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INTEGRABLE SYSTEMS IN FINITE
AND INFINITE DIMENSION

Luis A. PiovaN

UNIVERSIDAD NACIONAL DEL SUR

ABsTRACT. The purpose of this paper is to present some advances into considering
a.c.i. systems as pieces of infinite dimensional systems such as the KP hierarchy or
Multicomponent KP hierarchy. This is to be done in such a way that the affine invari-
ant manifolds of the a.c.i. systems embedd into the Universal Grassmann Manifold
UGM and the Hamiltonian flows coincide with some flows of the infinite dimensional
systems. As an example one considers the case of the rigid body motion in SO(3).

1. Introduction.
Finite dimensional integrable systems are pretty well understood. A good de-

scription of these systems is given by the Arnold-Liouville theorem [Ar]:

THEOREM 1. Let Fy,...,Fy,Foyq,...,Fopr : R7*T% S R be (n + k) indepen-
dent functions in involution (i.e. {F;,F;} = 0 with respect to a Poisson bracket
{,-}), where F,1,..., Fnyy are trivial invariants and F}, ¢ = 1,...,n generate
nontrivial vector fields on the manifolds M, = {z € R**F : Fi(2) = ¢;, 1 =
1,...,n+ k}. The hamiltonian vector fields Xp,, 1 = 1,...,n, span the tangent
space to M, at each point and the compact and connected components of M, are
tori. Moreover, if we consider the map F : R*™*tF — RvtE F = (Fy,..., Foix)
generically submersive, then, around regular points u € R***we have principal fi-
brations by tori (or cylinders). Also, on these fibrations we can pick a globally

defined coordinate system: the action-angle variables.

An example of such systems is given by the Euler top, which describes the rigid

body motion around the fixed center of gravity. In the angular moment coordinates,
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2 LUIS A. PIOVAN

it reduces to the equations

Z; = (Az - /\3)2223
(1) 2 = (As — A1)z32y
2.3 = ()\1 - /\2)2122

It has two independent integrals

Q1 =2} + 25 + 73
(2) Q2 = Mzt + Aozi + Agzi

which commute with respect to the Poisson bracket. ), being the trivial invariant
and ¢, the nontrivial Hamiltonian.

Although the real geometry of integrable systems is described, to some degree,
by the Arnold-Liouville theorem, their complex geometry is not so well understood.
The nature of the solutions to integrable systems depends heavily on the complex
geometry. If we require the solutions to be expressible in terms of theta functions
related to some abelian variety (i.e. a complex torus in projective space), then, we
call such systems algebraic complete integrable (a.c.i.). Many of these systems were
known classically in Mechanics and studied in detail by Adler and Van Moerbeke
[A-VM 1,2] and many others [Du], [Mo], [Mu 1,3].

In the Adler and Van Moerbeke picture, the real phase space R*"t* is com-
plexified, and the integrals are polynomials. The complexified invariant manifolds
M, = {z € C** Fi(z) = ¢, i=1,...,n+k} are affine varieties in C*"*¥.
They are affine pieces of abelian varieties A, in such a way that the coordinates z;
become nontrivial abelian functions on A.. Thus z; € L(D) = functions on A, that
blow up on a divisor D of A., and moreover M, = A)\{ the reduced divisor D}.

For instance, in the Euler top case, one obtains (by setting (; and @2 to con-
stants) the affine part of an elliptic curve in P* = P(L(D)) with D = divisor at
infinity = 4 points.

In order to treat infinite dimensional systems we will consider the K.P. hierarchy

and the Universal Grassmannian manifold UGM. (See Sato [Sal).
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The K.P. hierarchy can be obtained by considering the pseudodifferential opera-

tor in one variable z:
(3) Q=0+ u—.1($,#)8*1 + u__g(a:,it)a"Q 4o,

where 0 = T and # = (#1,...,%tpn,...) is an infinite collection of time variables.
T

Then, one has the Lax equations

(4) oL —1@MnQl, n=120,

where (Q")4 is the differential operator part of the order n pseudodifferential op-

erator Q".

The systems (4) can be shown to possess an infinite number of integrals: that is,
~1

functionals H; : 0+ G- — C, G = “space of elements of the form z ui(z, )0,

== 00

such that %1;1 =0 Vi,j. Also, the vector fields (4), thought of as vector fields on
J

the manifold 8 + G, commute, i.e.

o* 0*

Ot 0ty  OtmOt,

The K.P. hierarchy can be also described by the pseudodifferential operator in

the Lie group G=1+4G_
(6) W=14 w_l(a:,it)(')"l -+ w~2(1‘,it)(9“2 + e

which is related to @ by the formula

d i
(7) Q=w—w.

Describing the evolution of @) is equivalent to describing the evolution of W.

Thus, the equations (4) can be written as

ow

(8) = :an_w(%) , an(w<%> " )
" ’ +
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- : 0 d\"
This 1s saying that an + W (—d——> belongs to the cyclic D-module DW (D =
n T
{3% , ai(z,#)d'} = space of differential operators).
In order to define the universal Grassmannian manifold we introduce the space

of pseudodifferential operators P = { Z a;0"' : a; € ring O with derivation 9 :
—00 <100
0 — 0} (e.g. O = formal power series in z) and the space of differential operators

D = {2 ocicoo a;0 : a; € O}. P has a natural filtration (--- ¢ PV ¢ PO ¢
P() ¢ ...) by the order of the pseudodifferential operators, and we can split P =
D@ G- = D@ PY. We consider the infinite dimensional vector space V =
P/Pz = {Y _ocicoo @0 i ai € C} of pseudodifferential operators with constant
coefficients. This is a P and D-module on which is to be modelled the universal

Grassmannian manifold UGM.

We define
UGM :={ vector subspaces U C V : dim(U N VD)= dim _ VY Vcw
~ P / U+ VED '

Here V=Y = {3, (a0 : a; € C).

That is, UGM consists of subspaces of V which are comparable to Uy = DNV.

Now, any W as in (6) has a point WU, € UGM associated to it. Thus, we
can view the KP flows as moving in the universal Grassmann manifold.

In section 2 we present a construction of the Baker-Akhiezer functions for a data
depending on divisors on generic abelian varieties. The main result of this paper
is Theorem 2. Next (In 3), we apply this Theorem to the case of elliptic curves.
In particular, to elliptic curves in P3; which are related to the Euler Top. In 4 we
explore the possibility of viewing holomorphic flows on abelian varieties as flows
in UGM. We define an appropriate map of the universal covering of the abelian
varieties into UGM through solutions of the KP hierarchy. Section 5 presents some
basics about Multicomponent KP hierarcy. Finally, the main purpose of section 6
is to identify the Euler Top flow with a Multicomponent KP flow under a suitable

embedding. The Lemmas and Propositions there describe this identification.
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2. Baker-Akhiezer functions for certain data on abelian varieties.

We consider here the construction of Baker-Akhiezer functions for the data re-
lated to an abelian variety A, an ample divisor D (posibly reducible) on A, a
(finite) group G of automorphisms of (4,D) and a line bundle F on A such that
hO(F) = h'(F) = 0. This data will be called Mumford data [Mu 1] and we want to
give a generalization of the dictionary between these data and commutative rings
of differential operators satisfying certain conditions (e.g. dim R, /R,-; <1 and
=1 for n large).

We will give as examples the case of an elliptic curve in P* with D the divisor
cut out by an odd section (i.e. four points at infinity), and the case of an abelian
surface with a smooth curve D as divisor at infinity. The bundle F will be of the
form F = [r71D — D] for some z € 4, i.e. F € Pic’(A) will indicate a direction in
the Picard vanety.

Let us start with

Data A: an abelian variety A, an ample divisor D on A. A group G of automor-
phisms of (4, D) and a line bundle F such that h°(F) = h'(F) = 0.

We want to recover

Data B: A ring R of differential operators such that dimR,/R,-1 <cand =c
for n large.

We want to construct a line bundle F* on A X C* in the following way. Take
the covering formed by (U — D) x C*® = Uy and neighborhoods around D x C*
U, x C*® = U,, and let F* be obtained by the transition functions go,a(u, za, ) =
exp Zti/u Q; |, where # = (t1,ta,...,tn,...) € C® and §; are differential

izl Fa
forms of 2" kind on A such that their expansions around smooth points of D is

(1) df_] ci(z)+0(z~ (V) dz with  moving along D. An arsenal of such forms is
Zi

gotten by taking the differential of derivatives of log ¥ , where ¥ is the theta function
vanishing on D. Of course, one makes sure that the go,a(u, To,tt) are compatible
transition functions. This can be done by picking a covering of D by algebraic

charts U, around points z, of A belonging to some finite translation group (e.g.
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some half periods). Thus, the transition functions will satisfy a cocycle relation
9o,0(u, t) = g5 o(t)g0,(u, 1) with gg () depending on some fractional periods of
the Q;’s.

On A x C® we can also define the line bundle F = 7{(F) ® 73(Oce ) where m;
and 7, are the projections onto the 1, 2-coordinates. Thus, we also have the bundle
F* = F ® F* with transition functions §(u,t) = gq (1) gy0(u,#t) where g, 5 is a
set of transition functions for F.

Notice that [~ Q; = a(z) + ¢(z) + O(z) where z is the local parameter about
a z

r € D such that — is a holomorphic vector field on A. We want to define a

0z
differential operator V : F* — F*(xD) such that

(9) V(s) = f‘_,(_i?_f + section of F*
for a section s of F*.

Take V := ——(?—-, then Vgqp =
dty

E%lgaﬂ +(¢e(z) + O(2))§agp, and for a holomorphic
ip

section s of F* we have V(s) = Vs, = Viagsg = ~a—(;-)-sa+§aﬁ(’\7sﬂ +c(z) + 0(z))

on Uqyg, since there are holomorphic functions sq such that so = gagsp on Uag.
a(z)

. - alx - ~

On U, we have the relation S+ Japls = ~£——~)~5 + Ga~yty. Thus, tg = Ggaty
z

over Uygy, i-€. t is a section of F*.

Now, notice that
i
H(AXxC® F)=PH(AF)®H(C® Oc=)=0  fori=0,1,
=0

implies that H*(A x C*®,F*) =0, i =0, 1. So, we have an isomorphism

(10) H°(A x C®,F"(D)) = H°(A x C=, F*(D)/ £7).

Note 1. In dimensions higher than one it will be important to consider the
behaviour of the above homology groups under desingularization of D embedded
in A, i.e. (4,D) — (4,D). One should look for birational invariants in case the

hypothesis are destroyed after desingularization.
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Definition 1: A section of the line bundle F* which is meromorphic on A
and holomorphic on C* will be called a Baker-Akhiezer section (or Baker-Akhiezer
function). In practice, one looks at Baker-Akhiezer sections that have pole divisors
on A of the form n&, with £ an ample divisor different from D. The vector space
of sections of F* which blow up at most once at £ is denoted by A(E).

Given the divisor £, one considers the J-function © associated to it ([We], [Ig]),
i.e. © vanishes once on £. Let A, : A — HY(A,QY)*/H,(A,Z) be a set of
Albanese’s maps, A, (z) = (f:a wl,...,ffa wn), for some conveniently chosen
ro € A. Here, the integrals are along a path + joining z, and z. For abelian
varieties these maps are isomorphisms and any two of them differ by a translation
on A.

There is a basis of holomorphic differentials wy, . ..,w,, and basis of homology cy-
cles {a;, b;},¢ = 1,...,n, such that the period matrix has the form (fa; Wy, jb wj) =
(I,7). According to Igusa [Ig] any J-function © can be written as a linear combi-

nation of ¥-series of the form

(11) Om(r,2) = Y e((p+m)r'(p+m') + (p+m')(z +m"))
peEZ
where m = (m'm'') and m',m" in R" and e(z) = exp(2miz). Such a J-series satisfies
(12)  On(r,z+n'T +0") = On(r,2) e(—in'r'n' —n''z) e(m''n" — n''m")
for any element n'7+n'', n',n"” € Z", belonging to the lattice of the abelian variety.
Moreover, if § = (é1,...,0,), 6;/6; are the integers defining the polarization type

of £, then there exist real vectors m',m' € R™ such that

(13) O(z) = Z constant - G(r+m,/_\;1,m,,)(7', z),

r mod Z"

where r runs over a complete set of representatives of (TSITZ X see X f:Z) JZ"™ and
Ay = diag(y,...,6n).
- Following [Du], [Sh] and [Ma-Ka| we define the Baker-Akhiezer function associ-
ated to the divisors D and £ as follows.
Y(u,tt,z4,2), ueC” Ou)#0, teC® z€A-D,

zo a local parameter of D in U,.
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0 st (£ ) R

where n; are normalized 2"¢ kind differentials and B its matrix of b-periods: B =
. d
<fb£ 771')- As before, n; have local expansions around DN U,, n; ~ (ml)’c,;—é% +
. [4 4
O(2;%)dz,. The functions fo(t) are holomorphic functions of the variable # to be
chosen later.

As we increase w by the period n'r + n' we get the change

O(w+n't +n') = Z Cr@(r+m'A;‘,m~)(Ta w+ nr+n'")

r mod Z*»

= { Z Cr@(r_*_m,A;th,,)(T,’LU)e((T +m/ A7 — h'm")
r mod Z"

ce(—3n'tin’ — h'w).

Thus Ow + wo) is changed by the factor e(—ntwg).
O(w)

Now, changing > t; f:; n; by the homology cycle n''b + n''a produces the extra
factor e (Zl t; 'nt(fbj m)) in 1, which cancels with the contribution of the term
e (-— n (Z, t; t(fbj 77,'))) = e(— nB't) due to the theta functions.

This shows that the function (13) extends to a well defined meromorphic function
on the open set Uy that blows up once at £ The quotient @(g‘&tt:-:?;)()x)) extends
on Uy, to a function that blows up at the divisor £ = {z € 4: © (v — A, (z)) = 0}.

Let so € L(Uy N E) = { space of meromorphic functions on Uy that blow up

once on £ Ny } denote the function (13), and so € L(U, N E) the function s, =

fa(t)ho(u,z,#) = fo(tt) 6(2(2t2f2;)()x))~ Then, we can write (13) in the form

S0 = §o,aSa, which says that {s := s, on Uy} is a section of the bundle F*.

The compatibility at the intersection U, N Upg requires that so = ga,555 , where
T o

Jo,8 = Pa/Pp and p, = exp Zti/ Q; 1,0 = an origin of A. These conditions
0

i>1
are satisfied if we choose fo = po , fs = ps and pick z, € group of translates ¢

such that ©(z +t) = ¢,0(z). (There are at most (6; - -+ 6,) points of this kind on
an abelian variety).

Now, we can state the
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THEOREM 2. There is a Baker-Akhiezer function ¢ on A with expansion

(15) Wt u, Ta; ) = fa(t)go,a(z, Ta, )1+ ar(u,t)z + -+ )

about the divisor D on A , which has pole divisor &, for some divisor £ # D and
is holomorphic everywhere else. This function is associated with a global section of
F*. Moreover, the space of global sections of F* which blow up at most once at
€ is a rank r C[[t)]-module, where r is the dimension of the space of meromorphic

functions on A that blow up at most once at £.

Proof. As seen before, (14) gives such a section of F*. If s and s’ are sections
of F*, 5—; is a function on A holomorphic everywhere and having pole divisor at a
translate wg + & of €. The space of such functions has dimension r = 6 - - - §,, where
§' = (8%,...,8!) is the polarization type of £.

Finally, we notice that if z, is fixed, we get an expansion around D

O(B't + u — A, (z))
O(u — Az, (z))

where z is a local parameter around D. [

= (14 ay(u,tt)z+---), [t]|small.

3. The case of elliptic curves.

We consider the situation of A an elliptic curve and D = sum of points with
positive coefficients = Ln;p;. Then H°(A x C*,F*(D)/E") ~ Cl[[t])4¢8P. This
follows from the skycraper sheaf C(D) in 0 — F4 — Fa(D) — C(D) — 0; which
implies 0 — F* — F*(D) — n1(C(D)) @ 75(Oc> ) @ F* — 0 and

(16) I(r}(C(D) @ 13(Oc) @ F*) = I'(C(D)) @ Cl[t]] ® I'(F7)
>~ C[[¢])]48 P @ I'(F*).
Now, we wish to show the representability of the affine ring R as a ring of

differential operators. Let D = Zn;p;, R = I'(A — D,0,4) — ®a(A, L(D)P") =

homogeneous coordinate ring, and take V := ——. Then one uses the sequence

oty
(17) 0 — F*(nD) - F'((n+1)D) — 1 (C(D)) @ m3(Oce ) @ F* — 0
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to deduce that if s;,...,sr (k = degD) is a C[[t]]-basis of I'(F*(D)), then
{VTsy,..., Vs r=0,1,...,n} is a C[[tt]]-basis of I'(A x C=, F*((n + 1)D).
Indeedthis is because H! (17C(D)®@73(Oc= )QF*) ~ HY (E*((n+1)D)/ E*(nD)) =
0, which implies H!(F*(nD)) = 0 for all n, and consequently the exact sequence of
C[[t]]-modules:

0 — I'(A x C°, F*(nD)) —
(18)
— I(A x C=, F*((n +1)D)) — I(xH(C(D)) ® 73(Oce) @ F*) — 0.

Also, there is a mapping

(19) I'(A, L(D)")®@ I'(A x C,F*(kD)) — I'(A x C, E*((n + k)D)),

ap(zy)

and,ifQER,Q:Zm
- 1

+ lower terms € I'(A,L(D)").

So that we have

(20) «.8; = Zagr(ﬂ,) 3 — f(z (#)Vr < . ) ’

Sk

1.e.
81 n a%r(ﬁ) afr(#) 31
(21) al 1 => 1 S Rl B
s/ = \ab ) ... ab() st

We define an immersion ring map ® : R — M (C[[¢]])[V] by

n

O(a) = Z (a{r(it)) A%

=0

Thus we can state the

PROPOSITION 3. There is an injection R «— M (C[[#]])[V] in case the space
I(F*(D)/FE") has a finite basis of k elements, (k =degD).

. - . . . ’ 4
Let us consider now the case where A is an elliptic curve in P* and D =Y, pi

(tipically the section cut out by an odd theta function). Then I'(E*((n +1)D)) has



INTEGRABLE SYSTEMS IN FINITE AND INFINITE DIMENSION 11

generators {1, 2,583,584, .., V"1, V782, V7s3, V"s4}, where {s;} is a C[[#]]-basis
of I(E*(D)).

For an elliptic curve and a divisor € on it, h°(¢) = h'(e) = 0 if dege = 0.
Conversely, if ¢ € Jacobian of A = {¢, dege = 0}, then € ~¢ p — pp and therefore
h%(¢) = h'(e) = 0 unless € ~¢ 0 (e.g. Prop. 4.1.2, [Ha)).

Thus, there is an embedding of R = I'( A — D, 04) into M, (C[[¢]])[V].

4. The one dimensional case and KP hierarchy.

Let us consider the case similarly treated by Mumford in his Tata Lectures [Mu
3]. If ' is a an elliptic curve and p = oo a distinguished point then we have
the p-Wierstrass function, which together with 1 form a basis of the linear sys-
tem L(2p) (whose dimension for elliptic curves is dim L{np) = n). Analogously
{1,0,0',...,p" V} form a basis of L((n + 1)p).

Let ¢(z, z(z), #) be the Baker-Akhiezer function associated to the divisor D = p.
Then it is easy to see the existence of a function ¢(z, #) such that p(2)y = (D?+q)¢,
D = 2, and one checks that p'(z)i = (D* + 1(¢D + Dq))y.

In other words the value p(2) can be thought of as an eigenvalue of the operator
D? + ¢ with eigenfunction 3. See [Mu 1] and [S-W].

On the other hand, one can consider the KP flows for a given 1. This is the set

of equations
(22) 5%¢ = Ky,
where K, is the differential operator part of the pseudodifferential operator Q",
where Q@ = D + ) ;5 w;D~' = W™'DW. In our case () has to satisfy Q* =
D?* + ¢ = Q% and D® + 1(¢D + Dq) equals Q.

The equations (22) can be written as (23) below, if we put ¢ = Wte(t),
p)=exp(L+ % +...)and W=1+3,,0a,D7"

-1
ag. = KW' —=W™lD",

where K; = [W™!D'W]; = QF.

(23)
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As it is shown in the theory of Mumford [Mu 1], and also follows from the theorem
in 2, the affine ring B = Clp, p'| = C[X,Y]/Ideal = P, 5, L(np) can be embedded
into a commutative ring R of differential operators in C[[#]][D], having elements
of the form D™ + (lower order) for any n > 1. Such an algebra of differential
operators is isomorphic (as C-algebra) with a C-subalgebra A = W, 'RW,, W, €
G, of C((D7')) having the property AN C[[D7]]D™! = {0} (cf. Lemma 1.1 in
[Mul]).

Now, consider the mapping ¢ : C — C* defined by ¢(z) = (0,0,2,0,0,...).
Then, the tangent vector -58—;_; goes into the KdV tangent vector 5%. We want to
define the pseudodifferential operator W(#) € G in such a way that the map

(24)
C 2 ,C® 5, G —o UGM

t ——— W(tt) —— frame{...,W™'D" ... W'D, W1},

coincides with the usual mapping embedding the elliptic curve in P? and then P?
into UGM.

One can view the UGM as the set of all N°-frames modulo the group G L(N¢)
acting by right action. An N°-frame is a matrix whose rows are indexed by the

integers Z, whose columns are indexed by the set N = {—1,-2,...}, and has the

form
| ; .
1 | 0O 0 :
1 ] 0 0 :
11 0 0 —m — 1
(25) coe K * | * —m
* * | (n+m)xm :
* * | frame n _ 1
L * * .
| —m -1

An element of GL(N¢) is a N¢ x N°-matrix with the lower-right corner an element

of GL(m) for some m, and the upper-left corner an infinite identity matrix I. So
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they are as follows

(26) . 6Lm)|

The Grassmann manifold GM(m,m + n) of m subspaces in (m + n)-space can be
viewed as the set of (m 4 n) x m-frames modulo GL(m) acting by right action. A
(m+n)xm-frame can be put as a N°-frame like (24) in an obvious way which induces

an embedding of GM(m,n + m) into UGM. Thus, the homogeneous coordinates

[zo: -+ : zn] of the projective space PN = GM(1,N +1) will appear as a N°-frame
as follows
|
1 | 0
1 | 0 .
1| 0 -2
(27) e kx| g -1
* % x| oy N -1
e * * ok
e =2 =1

Now, the space V = P/Pz of pseudodifferential operators with constant coef-
ficients has a basis of the form e; = (5@;)—1‘—-1 mod Pz, ¢ € Z. Thus, a typical
point of the elliptic curve in P? via the covering map 7 : C — P? | 2 [1: p(z) :
©'(2)], has the asoociated frame CNU ={..,e_, + 2>t Anj€jy .. e +
2i>—1A-1j€j,¢-1 + p(2)ep + ©'(z)er}. This frame must differ from the frame in
(24) by an element of GL(N¢) which has the form

| :

1 L0 0

1 | 0 0

110 0

(28) * ok ok | ] 0
o

* ok ok |k 1

o * * d
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and therefore we must have W™1(p(2)) = 1 + p(z) D! + ¢'(2)D~2.
Finally, starting with a given Baker-Akhiezer function, one can obtain the above

W by multiplying by a convenient element of G.

5. Multicomponent KP hierarchy.
Let us introduce some notation to consider the multicomponent KP equations.
See [Ad-B]. We will consider wave functions of the form
w(it) == (I + Zwizi) qﬁ(ﬁ)
>0

where w; are k x k matrices depending on # and ¢(#) is the exponential diagonal

matrix
t
t7 _
o) =exp | 3 ]
>0 B .
¢,
and # = (t],t3,...,tF,...) is the vector of time variables t,
We have
0
1 * »
az{ ¢(ﬁ) = ;," 1 (;S(ft),
0

and if 0 = 37, 0,5, 0g(t) = L4(t).

Tz

Given the matrix pseudodifferential operator W = I + Yoo w;07" we have
We(tt) = (I “+ Z w,-zi) o(tt) = w(t).
>0

The multicomponent KP equations can be written as the set of Lax equations

(20) 0@ = [Q,[R});]

where @ = W™1(40)W, A = constant diagonal matrix with nonzero entries and
R}’ =W™E;;0'W, E;; = diag(O,...,O,i,O,...,O), and [ |4 indicates the differ-

ential operator part of RJ’
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The set of equations (1) is also equivalent to the equations in the wave operator

w

(30) 0, W = ~W[R}]-

]
where | ]_ is the formal pseudodifferential operator part.

PROPOSITION 4. Given the wave function w*(#) = W~'¢(t), there is a matrix
differential operator Pz-j = ZLO d'a;, a; = diag constant such that
%,
—w(t Y w(t).
578 = Plu)
Proof:
dt, w*(#) = O(2)¢(tt)+(I+3 ;50 wiz')E;;2 7 ¢(#). On the other hand 8'w*(#) =

O(2)d(t) + (I + 250 wizi)%qﬁ(#). Therefore :—9% — J'Ejj is a differential operator

that acting on w(#) has order O(+L+) and we continue by induction.

Suppose there is a ¢ do differential operator K such that
P! = K"Y(E;;0)"K = K™,
Then the expression (1) can be written as
8W ! ow !

9 _____
(’)t, ¢(t) = o0 o) + W ¢() oi

6W1
= 0

o(tt) + W”]En;l;ré(ft)

$(t) + W™ 1E“8'¢<tt> PIW Tl g(t).

Thus, (1) is equivalent with

8W1

31

+ WY(E,;0°) = PIW!

and in particular Pij = [W=(E;;0")W]; = [R;]Jr
Now, if Q = W~140W, we have

0Q ow-! W b o
o~ od we-@ or = (P = R})Q - Q(P] - R))

- {Q> {R;]-‘] = ”[Qa [R;]'F]
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PROPOSITION 5. The operator Q satisfies the multicomponent K.P. hierarchy.

Our purpose is to identify the Euler top flow with a multicomponent K.P. flow

under a suitable embedding.

6. Baker functions defined on an elliptic curve.

In this section we present several examples. They are different attempts of defin-
ing a Baker-Akhiezer function for the divisor D = p; + py + p3 + ps= sum of points,
The relevant examples 2 and 3 allow us to identify the Euler Top flow with a Mul-
ticomponent KP flow. |

Let z; = O(t) be the local parameter at the reduced piece p; of the divisor
D = p; +p; +ps + ps. QF the normalized differential of 2°¢ kind with a single pole
of order n at p; and holomorphié everywhere else.

Consider the map ¢ : E — Pic’(E) defined by ¢(z) = [r,D — D] (the canonical
map). This has a finite kernel (the translation group H(D)). Let &€ be a divisor in
Pic’( E) such that D = ¢~!£. Then 6(¢(p)) is a theta function for the divisor D.

A Baker function can be obtained as

(32) ?/),n,;,(:c) = exp (1/ tn /: Q:l) b, <£p06.j t“f‘z)+ f)
0 2 \Jp, W

where w is a basis of holomorphic differentials, and 6; theta functions associated to

3

translates of D. As we go around a b-cycle of E we pick a b-period of Qr. So the

exponential gets increased by the factor exp(t, [ QF), which will cancel out with
b

L3

Nt
Unr

%

factors of 6; and 6,.

LEMMA 6. The expression (32) is a Baker function at p; associated to the divisor

D. It has the expression

) e /3" (14 0(2;)) around p;
N

eutnaij (1“{"0(2])) around p]) ] 71:1'
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Proof. Assume 6,, 8, are 8 functions of order v with characteristics [ g] , 1.e. satisfy

a relation of the type

8, [g} (z+ 2miN + BM) =

exp {»—g—(BM,M) — v(M, z) + 2mi({a, N) — (B, M))} 6, [;] (2).

If 6, and 6, are of the same type and order then all the factors cancel except the
factor exp {—v(M,t,U")} = exp {——utn bei Q,”}

So if we add the factor v in the exponential of the Baker function we obtain the
desired cancelling, i.e. (32) is a well defined meromorphic function outside pi, with
zeroes at 6, (f:o w+t, U + 5) = 0 and poles at 6, <fpzo w + f) =0

As candidates for 6, and 6, one can pick the functions 6 [(Chw)’ln} (nz|nB)|D].

B
Around p; we have

n dzi
(34) QF = mz?+1 + O(1),

o
(35) / Q= ——+0(1) and "I Z el (14 Ot ).
Po 2 (33)

Onme can pick as z; the time parameter t of a holomorphic vector field in E. One
also has the expressions (33) around p;.

Let 7;; be the translation that sends p; — pj, 1.e., addition by p; — p;, and let
Q; = 7550 be the pull back of ;. Then Q; blows up at D;.

Now we have the formula [ Q; = ffi;a Q; = [ Q; (since a+ ;5 is homologous to
a) for a period a of Q; (i.e., the periods are the same). (Notice that one can choose
a so that all the translates 7ija of a do not meet the poles of §; or its translate Q;.)

If we let ¢;; = fpi”pi‘p" (2; then we have f;; -, wfpi+p‘_pj ; = —¢;j. In other

words, one can interpret the cycle ¢;; as the difference between the infinite integrals

fx+Pe —Pp;

x
. Q; — fpo Qi as  — p;. One has ¢;j + ¢jx = cix.

The correlation function f;; defined by dfi;; = Q; — Q ; is defined on the universal
cover of E. Up to a constant we can pick fij=["Q; - fx 1; which is a function

that blows up at p; and p;.
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Now, we can write [ Q; = [*Q; + f;;, and let o = [P Q;, 1 # ;. Thus, we

have

1/)171 - e"‘ trlaij(l + O(z])) about p]

LEMMA 7. We have the estimates

v
d . ( — + O(z; ) P,(x) ifz is around p;,
(37) di i,u(x) = 2 (z) () ’ (2)
i 0(1) if z is around p;, j # 1.

Proof.

d . p¥lafz] )
&_i: = € (1 +O(Zg))

- ;”;e" W/ (14 O(z)) + € 5 04 ()

i

- (2‘% + oz(zi)) vr,.

1

d . i
¢ (L4 0(z5)) = ' (vaij + Oi(z). O

PROPOSITION 8. There is a unique function, up to an element in H(&), having

essential singularity at the point p;, zeroes at £, and blowing up at £..

Proof. If 1 and 4 are two Baker functions then W /% is meromorphic on the elliptic
curve because the essential singularities cancel. The poles at £, also cancel. Thus,
the divisor of ¢ /1 comes from the zeroes of 1 and o, namely & and &,. So, we
have & linearly equivalent to & for all |tn| < 1. Since the group of divisors linearly
equivalent to & is finite (the translation group H(&;)) we have that such a Baker

function is unique up to an element in the Translation group of &. O
Note 1. It follows from PROPOSITION 8 the following lemma:

LEMMA 9. On an abelian variety, a Baker function with expansion ) =0(z)etr/*

and no other zero or pole has to be zero.
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Note 2. Let gop = ha/hg, ho defining the divisor £ on A = abelian variety,
and [£] the corresponding bundle. For any z fixed, define the bundle of transition
functions e¥*/% and denote by L(:,¢) such bundle. Then define L(, »y®[D] = L,. A
section of £, is given by holomorphic s, such that s, = e¥%/% (h,/hg)sy. Clearly,

the quotient {%?—} gives a meromorphic section of L, 4.
[0 4

Note 3. We can show the following for general abelian varieties

PROPOSITION 10. There exists a monomorphism embedding R = I'(A —

D,0,4) into a ring of commutative differential operators with matrix coefficients.
For elliptic curves this was shown in PROPOSITION 3.

Example 1. In order to illustrate Note 3 we draw Table I with the expansions
of 1,...,%4 and Dy,. .., Dy, around the points py,...,ps and let {2}, 25,21} be
the generators of the affine ring associated to the Euler top system. This system
has divisor D = p(1,1) + p(1,-1) + p(=1,1) + p(=1,—1) = p; + p2 + p3s + p4 and
the expansion of the functions {z{,z}, 24} about D in terms of the time evolution

parameter ¢ are

4

Zi:\IO{BZI:(Sl (}»-—~<u+v)t+.>

t
1
(39) 4= yara=a (G +u )
1
2 = VB2 = 6,6, (;*’““““)

.Y
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Table I
p(1,1) p(1,-1) p(~1,1) p(—-1,-1)

Yi N4 0()) (14 0(z) B4 0(z) 1YL+ O(a))
Y2 MO+ 0(n1)) R4 0(2))  eMOB(140(28) €124 (1 + O(z4))
¥s  NEN(140(n)) €121 40(z2)) /B4 0(23) €131+ O())

Vi UNI40()  SNTR(40() N0 0() (14 O(x4)

Dy (—”«1- +0(n )) ¥1 o(1) 0(1) o(1)
Dy, o(1) (;’f; + 0(22)) o
v
Drps ("" + 0(23)) 3
z3
D (-‘—'— + O(zq)) "
24
2y '}1/)1 4 %?!)1 "%1/)1 *‘%1/)1

Notice that 1;(z + p; — p;) = exp(vtnci;)pi(z) (with fpp: Q; = f}i Q5 — cij),
once one chooses convenient § functions to construct the remaining Baker functions

from a given one. This is because we have

z z+pi—p;
(39) / Q= / Qj —cij
] Po

and

z z+pi—pj x z+pi—p;j Pi
(40) /w:/ w+/ w:/ w+/ w,
Po Po z+pi—p; Po pi

since w are translation invariant 1-forms on an elliptic curve.

Example 2. Consider now a 2"¢ kind normalized differential form € that blows

. dz; :
up at the %«perlods P1, P2, p3 and py4 of order -—;~2-’-, where z; 1s the local parameter
:



INTEGRABLE SYSTEMS IN FINITE AND INFINITE DIMENSION 21
at the points p;. Let Tij be the translation by the vectors Pj — pi. Assume that
these translations are all %-periods.

We assume that the differential Q is invariant under the group of translations
7ij(%) = = 4+ p; — p;. This is a subgroup of the group of translations associated to

the divisor D = p; + p, + p; + py. We have the following relation:

z; z; zi+p; —pi z;j pot+pj—pi zj
(41) / Q"—:/ 7":;9:/ Q:/ Q"/ Q:/ Q~C,‘j,
Po Po Potpj—pi Po Po Po

where z; = z; +pj — pi and z; is close to p; so that z; is close to p;.

1
One can pick py so that [*'Q = O(z1(21)) = ——— —¢'. + O(2i(z;
p Po fpo 21(3?1) + ( 1( 1)) zj(xj) Cij + ( J( J))
with z; = 2, +p; —p; and for certain coefficients c;; satisfying the cocycle condition
cij ¢y = iy, cij = —cj;.

Now on the long range curve v; we have

/ Q= ‘Q+/ Q:/ {2 + periods ::/ Q+/ {2 + periods of (.
Yi(=) Po T ¥ () Po z;

g

Namely
(42) ¢y = / J -«/ 0 :/ Q —/ 2 + periods of Q (z; close to p;).
Po Po zq zj

On the other hand, for a holomorphic normalized translation invariant differential

w we have

z; Zi+p;—pi x; zitp;—pi T P;
(43) / w:/ w::/ w—i—/ w:/ w+/ w,
Po Po Po z; Po pi

where we assume fpp' ‘wis a %——period. Also, modulo a period
1

T T Pj
(44) /wE/w+/ w.

Given the ¥-functions 9J;, ¥, related to D, and of the same order, we define the

following Baker functions

H

b ey
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where the points z; are very close to p;.

One can relate the behaviour of ¥; as r approaches p;. We have

Yi(z) = exp(vine;;)exp <th /I Q) 1 gf;(}’: f‘fprf tr;i; f).
z 2 z; w P w
d1(...) ‘ da(...)
_ exp(utncﬁ)wj(x) { T, ({x;, w+t, U + 5) . V2 (ij:) T 6) }
191 (ijw+tnu+é) 7*02 (fsz’)Lf)
= exp (Vinci;) ¥;(x) ¢ij(2)

i

where 7* represents translation by the %—period pr: i .

Now, we would like to estimate the term within braces as ¢ — p; and t, — 0.
We assume 9, = 9y, and Y2 = 11, the elliptic 6-functions with %~integer charac-
teristics. If ¥ represents the Riemann 6-function associated to the elliptic curve of

lattice Z{1,7}, then we have the usual relations:

1900(277-) - 19(2)7), 1901(237) = 19(2 + %}T)a
Yo(z,7) = exp(mit /4 + miz)V(z + %T, ),
Yi1(z,7) = exp(mit /4 + mi(z + %))ﬂ(z + —}(1 +71),7)

Uz + ar + B,7) = exp(—miatr — 2miaz)9(z, T).

and the relations on page 19 [Mu 2].

Now, let p;; = fzf:j w, so that p1o = 1, pj3 = 5T, pu = $(1+ 7). By our choice

and use of tables we obtain

Yor (U) Iu(V)  9(U+3) _ IV +2(1+7)) ’ exp(mi(V + 1))
CO0(U) (V)T 00 WV lr Iry  exp(mi(V))
exp(—mit /4 — 1iU) Y10(U) (V)
exp(—miT/4 — V) Yoo(U) Y01 (V)’
bis = iexp(-m'*r/4- mU) 9 (U) ‘ 1911(V).

1 exp(—mit /4 — V) 9oo(U) Jpe(V)

1/)12 ==

13 = —1
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One uses the period relations

Yo1(z + ar + B) = exp(~mia — mia’r — 2miaz) gy (2),
Yoo(2 + a7 + f) = exp(miff — mia®r — 2miaz) 91o(2),

P11(2 + at + ) = exp(ni(8 — a) — ma’t — 2miaz) Y11(2),

to find

= Yor(U) V) = —th1p = 143
Yoo(U) {=(=010(V))} ’
. . {—“1911([])} 'ﬂll(v) —
Po3 = vexp(—mi(U — V) Joo(U) {Doo(V)] —1P14,
{exp(=nir + 2miU)d14(U)} Y11(V)

"/)21

a1 = —iexp(—ni(U — V)

Yoo(U) {exp(+mi — mir + 2miV') 9o, (V)]
= —exp(2mi(U — V)) 413,
. . exp(mi — mir + 2mU) 91, (U)} 911(V
Yoz = iexp(=mi(U ~V)) {190220) {exp(~mir +)27rﬂ(/) 1)910(1/()} !

= “GXP(ZWi(U = V)) ¢14,
{exp(—miT + 2mil) V11(U)}911(V)
1900(U) {exp(—’/ri'r -+ QWZV) ﬂoo(U)}

Va1 = +iexp(—mi(U — V))
= exp(2ri(U — V)) 114,

%2 = Y13,
34 = 112,
a2 = Y3,
bii = 1.

Thus a suitable change of basis matrix (or of the coefficients hij) is

1 ¢l2 1/}13 ¢14
—t12 1 ~Y1a i3 A
M = — ‘
____627rz'(U~-V)z/)13 ~__62‘rri(U~V),Q/)“& 1 ¢12 ”627rz(U-V)B

2 U=y, —e2mU=V)y, . -2 1

B

A

23

) |
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We can obtain other expressions for 112, 113 and P14

i = 4«9(04» 3) YV +3(1+7)
” I(U) I(V + Lr)

= —exp(miz)- -
1 = —rexp(~7i(U - V))-
exp(mit/4 + mil) )(U + 37) exp(mit /4 + 7i(V + NIV + F(1+1)
JU) IV + 1)
IU A+ 57) 9V + 3(1+7))
IU) IV + 1)

= ——exp(*rrz%(l + 7)) exp(2miV) -

P14 = texp(—mi(U — V))-
cexp(mir /4 + mi(U + 1) + mir /4 + mi(V + 1))
I(U)
AU A1 +) IV + L1+ 7))
(V)

= —exp(rir/2) exp(2riv). S0 2L+ 1) OV + 5(1 + 7))

HU) 9(V)
LEMMA 11. det M # 0.
2
Proof. If t, = 0 then U =V and 1, = ~a123, g = __iazag’ P14 = 19—3 and
dgQo ag

2\ 2 2\ 2
detM:<1+<ala3) ) <1~(a3a2> ) £0
agp Qo Qody
for appropriate values of ay, as, a3, ag. [
In a similar fashion as we did in the previous example we can construct a table

of the expansions for the functions t; around the points Pi.

We have 9;;(z) = a;;(£) + O(2;) and the expansions in Table II:

Table 11
Y permutations Dy permutations  z{yy
p(1,1) /21 (1 4 O(21)) (gT +O(zl)) ¥ Ly
p(L,-1)  err2y(a)(ong + ) Ty
p(=1,1)  ehre13y(z)(arz + ) ~Lyy

P=1,-1) ereu(@)oa o) L. L =iy
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With the expansions we have for Dipy, Dip,, Dips, Dipy we get an expression
219 = EXijDj + O(1), since the matrix (i) is nonsingular by the lemma,
Therefore obtaining a very complicated matrix differential operator in M,[[#]][D].
Also, we obtain a commutative ring of differential operators in ML [C[[#]]][D], as

follows from the representation to be obtained for the z;’s.

We want to study in more detajl the relations arisen from the action of the
translation group G = 22 x ]2, whose elements we indicate by 75 = p; — p;. The
action on functions is defined by r% f(z) = f(z +7; ;) and one can show the formula
(46) ezt 1) = b (o + ) 0T P (@ 4 7y,
where c,b:]” (Pe) 1o defined as follows:

' z+7i) Pj z+Tij

T (pk)(ar + 7i;) = " (fm(pk) WU+ fpf} w) i Y2 (fm(m) W+t é)

i S z41y; Pj T+ '
V2 (fTij(P:)w+§+fPi w) Vi <fﬂj(;0:)w+tU+£)

The above formula translates into the multiplicative cocycle formula

(+) Yrs oo (8) = 675 PV () 4, (3).

Indeed, identifying the elements of G with the translation points {p:} and with
the translations Tij = Pj — p;i for a chosen base point, we have the elements {¢,},
Yo € I'E x {|t| < e}, F*(*D)) = S, which is a ring that contains § = I'(E, O(xD))
and qﬁirj(a) =795 =1+ O(t, z) which are also elements in &, Thus, equation (*)
is the cocycle relation = - Vo = Yre/t,.

Now, if we differentiate with respect to ¢ we obtain

4D Diryu) = { D () + 67 P9 () D1og RO RN

Let the cocycle relation (*) be written ¢, , = -9, = Yro/tq.

Now, one has the expansions around the points v € {p;}

Yo(about v) = et/z(a,,,,(t) + Bou(t)z +---).
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. 1
One obviously has Dyy(about v) = [»— + O(l)J a(about v) (assuming ap,(0) #
0) Around the points » the expansions of the coordinate z{ (about v) = --+O(1) =
— 4+ 8, + O(z), where w, is a constant. Thus

z; (about v) -y, (about v) = Yo, D1, (about v) + O(1)e*.
Since the poles in z have to be peeled off, this leads to the equation

(48) Wy gy =" Ao, a,,(t).
p

This means that (Aop)(apu(t)) = (@0,,(t)) diag(a, ); namely
LEMMA 12. (Aop) is diagonalizable and nonsingular if det diag(c, ) # 0.

In an analogous way we obtain a relation for the coefficients A, o of the 0" order

part: we have the equations
(49) Whow+ Bution =3 Xas(Bw + )+ 3 iy 0ty
p p

Namely

(o0 )(@pu (1)) = (B (1)) ding(a,) + (g, (1) diag(B,) = (Aap)[(Bp, (1)) + (al),)].

Let w=(1op), @ = (a,.), B = (B,,), r = diag(a, ), s = diag(8,), A = (A,,);
then we can write the operator as follows: AD + u, but a Y AD+ wa = a~ ' \aD +
oA’ + oy = rD + 5 + [@™18,r]. Thus, by an appropriate conjugation the
operator is almost with constant coefficients.

Actually, by looking at the expansions of z{ we obtain s = 0 so that the repre-

sentation of z! as differential operator is r;D + [a,r], a = a™14.

PROPOSITION 13. There is a unique pseudodifferential operator ¥; associated
with D; = 7,0 + [a,r;], and a unique W = 1 4 Yoy 5-i07" pseudodifferential
operator such that D; = W=1y,W for any t. Any such W differ by a diagonal

matrix.
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o, =r,0+ Z:‘f__l a_xd7F, then the equality WID; = ;W yields the following

equations:

[s-1+a,r]=0
(50) [s—o,ri] =a_q + ris_ | — s—1la,r;]
n—1n—j-1 n——j«l
[s~(ni1),ril —acn =ris’, + ¥ (—1)"< 1 )a~<n~k~j)s(—-k}

j=1 k=0

n-—1 n—1

- Z<‘“1)k( k )“”‘(n%)[aaml"”-
k=0
One can choose s_; = —a, and the remaining s_; such that [s—k,7;] = 0 for

any ¢ = 1, 2, 3. Since r; = diag(1,1,-1,~1), r, = diag(1,-1,1,~1), ry =
diag(1,~1,-1,1), being commutative with the group of matrices generated by
(r1,72) means that $—k is diagonal, k > 1. Then, the values of the a—j are uniquely
determined. If we perturbe the coefficients of W by diagonal matrices we obtain

another solution to this representation.

PROPOSITION 14. Given the operator rd + [a,r], with r constant diagonal
matrix, r? = 1, then, there exists a pseudo-differential operator K =1+ Sw_,;07"
such that r0 + [a,r] = K(r&)K~'. Such a solution differs by a constant operator

K commuting with r.
Proof. Let L(z) = [, r]; this is a linear derivation and satisfies rL(z) + L(z)r = 0.
We want to find a solution K to the equation

(51) (r0+ L(a))(1 4+ Zw_;07%) = (1+ Zw_;07)(rd).

This gives a system that implies the differential equations in W

L(a) = L(w-;)
o) { L(w_(iy1) = rwl; + L(a)w_; = P(w_;).

Notice that we have the following identities:

(52)  LP(z) = PL(z) — 2rL(a)z and P(rz) =rP(z) - 2rL(a)z.
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Also
(53) L*(z) = [L(z),r] = 2(z — rar) = —2rL(z) = L(z)(2r).
Now any 4 x 4 matrix = can be written as z — —3rL(z) + d, with L{d) = 0.

Indeed, this follows from the above properties of the operator L. Let us decompose

w—i = —3rL(w_;) + d_;. On one hand we have
—2rL(w_(iy1)) = L*(w-(i+1)) = LP(w_;) = PL(w_;) - 2r L(a)w_;.
Namely, |
(54) L(w—(i41)) = =37 PL(w_;) + L(a)w_;.
Replacing, we obtain

L(w_i41)) = -.%L(w'_,.) — 1 L(a)L(w_s) — L(a)rL(w_s) + L{a)d_,
= —2L(w_;) + L(a)d_; = L(—3w'; +ad_;).

This implies that W_(iy1) = ~-;—w'__i +ad—; +d_(i}1), where d_(i4+1) belongs to the
kernel of L.
In order to solve (*x), we will represent the solution W_(;4+1) as the sum of a

term in Image of L + a term in Ker L. Thus, we can write the following recursion

formula for w_;:

(55) w_(ig1) = grL(w=) = jrL(a)d-i + d_(ip),

where the d_; are to be determined so as to satisfy the system (**) since we have
L(w—(itn) = L(3rL(w.;) = §rL(a)d—i + d_(i1)) = =1 L(w—;)' + L(a)d_;

=rw_; —rd_; + L(a) (w_; + srL(w_;))
= P(w-;) —rd_; + $ L(a)rL{w_;).

Assuming that L(w_;) is known, it follows that d’ ; = —2L(a)L(w—;). This
element belongs to Ker L since L(L(z)L(y)) = —2(rL(z) + L(z)r)L(y) = 0, and
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gives, up to a constant matrix commuting with r, the solution we want. The first

terms are

w_y = —1rL(a) +d_, where dy =—1 /L(a)2
woy = 3rL(a) - LrL(a)d_, + d_p where d_, = —1L(q) (irL(a) — srL(a)d_,)

We now determine the differential operator part of the pseudo-differential opera-

tor K(ro* ) K—! H K =1+ Swoi 0 K™ =1—w_,571 4 (W2 —w_5)~2 4 ...

I{(Taz)]‘{“] = (1 4 w_la“l -+ w_28“"2 RN )
(ro* —rw_,0 — 2rw’ | + r(w?, — Wog) )

=rd? + L{w_,)0 + L{w_y) - 2rw’ | + rw? | — W_irw_y + -
The independent term can be written as:

rwly + L(@)w-y — 2r (= LrL(a) - 3L(0)°) + (rw—y = w_yrjw_, =

=—rwl, = 1L(a) + 1rL(a)?.
Thus

(*g) (I&’(TiaQ)I&'~1)+ = T‘ia?‘ -+ L,‘(a)a + %L,’(a)’ + %nLi(a)‘z. D

Example 3. Assume now that the coordinates z; = (2}), z, = (25), 23 = (%)

(having the expansions shown in Example 1) satisfy the Euler top equations

d21 ) )

— = -z 2

dt 273 £ + ) + Z3 -1

dz . . Qg Q30n  @qon
(56) =2 = iz with relations 2 N ) ,

dt )\121 )\222 + /\323 —h

dzy — 2129 d2Q3 Q3o oo

\ ¢
€16 2 __ 2

Here z; = f-t’»—~el(u+v)t+~-, z2=Fteut+--., 23 = T2+ eeut, € = €5 =1,

u=¢((As — h)ag + (h — Ar)a), v = H(h = Ap)ag + (A — h)ar), w = —(u + v) =
5((h = A3) + (A2 — h)ay).
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We have seen that the differential operator associated with z; i1s D; = ri0+ Li(a),
Li(a) = [a,r). Thus, D? = 92 + riLi(a') + L;(a)? and DiD; = D;D; = r 8% +
Lk(a)a-f-riLj(a')+Li(a)Lj(a) (cyele i — j — k). We wish to compare the operator
(*k) with the operator associated to the function —-»%%If-, Le, D;Dj.

Since the operators D; satisfy the equations

3 3
57 a;D? = oy gy Xia;D? = ayananh
3 K H 2 1 243 H

i=1 =]

we obtain the relation D? — D? =ar(h—X), i = =k — .

It si = r;Li(a') + Li(a)?, then we can also write s; — s; = ag(h — A\t). Let
T=r;Li(a')+ Li(a)Lj(a) = r;Ly(a') + Lj(a)Li(a), then it follows
(58)  [Li(a), Ly(a)] = rjLi(a") - r;Lj(a') = rili(a)r; (i o k).
Also
(58') riT = s; — L;(a)? +reli(a)Lj(a) = s;— Li(a)? +relj(a)Li(a) (ry = TiTi),
which yields, using the relations

(58") Lk(a) = T‘;’Lj(a) + L,-(a)rj = rJ'L,-(a) + Lj(ﬂ)r'i (2 e k)

Le(a)(rjLi(a) = riLj(a)) <V Li(a)rjLi(a)r;

(59) =si—sj=ap(h= M) (i—j ki)

Let us compute the differences between the independent terms of the operators
(Ki(rx0*)K ), and D,D;. This is 25 = 2T — s,

2rS =T+ r T — Sk
YL L@ + Ly (@) Li(a) 4 riLi(a') + reLi(a)L(a) — s

si = sk — Li(a)* + ry Lj(a)Ly(a)+
+ri(Li(a)Li(a) — Li(a)Lr(a))r; + ryLi(a)L;(a)
e sk = Li(a)r;Li(a) + ryLy(a)Li(a)r; + reLi(a)ryLi(a)

by LSS)

= 8; — S + rk(Li(a)rkLi(a)rk)rk
=8 — sk +re(ai(h — A)ry

= ai(h = Ai) = aj(h = \;).
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Thus

(Kx(rid®)K'), = DiD, + 2 {ai(h= X)) = ai(h = A)} re = D, D, + CkTk,

and we can write

(Kk(rkaQ —_ Cka)KI:l)+ = D1D27

with rp0% — cpry = Gk(rkaz)G?, G being a scalar differential operator and there-

fore commuting with r;.
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