).

5. SPECTRA WITH EIGENVALUES OF MULTIPLICITY ONE.

From now on we shall assume that if s € S,s#0 , then it Zs a sim
ple zero of w(s) and 2f 0 € S then it is at most a double zero
of w. According to (24) if 0 is a simple zero of w then H(0) = 0
and Uo(x) does not appear in the right-hand side of (23).

If 0 is an eigenvalue of multiplicity two, then

b b
(25) ‘ESS JaG(x,y;t)é(y)dy = {f,,—‘?‘.—((%)l Jan(y)M)’)dy} - Uglx) =

= H(O).Uo(x)

and Theorem 6 and its corollary still hold in this case.

Assume that f is a summable real function. We shall denote with

b, the s-th Fourier product.

]

s s

b
b = bs(f) = (f,VS) = J f(y) Vs(y)dy = b—(f) ,
a
where VS = US/IIUSII2 , and with b(f) ={bs(f): s € S} the Fourier

product vector. We have: b(f) = 0 = f=0. N will denote the infi-
nite matrix (Nst), (s,t) € SxS, defined by:

16



[ZA(O).HUoug/W“(O) s=t=0 if 0 is a double zero of w

(26) N_, = 1

sA(s).uUsug/w'(s) s=t , s#0,

0 in any other case.

N transforms Fourier product vectors in coefficient vectors. In
fact it holds that (cf.(23),(24) and (25)):

b
(27) —l—-J [J G(x,y;s)f(y)dylds = § (Nb) V (x), for f real.
CN a S S

2mi
seSN

THEOREM 7. i) N is a hermitian matrix,
i1) 1u_1 sV 22 fc |[s|™ 1 (1+0(1/]s])), where c, is the coef-

F
ficient of s™ in Fi(s): ¢y = lim 1(s) s
s»o s

iii) if s? # t% and V_ = U_/IU_Il then
M'J. K. (t
J(S) J( )

(Vs’vt )= s+t

where J.(s) = 0(1), K.(s) = 0(1) for
=1 j j

|s| — = , and where M' = m'+n', m' depends only on p,q, and n'

~

only on S,E. If besides q > p, q 2-5 then Jj(s) = 0(1/]s]),
Kj(s) = 0(1/]s]).

PROOF. i) is left to the reader. Let us prove ii) Assume s real
s € S. From formulae (5) it follows that hugly, = O(HuSnz) ,

lugh, = O(hugh,) for |s| — «. We shall write this relation brie
fly as

(28) hu ll, ~ lu_l,

. 1
From (8) we obtain HUSHw < llusll°° + O(TET)'"Us"m and therefore

that IlUSIIO° = O(Husuw). On the other hand,

_ 1 (*_. -
lu l, = IU_ - 3 J351n s(x-y)a(y)U_ (y)dyl, = o(lu_l_) ,

17



and from (28) it follows that
(29)- IIUSIIoo ~ llu l, .
Therefore, HUSH2 = O(uusuz). But
1 {* .
IIUs-uSII2 = Hg Ja sin s(x-y)q(y)Us(y)dyll2

(28),(29) and Young's convolution theorem allows us to write

1u_1 lu |
_ 1 - s ®y _ s 2
1g-ull, = O(TET) rqu i, 0(-T§T—) 0(—T§T—)
a1
In consequence, |fu_l, - IU_I,| = O(—2 2). This implies that
s 2 s 2 S
- 1 ~
(30) W, = ful, (1 + O(TgT)) s MU, = lu_l,.

A direct calculation shows that

(BT Cugdy/[s]™H? = (-a) (JF () [/]s|™P/2 + 0(ip).
ii) follows from (30) and (31).

If dn = lim F3(s)/sn, in an analogous way we obtain
s>

(32) 10,1 = V222 ja s

iii) From Lemma 7 we get

“‘1.(1+0(T%T)).

V(s,t)/IU_I.IU_ I V(s,t)/1U_IA(S).IU_A(t)
(33) (V_,V_ > = - s + s t

s+t s+t

Observe that xiyj - xjyi = (x-y)(xi_lyj+xi—2yj+l+...+xjyi_1)
for i > j. This relation and ii) imply that for a certain m' =
=m'(p,q),

(4 =ty ok ()

I (s) =0(1) , K (s) = 0(1)
WU U k=1

for |s| — « .

18



Taking into account that HA(s)USH2 = "55"2 and using (32), it
follows analogously:

\J

V(s,t)
IU_IA(S) . IU_IA(E)  j

(35)

|
I o~

lijcs)ij(t) , J3(s) =o(1) , K. () =0(1) ,

n' = n'(p,q).
(34) and (35) imply the first part of iii). If q > p then m-1=q.
With this observation, a more careful examination of the proof
given above shows that the second part of iii) also holds. Q.E.D.

DEFINITIONS. Let J, be a positive integer such that for each
integer J, |J| > Jo» there exists a unique eigenvalue sy such

n 1 ) 4 1 To—
that s; = o5+ 0(3)s 05 =572 * zb7ay » 19| < gy - S5

real and simple. This subset of S will be denoted by P. Let F be
the finite subset of S: F:= S\P, (cf.Th.2, §3). Let us call
D = {(s,t) € PxP: s=t or |s+t| < n/4(b-a)}, and O:= PxP\D.

THEOREM 8. i) The application 1:22(5) — Lz(a,b) defined by

1(c) = )} cV_ is continuous, ¢ = {c }.
SES S s S

ii) It is also onto: given f € L2, if N is the matrix (26), then
the sequence c = {cs} » €, = N(b(f))s, belongs to 22 and

(36) £=Jc V.

We shall call, for a given f € L2, residual coefficients the ele
ments of N(b(f)), and residual expansion of f the expansion (36)
with residual coefficients. We could denote them as well Carslaw
coefficients and Orr expansion of f, respectively. It has been
shown that a dense family of Lg=functions has a residual expan-
sion. Part ii) in the theorem asserts that this holds for any
function in L2(a,b).

PROOF OF THEOREM 8. i) Assume c¢ = {c_} € £° has only a finite
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number of non-null elements. We have,

1/2
(37) b 7 c_ V. I < }oc V I+l ;e V. I < lcl.(#F) + | Yy cVl.
sES s S seF s 8 se?P s 8 seP s S

For the last term we have:

il
>

2 — _
() c V I° = ) c c. (V,,V,) < %lcsctl+|%csct(vs,vt)l + B.

selP s, tepP
From the definition of D it is clear that for each s € P there
are at most two values of t such that (s,t) € D. Therefore,
using proposition 1, Appendix III, we obtain A < 2"C"2. Because
of iii) Theorem 7, B can be written as

_ M'J.(s)K. (1) M', c c J.(s)K.(t) o
B = chct( _l_§:€l___ ‘ < 7 ‘z s tsit h| I = 3 bﬂa H. .
0 i=1 j=1'o j=1 ?

; cSEtJj (s)Kj (t)
0, (s+t) (b-a) /m

Each H.j is bounded by a sum of the following 4 terms:l

h =1,2,3,4, and where 0y is the subset of ® in the hth quadrant.
These terms are of the form

v %n P 73,m fym
(38) )

m,n>Jg §(m,n)

’

where a_ = csim, bn = Csin’ §(m,n) = (sim+sin)&ra)/ﬂ,J5’m =;G(stm),

Kin = Kj(sin). Let o and B be defined as a(m) = E;T_—i-sm- %% , and
B (m) - h%i -os_ ¢t %% - Then &6(m,n) is one of the following four
expressions:

J §m,n) = a(m)+a(n)+e/m , (h=1) ; &(m,n) = am)-p(m)+/m , (h=4) ;
[ S(m,n) =-pg(m)+a(n)+¢/m , (h=2) i 8(m,n) =-g(m)-g(m)+p/m , (h=3) .

In cases h=1,3, the dash indicates that m#n, and in cases h=2,4, the dash in

dicates the omission of the terms such that |§(m,n) | < 1/4. Returning to ca-

ses h=1,3, we observe that

a b J K a b J K

m n j,m j,n < m 0 j,m _j,n
§ (m,n) §(m,n)21/4 §(m,n)

(39) }'

m,n>J0
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since jin the right-hand side no term is omitted.

In fact, for example, if h=1: [a(m)+a(n)+e/n| >nﬁn-—%-|¢hﬂ >
>7/2 - 2 > 1/4.

Applying ii), Theorem 1 of Appendix III for the cases h=1,3, and
i) of the same theorem for the cases h=2,4, we obtain:

iHjl < C lal bl , j=1,..., M,

with C independent of a and b. In consequence B < C' lci? and
then

(40) usgw c, VI, <L.lcl,.
Only remains to show that )} ¢ V_converges in L2 for R — o,
IS!<R S s
But from (40) we get: || } c VI <L(Y) |c |2)1/2 —_— 0,
r<fs|<R s s r<|s s >

whatever it be R. This concludes the proof of i).

ii) Two auxiliary results will be needed to prove the second pro
position in Theorem 8. Next we state them and postpone their
proofs.

LEMMA 9. If £ € L%(a,b) then b(f) € £2(S) and b:L2 — ¢2 defines
a linear bounded operator.

LEMMA 10. The elements in the main diagonal of the infinite ma-
trix N are asymptotically equal to 1/2:

Ss

(41) N = % + O(T%T) s sl — =

To prove ii) assume f € L? and that {f,} is a sequence of func-
tions for which a residual expansion exists such that f, — £ in
L2. From lemma 9, Hb(fm)-b(f)ﬂz — 0. In particular,

b(fy)g — b(f)g ¥ s € S, and from lemma 10, it follows that
INCOb(£,))-N(b(£))l, — 0. Therefore,

£, - g NCO(E)) VI, = HENCO(E) - b(£ D) VI, <

21



< LOIN(B(E)) - N(B(E )N, — 0.

m->oe

In consequence, f = } N(b(f))s VS. Q.E.D.
S

PROOF OF LEMMA 9. From (2),(6) and Th.7, ii), we obtain, for
|s] — « : V (x) = 0(1) cos s(x-a) + O(1) sin s(x-a) + O(T%T)

and from this and Th.2,

(42) V_(x) = 0(1) sin Ei%ggll + 0(1) cos 1£%§§l§-+ 0(}) ,

if s py * O(%). Therefore

and in consequence, |b(f)l < C.|fll with C independent of f ¢ L2,
Q.E.D.

PROOF OF LEMMA 10. Let be s € S. From (6),(7) and the relation
Ug(b) = A(s)U_(b), etc., we get:
dw(s) 1 dUS(b) du!' (b)

(43) ds A(s) - ds 'U;(b) ) 35 'Us(b) *

U (P 459
A(s) ds

+

Us ™) 4q¢s)
A(s) ds

+

But from Lemma 2 and the fact A"l(s) = Us(b)/-a(s) = U;Gﬂ/?&ﬂ =

= 0(]s|™™), we obtain:

U'(b) 4~ U (b) .3
(9 ey G = 012Dy e s dRS) L gy 20mmd,
Therefore, if s € S,
du _(b) du' (b)

On the other hand we have from (8) and Lemma 2 that
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du_ (x) du_(y)

-1 1 (% .
—qs— F o(|s|™ ") + g-Ja51n s (x-y) f—ag——-qudy, s real, |s| — =

and therefore for s real, [s| — = ,

dUs(x) m-1
(46) —dqs— ° 0(|s] ), uniformiy on a < x <b
X
Analogously, U;(x) = u;(x) + J cos s(x-y)q(y)US(y)dy , and
a
du; (x) m x du_(y)
—g— = 0(ls|™) + Ja cos s(x-y)q(y) —gz— dy -

X
- J sin s(x-y)a(y) (x-y) U_(y)dy ,
a

which implies, for s real, |s| — « , that

dU;(x)

(47) —3s— ° 0(|s|™ , uniformly on a < x < b.

Then observe that if A(x) = Ug(x) - ug(x) we have:

- A _
o(|s|™% , L -o(s™?,

A ds

- (48)
a=o(s|™h , £ -ods™h,

for s real, |s| — «~, and uniformly on [a,b].
Returning to the brackets in (45) and using formulae (48) we get

du_(b) du' (b)
(49) {...} = [——%E—— ul (b) - u_(b) __EE__] + O(lslz(m"l))

But the expression inside the square brackets in (49) is equal to
(c£.(5) and Th.7):
(50) [...] = F;(s)F,(s)(b-a)/s + o(‘s|2(m-1))

e, |2 (b-a)s?™7H (1 + 0C1/]s])).
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(51) A}S) dggs) = 'lez(b'a) g2m=1 O(|S|2(m—1)).

Then, from (26),(50) and (ii) Th.7, it follows that for s € S,
dw 1

1 1
ISl — @ , N = "Us".%_S/(_d—S- K“(—S“)‘) = 7 + O(m) , Q.E.D.

SSs

6. STRUCTURE OF THE SET OF EIGENFUNCTIONS. GRAM'S MATRIX AND
DEGREES OF FREEDOM.

We recall that in this section the hypotheses stated in section
5 are assumed. Next we start with two propositions already pro-

ved in what precedes.

DEFINITION. 8 will denote the set S\{0}if 0 is a simple zero of

w. 8 = § in any other case.

According to what we said at the beginning of section 5 about
the appearance or not of U, in the residual expansions, 8 resem-
bles more an ordinary spectrum than S does. Besides, with this

distinction we avoid some small but fastidious difficulties.

(Py) There is a denumerable set 8 = {s;} - the set of eigenva-
lues - such that sf = Xi, S; € 8 = s; € 8, and except for a fini

te subset: sy € 8 = Sy = Sy

(Pz) For each s € 8 there is a function Ug - the eigenfunction -
such that U, = U? , and if s,t € 8, s? # t2, then

b - Y*-1
(52) (s+t)(VS,Vt ) = (s+t) J \% (X)Vt(x)dx = ) €C.. k.(s) k.(t),
a ® i,j=0 1t 3

where V. = U /IU | €
S S S

2 €5 i real, and

i
()
Ca
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sj/IIUSII , 0 <j <pvq
(53) kj (s) =
sITCVO A IU_ 1, pva < § < ¥* = pvathva.

The matrix € is obtained as follows. From section 4 (lemma 7) we

have:
pvqg-1 . .
V(s,t) := (P(s)Q(t)-P(t)Q(s))/(s-t) = cijsltJ, in case pvq=>1
i75=0
(54) ii
~ ~ o~ ~ o~ pvg-1 . . ~
V(s,t) = (P(s)Q(t)-P(t)Q(s))/(s-t) = c..s'td, in case pvq=1.

i,j=0 *

Let C = (cij), C = (gij) whenever they are defined.

<
(55) C = ~

In case C or C is not defined, we omit it in (55). Because of the
general hypotheses stated in section 2, we have: y* = order of
€C>1and det € # 0, (cf.[G], App.II, or [BP] or [Z]).

The Gramian - or Gram's matrix - 1s defined as the infinite ma-

. 2 =2
trix A = (Ats), t,s € 8, Ats = (VS,Vt). Then, for s # t° ,

- — Y*-1 —
(56) Ats(5+t) ( VS’VF> (s+t) = ixj=0 Cij ki(s) kj(t) =

k'(s).C.k(t) = k' (T).C.k(s) = (s+t) AEE s

where k(s) is the column vector [ko(s),kl(s),...,kY*_l(s)] and
k'(s) represents its transpose.

In general, {ki(s)} € £7(8) V¥ i. This follows from theorem 7
and the fact, already used in the proof of Lemma 10, that

(57) 1/A(s) = 0o(]s|™™) , A(s) # 0 for s € S.

k is a y*x o - matrix with linearly independent rows.
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In fact, this follows from the definition of kj(s) and Th. 3.
Now we define for 0 < i,j < v*-1, the dyad Yij which is an wxe-
matrix such that

k(B k() if t2 # 5?2,

8 .. =Y. . (t, =
(58) (le)ts Jl( s) v
= 0 if T2 =52

Then

YE"I
(59) L := c.. Y.. ,

i,j=0 % 1%

= A if t==%s,
(60) D :=A-L, D, s
S = 0 if t £%5s

We know that there is a number r such that if |s| > r then s €8
implies s=5. Therefore, D is a matrix with non-null entries only
in the diagonals {#t = s} and in the finite submatrix defined by
the indexes |s|v|t] < r. We shall say in this situation that D

is a quasi-diagonal matrix. Of course

(61) |D = |V, V)] < 1.

THEOREM 9. A: £2(8) — KZ(S) and defines a linear bounded ap-
plication.

PROOF. If b and ¢ are elements of Zz such that bS =c_ = 0 for
Is| > N, then from i) Th.8 we get

(62) 15 e voi? =] c (v ,v)T, <M lci?

Since } cg (Vg,V,)C, = c'Ac is a hermitian quadratic form we ob-
tain from (62)

Ib'Ac] <M Ibd.lcl.

Therefore
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(63) IAch <M fcl.

A density argument shows now that (63) holds for arbitrary
c € £2. Q.E.D.

For each ¢ € 22 there is an f ¢ L2 f = ) c.Vg {Lz(a,b)). The
Fourier products of f define an element ( in £2, cf.Th.9) b= b(f)
such that A.c = p(f). We denote with B the range of A:

R(A) = A(L%) = B = {b e £2: b = b(f) for some £ & L2}.

Since {V_} is complete in L%, b(£) = 0 is equivalent to £=0.

THEOREM 10. i) There exists a quasi-diagonal matrix N that defi-
nes an operator N on B c £2 such that

(64) A.N =1 , on B.

ii) If r denotes the range of N: N(B) =T C 22 , then T = T.

Besides B = B # £2.

PROOF. i) N coincides with the residual matrix (Nst) defined in
section 5, (cf.Th.8, ii) for (s,t) € 8x8.

ii) Assume there is an f such that for a fixed t, |t] > r:
bs(f) = § Then £ = } N(b(f)) V _.

But then we have £f = n V
s tt t

st’

]
and therefore b(f) = nttASt = Gst.

dicts Lemma 8. That is: S, ¢ B and B # 22.

Since n . # 0, this contra-

Let us prove now that B is closed. Denote also with N the exten-
sion of N from B to £2, which is possible since n, ~1/2.

. 2 . -
Assume bj — B in £%. Then ij — NB. But if fj =3 (ij)sVS,

because of theorem 8, {fj} is a Cauchy sequence in L2. Let f be
the function defined by : £ = § (NB)SVS. Then we have:

"f"f-"z <k "Nb- - NB"z _'*0 for j —> o
(65) J J . )
bs(fj) — bs(f) in £°.
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Therefore,bs(f) = BS , and B € B.

Assume Yy = Nb(fj) tends to vy € £%. Then {yj]-is a Cauchy sequence
and so is {f.} (Th.8). Therefore, fj — f € L2, and

b(fj) — p(f) in 22 (cf.Ths.8 and 9). In consequence

Nb(fj) — Nb(f) = y. That is, I is closed. Q.E.D.

COROLLARY. N defines a one-to-one continuous application from

B C £2 onto ' C £2 and A restricted to I defines the left inver
se of N restricted to B. Besides, 22 is the direct sum of T and
G, the null space of A:

(66) G ={g:MA.g =0} , G+T=2%(8).

PROOF. For the last part of the corollary observe that G N T =
= {0}, and that (64) can be written as ANA = A on £2. Then for
c € £2, c - MAic = g € G, i.e., ¢ = g + N(Ac) € G+I. Therefore,
22 is the direct sum (not necessarily orthogonal) of G and T.

Q.E.D.
The space G is characterized as follows:
geG & geg?(g) and J g V_=0 in L%(a,b).

ses 5 °
In other words, } g_ v, is a null series. We shall prove that
dim G = .

THEOREM 11. N defines a biyective continuous application from
22 onto £2 and def B = def T > 0.

PROOF. Assume that N' is the centered square submatrix of N with
entries N__ verifying |s|v|t| <r. If Ng¢ is not an entry of N

then Ngp = 0 for s#t, Not # 0 for s=t (cf.(26)).

Therefore, if N.c = 0 then c¢_ = 0 for |s| > r. On the other
hand, det N* # 0, and then NT.cT = 0 = c_ = 0 for |s| <r, i.e.,
c=0. This means that N defines an inyective application from 22
into £2. Since N = N%, it is also onto.
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Suppose m L ', m#0. Then, O = (m,Nb) = (N*m,b) v b € B, and sin-
ce N is one-to-one in £%0I we obtain: N(KZOF) = 220B. B # £2
implies def B = def I' > 0. Q.E.D.

Theorem 11 means, in particular, that there exist always null
series, i.e., series whose Fourier coefficients form a non-null
£2-sequence and that converge to O in L2, By the degrees of fre-
edom g of system {V_: s € 8} we shall understand the dimension
of the subspace G. It is a measure of the number of expansions
an L2-function can have. In our situation g = », (cf. [Z]).

i
8

THEOREM 12. g = dim G = def B = def T

PROOF. Because of Theorem 11 and the Corollary to Theorem 10 it
only remains to prove that g = ». We shall consider three cases:

i) 0 ¢ S; ii) 0 € S but O ¢ 8, i.e. O is a simple zero of w;
iii) 0 € 8, that is, O is a double zero of w.

i) From formula (18) we have

. U (x)U_(y)/w(s) for y<x<b,
(67) st,s ___{ s s

U, (NU (x)/w(s) for a<x<y,

and from the Corollary to Theorem 4 we obtain:

1
(68) 7T f 5

b .
ds J G(x,y38) o(y) dy = o(1)
a

Cy
uniformly oncompact sets in (a,b) if ¢ is of bounded variation.

a 3
Then: Res J §154%451-¢(y) dy = 0, and as in (27) it follows
s=0 ‘a

that

(69) FOIN(b(®)).sThr vV =0
sc8 s
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uniformly on compact sets. N is a l<near, continuous and inyecti-
ve application from 2% into £2 (cf. proof of Theorem 11), and b

is linear, inyective and continuous from L2 into £2 (cf. Lemma 9).

Nob
L™ — 2% is also linear, inyective and continuous.
Nob

Then,

Because of i) Theorem 8, (69) converges in Lz. Therefore

fines a one-to-one application from the family of functions of

bounded variation on [a,bl into G. This implies dim G = o,

ii) In this case the proof of i) can be repeated but taking into
account that

b .
(70) Reg J QLELELEL o{y)dy = 3(%%) (o,U0 ) U (x)
s= a

Because of the density in L? of the set of functions of bounded
variation, given a positive integer n, we can find n functions
Op,yenn,®

j =1,...,n. Then, instead of (69) we can write

o » linearly independent, such that (Qj,UO) = 0 for

-1
(71) 0.U,(x) + Sgs N(b(fbj))s.s V=0

Since N(b(@ )}, j =1,...,n, is a linearly independent set of ele-
ments in KZ(S), (71) implies that dim G = o,

iii) In this case, instead of (71) we obtain (cf.(23),Appendix IV):

H

(72) U (x,0) <q>j,c_2UO> + Uy (x) ¢ ¢j,c_1U0+c_2u1> + Sgs{Nb(o ) /s1.V, =0

where c_, # 0 and U; is an associated function for s=0. If we take
{Qj: j = 1,...,n} linearly independent such that (¢j,UO) = 0, the
corresponding series (72) are null series (i.e. have coefficient

vectors belonging to G). Thus again dim G = =, Q.E.D.

Given vy € T we shall denote with yl the element in the manifold

v+G that is nearest to G. yl is uniquely determined and verifies
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(73) (v+6) n 6t = vh

In fact, if & and n belong to the set on the left-hand side then:
n-£ € G n ¢t = {0}.

PROPOSITION 1. a) There is a one-to-one correspondence between T

and Gl defined by O: ¥y —+'Yl,

b) v feLi(a,b): Ib(E)1, ~ I£l, ~ Iyl, ~ Iy'1,, for y = Nb(£).

PROOF. a) If c € Gl then ¢ = y+g (cf.(66)), and because of (73)
we see that 0 is onto (cf.Fig.1).

by I6(£)l, = Iyl,, vy = Nb(f), follows from the Corollary to Theo
rem 10. Besides we have: Iyl > HYlH and also M.yl > Ifl with M
independent of f (cf.ii)Th.8). Using Banach inverse theorem we

finally obtain: Iy'l ~ Iyl ~ I£I. Q.E.D.
feLz(a,b)
G

IY+G (22

! 2208
Lot /r
G iy 01

. L. \b(f)

1Y Nb (£f)

B
Fig.1
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7. FINAL REMARKS.

We complement now sections 5 and 6 with some remarks.

a) If's and -s belong to S then it may happen that for a constant
a (#0): U, =al_g.
admits, in this case, a superfluous ambiguity.

The expansion of an f € L2 in eigenfunctions

Let us define R as the subset of S such that
R ={-5 € S:0/s 8, arg sc[0,m) and US =ocU_S for a certain constant al.
We shall denote with SY the subset of S such that

sV = S\ R.
PROPOSITION 1. {US: s € SV} is linearly independent.

PROOF. Let us assume that the elements of S’ are ordered. If the

proposition is false there is one USk that is a linear combina-

tion of U*s with j < k. We can suppose k is the smallest number

J 2
with such a property. Applying the operator q(x) - g_f to
dx
U = } a,U. we obtain si U = T a. s2U
k  g<k 1 8 Sk <k 33 8;
: 2 2 - 2 _ .2y -
Then, } a.(s% - sZ)U., = 0. In consequence, a,(s% - s2) 0
j<x 33 ksj i~3  k
vV j, and then ay = 0 for any j such that s§ # si. For s§ = si,
we have S; = "5y and o # 0 implies USk = ajU-sk'
But this is impossible because of the definition of SV. Then
a; = 0 vj, a contradiction. Q.E.D.

If P,Q,g and 6 are even polynomials then S contains with s also
-s, and Uy = U_  also holds, as can be seen in [G], p.12. In that
paper the set of eigenvalues is, by definition, the subset S' of
8 such that arg s € [0,n), that is S' = sV,

Now we add a new condition on the polynomials P,Q,F and 6 to
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exclude the case studied by Guichal in [G], (i)-iii) §2 are assu-
med) .

Auxiliary hypothesis. V) P(s).Q(-s) or 5(5).6(-5) is not even.

PROPOSITION 2. v) holds if and only if P,Q,? and 5 are not simul
taneously even.

PROOF. It is enough to prove the following equivalence:
(74) P(s).Q(-s) not even <« P or Q not even.

=1 it is obvious. < : Let us assume, without loss of generality,
that P(s) is not even, and that P(s)Q(-s) is an even polynomial.
Then, there is a root of P, Sg» such that -so_is not a root of P.
Therefore, S, is a root of Q(-s), that is: Q(so) = 0. But this
is impossible, because of ii) section 2. Q.E.D.

PROPOSITION 3. If the polynomials P,Q,P and Q satisfy i),ii), iii)
and v) thenR = {-s €S: 0# seS, arg s € [0,7), U
a certain constant a} is a finite set.

s —aU_g for

PROOF. U, = aU_, implies P(s) =aP(-s), Q(s) =aQ(-s) as well as
the same relations for P and 6. Therefore,

(75)  P(s)Q(-s)-P(-s)Q(s) = 0 , P(s)Q(-s)-P(-5)Q(s) = 0.
v) means that the equalities in (75) are not both identities.

From this,proposition 3 follows. Q.E.D.

When all the polynomials in the boundary conuitions are even, the
set {Ug: s € R} of "superfluous" eigenfunctions is infinite. So,
it should not be a surprise to find in section 6 that dim G = o,

Whether the boundary polynomials are even or not, we can define
an application X from £2(S) onto 22(s%y:
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c _+*cC if -s € R and VS =V
X: ¢ —c¢c, c = c -c if -s € R and VS =-V o2
c if -s € R,

- ~ v 2 .
Then, sgs c V. = ) o SV, and, for g e £°(8):

geG= J gV =0= § gV =0.
seS

In consequence, X‘l(O) = {g €G: gs=ig_sif -s €R, g, = 0 if -s & R}.
Let G be the set

N o 2oV . ~ -
G = {getc(8): sgsv gSVS 0}.

If the boundary polynomials are all even, it is proved in [G],
ch.V, that dim G < o. If v) holds, observing that

a) dim X" 1(0) = #R < =
B) dim G = dim G + dim X~ 1(0) ,

we obtain: dim G = . Therefore, assuming 1) — Vv), there is no
advantage in using S° instead of S, or 8, except for the fact
that is the content of proposition 1.

b) We saw that if P,Q,ﬁ and 6 are not simultaneously even, then,
except for a finite number of s € S, it is not true that
U =alU

S =8

Does this imply that from some moment on, s and -s are not simul-
taneously in §? Not at all. If.in (1), q = 0, a=0, b=1, then

(76) w(s) = (PQ - PQ) cos s + (PP + $2qQ) sins

Therefore, if the pelynomials inside the parentheses are even, w

is a function of 52

. And this holds, for example, for P = P = 1,
Q = Q an odd polynomial, i.e., in this case S = -S. However, it

holds the following proposition.
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1}

PROPOSITION 4. Assume P
p # q+1, 6 # 0). Then

q*1, P # q+1, and Q # 0 (or p = g*1 ,

(77) #{s € S: s and -s € S} is finite.

PROOF. Because of theorem 2 and (11) we know that (77) surely
holds if ¢ # 7. We recall that

P(s)+isQ(s) . P(s)-isQ(s)

i¢.
P(s)-isQ(s) P(s)+isQ(s) |s|»=

—> €

The second factor tends to +1 or to -1, but the first one tends

. P o Aiv .
to (ap+1bq)/(ap 1bq) e , Y # Tm. Q.E.D.

c) One question that seems to play a role in this theory is the
following one. Does {cs} belong to EZ(S) if § c V, converges in
Lz(a,b)? In the other words, is it true or not that -

(78) Jj eV, —— 0 = (c )2 — 0
N'>|s|>N % % N',Noe N'>|s|>N F N',Now
s€S seS

We show that (78) does not hold in general. Precisely, we give
an example satisfying the hypothesis of proposition 4 for which
IZ

exists {CS} such that Zlcs = © and } CSVs converges in L2,

|s|<N
We recall that, in case the boundary polynomials are even, (78)
holds if "s € S" is replaced by "s € S8V, (cf.[G], p.33).

PROPOSITION 5. Assume € > 0 and a real, #0. If ¢ is sufficiently
small, |a| < e and {V_: n=0, #1,'*2,...} is the system of norma-
lized eigenfunctions defined in the introduction as system (IV),
then the series

(79) .- Lv o --Lv oLy

1
- + ¢, V.+ ¢ V. +
/A Y iz "Ny 7N 1L 272
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converges in'Lz(O,ﬂ) if the sequence Nh’ 1 = N; < N, < N3 <
increases fast enough and the c, are adequate coefficients.

PROOF. Let K be the constant (less than one) appearing in formu-
la (V) of the Introduction and let {g_ } be the biorthogonal se-
quence associated to system (VI). We know that any function

f e LZ(O,n) satisfies the following relations (cf.[RSzN],p.206):

80)  (RTNEL, < (] 1(5e 1M < -0 hie,.
1

n=

(81) £ = f (£, )V in  LZ(0,m).
n=1

Let us denote with a% the following scalar products
1

. > _
(82) a) = (h “V__, g;) » 3=1,2,..., h=1,2,...
h

The sequence N; together with an auxiliary sequence M;, are defi-
ned by the following induction process:
My=0 , Ny =1,

Given Nh let Mh+ be such that-

1

1) Mpt1 = Ny o
M
h+1 .
. . 1 o1
ii) I ] oalv, - L—v I <1 .
U= R R e P Y

Then, choose Nh,+1 so great that

3) Nowr > My

. i -3 2 .
ii) |ah+1| < 277 /(h+1) , for 1 <j < ¥h+1.

This is possible since

T i
(V—N’gj) =V%_ (1+CN).[JOsin ¥xX gj (x) .cos Nxdx - Jocos X gj (x).sin Nx dx ]
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tends to 0 if j is fixed and N — o,

So we have defined M1 < N1 < M2 < N2 < ... . From ii) and jj), it
follows:
M M .
h+1 . h »-]
@3 13 alv,-Ltv l <h+ ] L5<E.
j=ML+1 I v h?2 h j=1 h h

From (80) and (82) we get

(84) (7 jadHr <1 | net,2,...
21 %5, (1-K) vh

Now , we define

(85) c, = al s M <Jj<M

Let us prove that

(86) E,_ = - ) — . V.
AB A<N. <B vh  A<jsB -3

tends to zero in L2 for A,B — o,

Assume first A = Mh’ B = Mk+1‘ From (83) and (86) we obtain
5l < 1 1] T vl < § 2
(87) E < - V - c.V, < 5 T rae 0.
AB r=h vT g j=Mr+1'J 372 r=h 12 Mk

If Mh < A <B g Mh+1’ using (80) and (84) we have:

(88) 1B, I <L+ 1} cvi <ls (] je B2 <
vh j=a+1 33 vh At 3
1+K, 1
DERRE

From (88) and (87), it follows that IE, 1 — 0 for A,B — = .
Q.E.D.
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APPENDIX I.

ON THE -ZEROES OF THE EIGENFUNCTIONS OF A BOUNDARY VALUE PROBLEM
WITH BOUNDARY CONDITIONS INVOLVING LINEARLY THE SPECTRAL PARA-
METER.

1. INTRODUCTION. We shall consider the second order differential
equation

N
"
N
o

(a) y' + (A-q)y = 0 a

with the boundary conditions

[8] y(a).(8,+A81) + y'(a)(§,*A63) = 0 , A = §].8,-6,.65 >0,

[B] -y(b) (B *AB}) + y'(D)(B,*AB3) =0 , o = B].B,-B;.B) > 0.

When 6} = 65 = 0, 6; = cos a , 6, = sina , 0 <a <7, we shall
write (a) instead of [§] and if 6; = B; , 8! = B , 1i=1,2, we
shall write [B] instead of [&§]. ([B] is the boundary condition
symmetric to [B]). ¢(x,A) = ¢,(x) and X(x,)) = X;(x) will denote
the solutions of (q) defined by the following initial coﬁditions:

¢ §,+A6! X B,+AB!
o[- (e
61 -§,-18} X3 61+A8i}

We shall assume q EI}(a,b), real, and call a solution of (q) any
absolutely continuous function with absolutely continuous deriva
tive that satisfies the equation almost everywhere.

2. THE ZEROES OF ¢, (x). First we state two fundamental results
due to Sturm (for a proof see [T], pp.107-110).

THEOREM 1. Assume g < h a.e., g,h € Ll(a,bf. If.u is a nontrivial
solution of (g) and v is a solution of (h) then strictly between
two consecutive zeroes of u there is a zero of v.
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THEOREM 2. If besides u(a) = v(a) = sin a, u'(a) = v'(a) = -cosa,
and u has m zeroes in (a,bl] then v has at least m zeroes there,

and the i-th zero of v is less than the i-th zero of u.
Next theorem 3 is an adaptation to our situation of theorem 2.

THEOREM 3. Assume Y and ¢u defined as above, A > u, and ¢u has m
zeroes on (a,b]. Then for X sufficiently near to u, ¢, has at least
m zeroes on (a,b] and the i-th zero of ¢, is less than the i-th
zero of ¢u.

PROOF. In view of Theorem 1 it is enough to see that if x; is the

first zero of ¢, on (a,b] then ¢, (x) has a zero in (a,xl). Now
X
1
u-u)fa 6, ()6, (dx = ¢, (x; )8! (x,)-W(oy 6. ) (8) = ¢, (x )0 (x )+ (h-w) (8,85-816,),
and therefore
X1
(2) 0y (x) 61(x)/ ) = A+ Ja 6, ()0, (x)dx.

1f ¢u(a) # 0 and A is sufficiently near to u we have sg ¢u(a) =
= sg ¢,(a). In case ¢,(x) has no zero in (a,x;), the right hand
side of (2) is positive. So 0 < sg ¢A(x1)'¢ﬁ(x1) implies

sg ¢u(a)-¢ﬂ(x1) > 0, a contradiction.

If ®u(a) = 0, it follows from Theorem 1 that ¢u+€ has also a zero
in (a,xl). Q.E.D.

It can be proved by the implicit function theorem:

THEOREM 4. Assume ¢(x0,xo) = 0. Then, in a certain neighborhood

of (xo,xo), the zeroes of ¢(x,A) form a continuous function of ),
X = x()), such that x(xo) = Xq-

In other words: the zeroes are continuous functions of the para-
meter. A consequence of this, Theorem 3 and the continuity of ¢
is the following:
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PROPOSITION. Any zero of ¢(x,)2) moves continuously to the left
for X increasing (i.e. x()) 1is a decreasing function of )) and

any new zero of ¢(x,)) "enters through b", (cf. fig.2).

B ]
R N 0 PR
0
A eI o= —62/65 if Gé £ 0
{(X,)\);q)(X,A) = O} N,
(0,u0)=domain of the maximal branch 0
MO (W;,®)=domain of the maximal branch 1

Sm meAM LS. mmacii. wamt s o ause o mmessme mana

PROOF. Suppose X > yu, Xo(p) the first zero of ¢(x,u) in (a,b).
Then if X is near enough to yu, xO(A) < Xg(u). In fact if ¢u(a) #0,
8
this is clear. In case ¢u(a) = 0, we have p = g = -~ E% and
2

¢&(a) = S%" So, sgn ¢L(a) = sgn dé and ¢, (a) = (A—u)dé verifies

sgn ¢x(a) = sgn ¢L(a) = sgn ¢i(a) for X sufficiently near to p.
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Therefore ¢x(x) does not vanish in (a,a+e). Then Th.3 implies
that xg(A) < xp(u); that is, xg(A) is strictly decreasing. Now
the first part of the proposition follows from Th.3 and the con-
tinuity of ¢(x,Ar) as a function of x and X. For the second part,
observe that if a maximal continuous branch x = x(A) of ¢(x,r)=0

has domain (xl,xz), then necessarily 1lim x()) = b and
: A>A

lim x()) = a. Q.E.D. !

A=Xq

Making use of the estimations of Us(x) stated in section 2 we
obtain:

(3) 9, () = (8,+¥8)\) ch is(x-a)-(8;+)68}) Sh}_-z(x'ﬂ + (et xa) gy
where s? = A, s = orit, v=1 if §}, # 0, v=0 if .6} = 0.

When [ 8] is replaced by (a), the asymptotic formulae to use are:

J ¢, (x) = cos s(x-a).sin a + O(eltl(x_a)/|sl) Sif  a#0 ,
3! .
(") [ o, (x) = - Sins(xea), o(eltl(x-a)/ 512y if  a=0.

For the derivatives we have

(4) ¢i(x) = is(62+k65) sh is(x-a) - (61+X6i) ch is(x-a)+0(elt|(X_a)|s|V+l)

- s.sin s(x-a).sin a + O(e't|(x_a)) , a # 0,

il

¢5 (x)
(4")
¢i(x) = - cos s(x-a) + O(elt!(x_a)/|s|) , O

1]
o

3. THE EIGENVALUES. From (3) it follows that for s real, s — +x,
the number of zeroes of ¢, (x) in (a,b) increases without bound
and for s = it, t positive sufficiently great, ¢, (x) has no zero
in the same interval. This proves that there exists a sequence

(5) M = {ui; i=20,1,2,..., My < “i+1} such that ¢uj(b) = 0 and
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. T 2 -
¢, (b) # 0°1if A real, X € M, and Migr Wy ~ (575) .2j. We call
H_y = -

" LEMMA. ¢3(b)/¢,(b) decreases strictly from +« to - when X in-
creases from My to Mpyr? k= -1,0,1,...

PROOF. Assume py < A < u < ppyy and suppose that there is a zero
of ¢;(x) in [a,b]. Let x, be the greatest such zero. Then x; < b
and ¢y (x) # 0 for x € [xy,b]l. From

(6) 4 107(03/03-00/0,01 () = (u-2)62+(61-0,01/0,)2(x) > 0
we obtain:
(7) 65 (0){03/0,-01/8,3 () > 03 (x,). (637059170, }(x,) = 0.

This proves the monotonicity. Let us show that it also holds in
case ¢3(x) # 0 in [a,b]. Then, either ) < Mg OT 0 < A < g ,
where o = -8,/8) is the only zeéro of ¢,(a), (cf.fig.2). Taking
in the previous argument x; = a we obtain from (6)

'
8 +X62

2 ? R 2 = - ——-2
(8 03 0IL0}/0,703/0,3(0) > 43 () L. 1 (@) = AGuD) oo

Observing that ¢y (a) = 8,+16) changes sign at o and that
o ¢ [A,ul, in either case the right hand side of (8) is positive.

From formulae (3) and (3'), (4) and (4'), it follows that
|(¢i/¢k)(b)| - o for A — Mo = -, and obviously
| (63/6,)(B)| — = for » — u,_, k > 0. Q.E.D.

Now, X is an eigenvalue if and only if
(9) (A81+B,)0, (B) - (ABY+B,)6)(b) = 0 ,

which for ) # uy reduces to
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81 (b)
5, (®)

ABI+B
1 "1
r(\) = sgrvg

= r(\) , with

When B& # 0, r()) increases strictly in (—m,—Bz/Bé)zmd GBZM%,«Q.
Then, in each interval (uk_l,uk) there is exactly one eigenvalue
with exception of the interval (uj_l,uj)‘a -62/85, where there
are two. This exception does not appear when -82/65 =y for so-

me j. In this case, in view of (9), “j is an eigenvalue.

4. MULTIPLICITY OF THE EIGENVALUES. Let us see that all the eigen
values of the boundary problem (q),[8],[B] are real and simple.
If we call as in [F]: R, (u) = g u(b)-g,u'(b), R (w) = Bju(b)-siu' (b),
and define:

Ra(u) = Glu(a) + qu'(a) R R;(u) = Giu(a) + Géu}(a) s
we have:

Wo(F,6)) = - 5+ (R_(FRL(G)) < R (GRY(F))).

Let H be the Hilbert space C © Lz(a,b) ® C with elements F =
= FO ® Fl @ F2 and scalar product

F.G b F.G
(10) (7,6) = 22+ [" BT ax + L2
A a P
The operator A defined by
-R_(F)) R (F,)
(11) A(F) = -FY(x)+q(x)F1(x) = TFl
-Rb(Fl) -Rb(Fl)

is densely defined in H if its domain is defined by

. 2
{F e H: Fl’Fi are absolutely continuous, tF; € L (a,b), FO = R;(Fl),F2 = R%(Fl)}.
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Besides, it is a symmetric operator. The eigenvalues of the boun
dary problem are the zeroes of the entire function

w(A) = AR%(¢X)+Rb(¢X). These are the eigenvalues of A: A® = X9 iff
®; satisfies (q),[8],[B8]l. Therefore they are real. As in [F],
(3.11), we obtain:

b

— 1 ] - =
(12) (An'x) ja¢xn¢xdx - T kn (w(x)+(kn'A)Rb(¢x)) Wa(¢xn’¢k)
R_ (65 IR! (8;)-R_(8;)R! (9, )
. -f;(w(x)mn-x)R;,wk)) +-2.An 2 AA a A’ a dn

where kn = Xxn(x)/¢xn(x) is a nonnull constant. Then

Jb w(k) R£(¢X) R;(¢XH)R;(¢X)

6, 6, dx = oA . -
a Ant A kn(k An) kn A

It follows from this for X — X, that:

: 2
"(An) b R (9, ) (R (¢y )
s - [T02 oax + 2glen y —adn
n a n

Since R£(¢A ) = p/kn, we get then w'()\n)/kn > 0. Then, the zeroes
n

are simple as in the boundary problem (q), (a),[B]. Collecting re-

sults of the preceding section and this one, we have:

THEOREM 5. The eigenvalues of problems (q),(a),[B8] and (q),l[§],
[B], are real, simple and bounded below. Besides,

i) if -B,/BY = up, € M then there is exactly one eigenvalue on
each interval (“j’“j+1)’ j o= =1,0,1,... . Hp is the only eigenva-
lue in M.

ii) if -B,/B% € (up_l,up), BY # 0, there is exactly one eigenva-
lue on each interval (“j’“j+1) with the exception of (up_l,up)
where two eigenvalues occur. No “j is an eiéénvalue.

iii) if B} = 0, there is exactly one eigenvalue on each interval
(uj,uj+1). No uj is an eigenvalue.
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5. ZEROES OF THE EIGENFUNCTIONS. CASE I: (a),(a),[B]. If Bé =0
the eigenfunction wj has j zeroes on (a,b), j = 0,1,2,..., as it
is easy to verify. Assume then B # 0. It follows from the results
of §1 and Th.5 that if an eigenfunction Y has its corresponding
eigenvalue on (“j-l’“j] then ¢ has j zeroes on (a,b). It follows
too that there are two eigenfunctions with the same number p of

zeroes on (a,b).

CASE II: (q),[s81,[8], -62/65 = -62/85 = ¢g. This case occurs for
example when [§] = [E]. Let us assume Hpo1 < g < “p‘ If
A€ (pp_z,up_ll then ¢,(x) has p-1 zeroes on (a,b) and has p ze-

roes in the same interval if Hpop < A < o. However when ) reaches
o, the first zero of ¢A(x) reaches x=a and therefore for

o< < My ¢»(x) has p-1 zeroes on (a,b). On (u. < & < up+1] s

P
¢, (x) has again p zeroes on (a,b). In consequence, the eigenfunc
tions wj(x) have 0,1,...,p-2,p-1,p,p-1,p,p*+1,p+2,... zerces on
(a,b) for j = 0,1,2,... respectively.

Assume now ¢ = o Then, when )\ reaches ¢ the first zero of ¢A(X)

reaches x=a and a new zero appears at x=b. Therefore, ¢, (x) has
%

u
p-1 zeroes on (a,b). Again $3 (x) has p zeroes on this interval if
Hp < A< Hp41° So the same situation as above is present now (but

where the interval [c,up] is reduced to the degenerate interval
[up]J: two eigenfunctions have p Zeroes and two pP-1 zeroes on
(a,b) and appear alternately and consecutively as the eigenvalue
increases.

Assume now B4 = 0, i.e., 0 = ». The behaviour of the eigenfunc-
tions is the same as in case I under the the same hypothesis:
wj has j zeroes on (a,b), j = 0,1,2,...

CASE IIT: (q),[8],[B], oy = -B,/By # ~6,/85 = 0. All the tools to
discuss this case are given. We shall only make an observation.
In case II the eigenfunctions have alternately an even and an odd
number of zeroes on (a,b) as An — +«, This is not necessarily
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true in case III. In fact, assume that o, € (up_l,up) and

o € (ur,ur+1), up < U, Then, on the first interval there are two

eigenvalues whose eigenfunctions have p zeroes on (a,b). On the
other hand, ¢A(x) has r+1 zeroes if . < A <o and r zeroes if

oS < ur+1.,Be51des, 1f"“r+1 <A< U yo> ¢A(x) has r+1 zeroes

on (a,b). The u%s and o depend only on the initial condition [§].
Therefore, without changing [ 8] it is possible to change [B] as
to have an eigenvalue in (u,.,0) or in [0,ur+1). In consequence

we have two consecutive eigenfunctions with r+1 zeroes on (a,b),

or respectively, with r and r+1 zeroes. Assume now My = My Then,

in the first situation three consecutive eigenfunctions occur
with p zeroes on (a,b) and in the second one two consecutive
eigenfunctions with p zeroes and the next two with p+1 zeroes.

In any case, the evenness does not occur alternately.
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APPENDIX II.
BOUNDARY VALUES FOR A DIFFERENTIAL OPERATOR.

2
Let T be the symmetric operator: T = d2 + q(x) with domain
dx

D(T) = {p: v,0' absolutely continuous, ¢" € L%, 9(0)=¢(1)=¢' (0)=¢' (1) = 0}.

We assume that q(x) is real, x € [0,1], and, for example, that
q € L7(0,1). Then its adjoint operator T* has the same formal
expression as T but with domain:

D(T*) = {¢: v,p' absolutely continuous, ¢" € Lz} , (cf.IN]).

D(T*) becomes a Hilbert space H if the following scalar product
is introduced: (x,y) = (x,y) + (T*x,T*y).

A linear functional B € H* null on D(T) C H is called a boundary
value for T, (IDS]). To characterize them it is convenient to

have an alternative representation for H.
1

First observe that if {wj} C.H and v, 0 then J |wj|2dt — 0,
0

1

1
j Iwg+q(x)¢j|2dt — 0. Therefore, J |¢g|2dt — 0. From this it
0

0

follows that: ¢3(x) = 0, wj(x) -> 0. Consider now the Hilbert
space: ¥ = LZ ® R © R. The linear application J: H — X,

J(p) = (o"+qy,v(0),¢'(0))

is then continuous. But given f & L2

1
(1) 0 (x) = joc(x,y)fcy)dy ¢ ay, (x) + by,(x)

(G is the Green kernel and yl(x), yz(x) are certain solutions of

the homogeneous equation Ty = 0) is the solution of the non-homo
geneous problem: Ty = £, ¢(0) = a, ¢'(0) = b. Therefore, J is on
to and one-to-one. In consequence, it defines an isomorfism bet-
ween H and ¥. We have also proved that .an expression like:



(2) B(¢) = up(0) + vo(1) + we'(0) + z¢'(1) , u,v,w,z constants,

defines a continuous linear functional on H, null on D(T). Con-
versely, all boundary values are of this form. In fact, a linear
continuous functional B on # can be written as

1
Bo) = | (o'rap)g dx + cp0(0) + et (0) , g €Ll
0

and therefore, a boundary value B is of this form and such that

1
(3) B(y) = Joxty)g(y)dy =0 , X =9¢"tqp , for ¢ € D(T).

But X belongs to the range of T, ®(T), which can be characteri-
zed as the (closed) subspace given by
9 1 lv\G
(4) ] = {X e L”: J G(1,t)x(t)dt = 0 = f %; (1,t)x(t)dt}
0 0]

1
In fact, this follows from (1) observing that j G(x,t)X(t)dt is
0

null at x=0 together with its derivative.
We concludeé from (3) that g € L2 o &. Then, from (4) that

g = a.G(1,t) + B. %% (1,t) , a,B constants.

In consequence, for ¢ € H
1 .
Blo) = | (o"vap) («6(1, 0+ 82 (1,6))dt + ¢ p(0) + c o' (0)
0
and using (1):

B(p) = alp(1)-¢(0)y, (1)-¢' (0)y, (1)) + Blv' (1)-¢(0)y;(M-¢ 0y, (1))+
* ¢ w(0)+cp' (0) =up(0) + ve(l) + we (0) + z¢ (1).

We have proved then the following proposition: (2) characterizes
any boundary value for T . ([DSI, XIITI, 2.27).
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APPENDIX III.
ON HILBERT'S FORMS.
Let o and B be complex-valued functions defined on the positive
integers 2" such that
(1 a(n) = n + 0(1/n) , B(m) =n + 0(1/n).
Let a and b be sequences in £2(Z+), and J and K sequences in
=iz,
THEOREM 1. Given € > 0, there exists a constant C = C(o,B,¥,J,K,€)
independent of N, a and b, such that

N N, a J(n).b_ K(m)
i) n m

_ ‘ < C.IIaII2 Hb"z-
n=1 m=1 a(n)-B(m)+y

where the dash indicates the omission of the terms in which
la(n)-g(m)+y| < e.

ii) '

N N qa_ J(m).b_ K(m)
‘ = = | < C.-lal, Ubl,

n=1 m=1

o(n)+8(m)+y

where the dash indicates the omission of the terms in which
la(n)+B8(m)+y| < €.

In both cases, y is a real constant.

PROOF. We can assume a and b real, and J = K = 1.

Firstly we prove a simple auxiliary proposition:

PROPOSITION 1. Assume K > 0 and such that ] K _<M>7] K
n,m nm m nm

’ n

for a certain positive constant M. Then,

N N
I I K_a_ b | <Mlal, Ibl,.

n=1 m=1 "B
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)1/2

. 1/2 2
In fact, [} K__a,| <M (g K . 2n , and therefore

n

1/2 2.1/2  1/2 2.1/2
PIORSRERENESILNE / ( Kom 25 2ot 2ipr. (51 k a2y

m n mn

1/2 1/2

<M ibl.M fall.

i) Since {(n,m):|a(n)-B(m)+y| < e} C {(n,m):|n-m| < H} for a cer

tain positive integer H = H(e), we have:

a b -1
<[Z — + 1 e

. a_ b
(2) z n m
|n-m|>H a(n)-B8(m)+y |n-m|<H

n,m Ot(n)‘B(m)"lP

b_|.

n m

The last term is bounded by (2H+1)e'1.HaH.HbH. On the other hand,
if |n-m| > H
1 1
1 1 O(p) + 0(p) —~ ¥

(3) - =
a(m)-8(m+y n-m  (a(n)-B(m)+y) (n-m)

Define Kmn as equal to the modulus of (3) for |n-m| > H and equal
to zero elsewhere. If is not difficult to see that Kmn satisfies
the hypothesis of proposition 1.

In consequence, to prove that

a b

n m
|n-m{>H a(n)-g(m)+y

(4)

< C'.lal Ibl

it suffices to prove that

an bm
(5) I I < C".lal lbi.
|n-m|>z B0
But
(6) an-bm 5 a_ bm ;
° | | < | la_ b, .
|n-m|>H n-m n#m M |p-m|<H nom

The last term is bounded by (ZH+1)llalllb)].Since a well-known re-
sult for Hilbert's forms (cf.[HLP]l,p.212 or 235) assures that
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Z an Dm

m | S Telal bl

(7)
n#m
i) follows.

ii) can be proved repeating step by step the proof of i) and
using instead of (7) the following result due to Hilbert:

N a_b
(8) 1 |_ETEE| < m.lal.bl. Q.E.D.
n,m=
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APPENDIX 1IV.
ASSOCIATED FUNCTIONS.

In this appendix we want to exhibit the general form of the resi
dual expansion of a function ¢. From (23) we know that it is the
sum of the following terms

b b
(1) res j G(x,y;t)e(y)dy = j o (y) (res G(x,y;t))dy, s € S.
S a a s

For a Simple zero of w, (1) is equal to (24). We already mentio-
ned that formula (1) can be proved as in [BP],p.172.

To calculate res G(x,y;t) in general we need the following.

s
LEMMA 1. Assume q € L'(a,b). y"-(qa-s2)y = 0, y(a) = £(s), y'(a)=
= g(s), where f and g are entire functions of s, has a unique
solution y(x,s) which is an entire function of s for each
x € [a,b], and continuous in (x,s). Moreover, for k = 1,2,...

2k 3 3 k
(2) _k - Y(X,S) . __E }’(X,S)
as oxX X 9ds
k 2 k
9 9 p
9s 9X X 9X 9s

The first equality holds everywhere and the second one in £ xC
where £ is a measurable set of [a,b] of measure b-a.

PROOF. a) y(x,s) is a solution of the problem iff

(4) y(x,8) = [£(s)+g(s) (x-a)] + [ (x-t) (a(©)-sP)y(t, ) at
a

Let yo(x,s) = f(s)+g(s)(x-a) and V(x,s) = Jx(x—t)Iq(t)-szldt.

a

Then

52



V(x,s) >0
X 2
(s) Vi ix,s) = | lae)-s?lde > 0

1

V' (x,s) Iq(x)-52| >0 .

Let us define yk(x,s) for k = 1:

(6) Y 068) = yo(x,8) + [ (xt) (a(e)-sHy, ) (8, 9)at.
a

Then [y, (x,s) - yo(x,s)| < V(x,s) ly,(.,s)l,.
Let us prove that

k
(7) Y, 068) -y sy | < 2L ay L.

Assuming it for k=h, we obtain

X h
®) Iy (608) = 7, o9 | < [ G0 (e, ) o ES) gy (st -

a

X 2 h+1 h-1,,,2
- Hyo(.,s)HmJ x-S ) - YV T34¢ < in view of (5) <
a at? “(h+1)tT (h-1)!

x 2 h+1 h+1
< “yO(-,S)"mJ (X't) d2 (V )d‘t = "yo(',s)"m )i !X,S! .
a dt® (h+1)! (h+1)!

This proves (7).

Since V(x,s) and Yo(x-s) are uniformly bounded in G = GR =
= [a,b]l x {|s| <R} , R arbitrary,

N

Yy (Xs8) = y (x,s) + k£1 oy, (x,8) -y, _,(x,s))

converges untiformly in G to a limit y(x,s), solution of (4). The
uniform convergence assures the continuity of y(x,s) in G and its
analiticity. The uniqueness also follows, even for q € L1, from
the fact that

(9)  u" - (q(t)-sHu=0 , u(a) =u'(a) =0 = u=o0.
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(This‘can be seen as follows: from
. \ X 2
uess) = [ 0 @@-sHule,sae
a
it follows by induction, like (7), for every k,

k
lu(x,s)| < %ﬁl (. ,s)l_.

Letting k — «, we obtain u(x,s) = 0).
_ 33

. . , s

that DJy(x,s) is continuous in G and in view of (4) equal to:

To prove (2) let pi = . Then, from Cauchy's formula it fellows

Dly(x.s) = £ (s) + (x-a)gF)(s) + Jx(x—t)(q(t)—sz)njy(t,s)dt .

a

X . .
[ Ceetr-2sinTly (69 - 5GP (e, ) at
a
Thus, it is absolutely continuous in a < x < b, and, v j,

(1) g Oy = gD )+ [ aw-sHodyce,s) at -

a

x -1 -2
- J [2sjDI7 y + j(j-1)DI ™%yl at.
a

In particular,

B ves) = g(s) + [ (al)-sDy(t,s) dt

a

is an entire function of s, continuous in ¢ and

DIy (x,5)) = g3 (s) + j DI (q(t)-sD)y(t,s)] dt .

a

Thus Djy'(x,s) = (Djy(x,s))' which is just (2).

From (10) it is clear that (DJy(x,s))' is absolutely continuous
for a < x < b and fixed s, and also that
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(11) (Iy)r(x,s) = DI (qx)-sD)y(x,s)] a.e.

More precisely (11) holds for any x € £ = {x; %-J lq(x+t)-q(x) |dt ————+~0}(-).
0] h->0

£ is the set of Lebesgue points of q(x) which has measure b-a.
Thus (11) holds in £ x C.

But the right hand side of (11) is just Dj(y"(x,s)) for xe £.

Therefore Djy”(x,s) = (Djy)"(x,s) ¥ s, v x €L, Q.E.D.

In our situation y(x,s) = Ug{(x). We recall that for s € S,fL(x)=
= A(s)Us(x) and that A(t) is holomorphic in a neighborhood of s.
Moreover. it can be seen-as (8),pp.25-27 of [G]-that Zf s s a
zero of order k of w(t), then ﬁt(x)-A(t)Ut(x) has a zero of or-
der k at t=s. Therefore, in (1) we can make use of the equality:

(12) res 6(x,y;t) = res sd - U 00U ).

If we put: M(t) = Eﬁ%%§l , then, following the steps of the proof

given in [BP|, pp.174-175 we obtain next theorem 1. For the sake
of the reader we shall reproduce the proof.

Let us define the functions Uj(x,s), j =0,1,2,... , by
(13) 0 oS = 4 2 yis) .
] J-. BSJ

Therefore, if s € 8§,
(4 y(x,t) = uo(x,s) + (t-s)ul(x,s) + ...,
If M has a pole of order r at s,

(15)  (t=)™M(t) = c__+ c__, (t-s) +...+ c_ (t-5)"" !+,

(*) If p(x) is continuous and q(x) E'Ll then any Lebesgue point

of q(x) is a Lebesgue point of (p.q)(x).
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In consequence

r j-1
(16)  (t-s)™(t) .y(x,t)y(z,t) = ...+(t-s)r'1j§1c_j[kzouk(x,S)Uj_l_k(z,s)]+-.. .
But
a7 (t2-sD)y(x,t) = -y'ix,t) + (@(x)-sDy(x,t)  a.e..

Then, from (2),(3),(13) and (17) we obtain (lU_y:=0):

k+1

§ [-Jii u, (x s)+(q(x)—sz)u (x,s)1 (t-s)¥ = ; u, (t-s) -(t+s) =
o ax? k7 k2 k=0 &

k

=} (Uh_1.25+uh_2)(t—s)h, since t+s = 2s+(t-s). This implies

that the functions U, satisfy the following equations for x in a
set of measure b-a and s € S:

2
'UB + (s°-q) UO =0
uy (s2-q) U, = -U,.2s
(18) ]
LA - = - -
U2 + (s"-q) U2 U1 Zs Uo
U; + (s7-q) un - -un-l 2s-un—Z

If s#0, for each n, the set UO,...,Un is linearly <independent on
[0,1]. In fact, Uo(x,s) = y(x,s) # 0. Assume k is the first inte-
ger such that

m m
m=0

Applying the operator d2/ax? - (q-sz) to this identity, it follows
from (18) that

(19)y -(u .25+uk_2) = linear combination of Uj's with j < k-2.

k-1
This is a contradiction. If s=0, UO,...,Un may be. linearly depen-
dent. (In fact, because of (18), U'l'-qU1 = 0, and from (13) we

have: !, (0) = -Q'(0), Uj(0) = P'(0). If we had, for example,
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Q'(0) = 0 = P'(0), we would have u1 = 0). However, uo,uz,...,u
are still linearly independent.

2n
If r is the order of the pole s of M(t), {Uo(x,s),...,Ur_l(x,s)}
is called the principal chain of functions associated to y(X,s).

From (1), (16) and (12) it follows next theoremn.

THEOREM 1. If s € S and ¢ € L! the following relations hold

r j-1
(20) iiz G(x,y;t) = jzl C_j[izo u, (x,s) uj—l—k(y’s)]’
b r-1
(21 res Jac(x,y;t)w(y)dy RO RRN O
where
b r
(22) v () - [aw(y)j£k+1 U (0h8) dy L (e£.(15)).

Observe that r is the order of the pole of M at s. So, if s=0, it
is equal to the order of the zero of w minus one.

Assume that in (12) instead of G(x,y;t) we had G(x,y;t)/t.
Then, the only change in the previous developements is the defi-

nition of M(t) (which now is %%%% ) and accordingly the cj's are

not the same.

Now, M(t) has a pole of order r at every zero of order r of w,
and therefore if s=0 is a double zero of w, we have:

tb
(23) :Sg Ja(G/t)w dy = Yo,2(#)-Up(x) + Yy,2- U (x,0)
b
Yo,2 = J w(X)[C_lUO(x) + c_zul(x,O)] dx
a
(24)
b
Yi,2 © J e(x)lc_,Uy(x)] dx , c_, # 0.
a
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