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SCHEDULING CRITERIA FOR MULTIPROGRAMMING UNDER CERTAIN

CONSTRAINTS IN A HARD REAL-TIME ENVIRONMENT

Maria Luisa Gastaminza

SUMMARY. The problem of scheduling a set of tasks that must be regularly per-
formed within certain intervals of time according to a given priority and shar-
ring a unique resource, one at a time, was studied in [1] and the results pub-
lished in [2]. In this note we study the feasibility of such scheduling in two
particular cases, in which the mechanisms implementing the priority scheme are
unable to observe it completely, failing to do so when all the tasks are simul-

taneously requested to be performed.

1. INTRODUCTION.

We consider a set of nodes that periodically request to transmit a message,

sharing a unique resource, on the following conditions:

1 ~ The medium is granted to one node at a time and during a fixed interval of
time, without interruptions. This time is the same for all nodes and it is

called the slot-time.

2 — At the start of the process all nodes request simultaneously to transmit

their messages.

3 -~ Each node request to transmit its message at regular intervals. The time
elapsed between two consecutive requests of a node is called the crisis

time of the node.

4 - The crisis times of the nodes are integer multiples of the slot-time.
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When a node requests to transmit, the corresponding message must be deliv-

ered exactly once before its next request.

[@)]
|

The start of any message is synchronous with the beginning of a slot.

7 - Each message can be transmitted within the slot-time.

o
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The medium remains idle only if none of the nodes requests it.

9 — The time unit is the slot-time.

According to the above assumptions, time is always measured by positive inte-
ger numbers. The time space (the slot space) is represented by the set of nat-

ural numbers and sometimes we shall say instant for sToﬁ.

If a, b are positive integers and a £ b, the interval [a,b] is the set of all

integers such that a = x = b; if a £ b the interval [a,b] is the empty set.

When a message is not delivered before its deadline it is said that crisis

occurs. The problem is to schedule the system avoiding crisis.

Following [2] we shall say that a priority discipline (PD) 1is given for a set
of nodes if at the beginning of each slot a linear ordering relation is defin-
ed on the set of nodes. The ordered set is called the priority stack; at the
beginning of each slot the medium is éssigned to the first node in the stack
among those with pending messages. Most of the deterministic (i.e. non random)
priority disciplines suitable for real-time systems are variations or combina-
tions of three main types of priority assignments: Round Robin, Fixed Priori-

ty and Least Time to Crisis.

In a Round Robin discipline (RRD) the priority stack for a given slot is ob-
tained from the preceding one transferring the node at the top to the bottom.

It is a dynamic discipline in the sense that the stack is a function of time.

In a Fixed priority discipline (FPD) the stack is assembled once for all; it
is a static discipline. For instance, the stack could be ordered by increasing

crisis times.



In a Least Time to Crisis discipline (LTCD) the stack at each slot is induced
by the time available to each node before reaching crisis. If there are sever-
al nodes with the same time left these nodes are ordered according to a cer--

tain linear ordering chosen beforehand.

Given a set of nodes and chosen a priority discipline for it, we shall say

that the system is crisis-free for that PD if none crisis occurs in the time
interval [1, + ®» ). A crisis—-free system will be said saturated if every slot
is engaged in the transmission of a message. We shall say that a slot is full

or empty according there is or there is not a message being transmitted at it.

Since at the start of the process all the nodes generate simultaneously their
messages, this situation arises again for the first time at the instant M+1,
being M the least common multiple of their crisis times. Therefore the sys-
tem is periodic and to study its behaviour it suffices to analyse it in the

time interval [1,M].

We summarize now some of the results published in [2], where it was always
assumed that the mechanisms implementing the chosen priority disciplines are
able to observe them to full extent. We shall need these results further on:

n

R1) A crisis-free system is saturated if and only if E:: 1/Ti = 1\. being
i=1
n the number of nodes and T1""'Tn their crisis times.
n

A

(If a system under a PD is crisis—free then 23»1/Ti s 1, but the con-
verse is not necessarily true.)

R2) ([2], Theorem 1). Given a crisis—free non saturated system operating

under a PD, the i-th slot e left empty by the system is the least

n
x e [1, +=) such that 2:: ["%‘] =x -1 ,'\/ ie N.
h=1 h

(T'yl denotes the smallest integer larger than or equal to y.)



n
Sometimes for simplicity we shall denote f, .(x) = E:l f—l—] .
(n) h=1 'h

R3) ([2], Theorem 5). Let S(n) = {n1,...,nn} be a crisis—-free non saturated
system operating under a FPD and consider the system

S(n+1) = {n1....,nn.nn+]} obtained by adding a node and placing it at the

bottom of the stack. Then S(n+1) 1is crisis—free if and only if Tn+1 2 e
where e, is the first slot left empty by S(n) and Tn+] is the crisis time
of r]n+1'

R4) ([2], Theorem 6). If S(n) is such that n = Tmin then S(n) is crisis—free
under any FPD, that is , no matter the chosen fixed stack.

(Tmin denotes the minimum crisis time in the system).

R5) From Theorems 1 and 7 in [2] it easily follows: If S(n) = {n1,....nn} is
a system operating under a FPD and such that n > Tmin then S(n) is crisis-—

free if and only if it verifies

T ()

i-1
for i =T . 41,...,n 2_4 /T <1 and T
min h=1 h

where e](1_1) denotes the first slot left empty by the subsystem

S(i-1) = {n1,...,n.

1_1}. (The nodes are numbered according to their decreas—

ing priorities).
Condition (1) can be replaced by an equivalent (2), easier to be tested.

Using the characterization of e](j_]) given by R2), it follows without much
difficulty that (1) is equivalent to (2):

. ‘:1 X,
for i =T _+1,...,n 4 x_. e [{,T.] such that 1+ [/, | 1=x.. (2)
min i i ‘ h=1 Th i



2. TWO CASES OF DEFECTIVE OBSERVANCE OF THE CHOSEN PRIORITIES.

Now we shall consider a system with a Fixed Priority discipline operating un-
der the following constraint: the mechanism implementing the chosen FPD serves
it well, except when the worst case of load (simultaneous generation of mes-
sages at all nodes) takes place. At this instant the medium is granted to any
node, not necessarily to the node with the highest priority, though from the

next slot on the FPD is observed.

The problem is to characterize the systems that even working on these condi-

tions do not reach crisis. It was proposed to us by Ing. Jorge Santos.

Since at the start of the process all the nodes generate simultaneously their
messages and the system is periodic of period M, M the least common multiple
of the crisis times, we may suppose that the failure of the mechanism in ob-

serving the FPD occurs at the first slot.

DEFINITION. A system operating under a Fixed Priority discipline will be
said steady crisis-free if all the messages from the system can be transmitted
without crisis provided the FPD is observed from the second slot on, no matter

to what node is granted the first slot.

We shall say that the system is crisis—free if crisis does not occur while the

FPD is fully observed from the first slot on.

A crisis—free system is not necessarily steady crisis-free, though the conver-

se is obviously true.

We intend to give a necessary and sufficient condition for a system under a

FPD to be steady crisis-free.

If S(n) is a system operating under a FPD, in what follows it will always be
assumed that the nodes are numbered 1,...,n according to their decreasing pri-

orities, and for simplicity they will be denoted 1,...,n: T ....Tn and Tmi

1! n

will denote their crisis times and the minimum among them.



We readily notice that

THEOREM 1. Any system S(n) such that n = Tmin is steady crisis-free whatever
the FPD stack be.

Proof. If n < Tmin then S(n) is crisis—-free no matter how the FPD stack is as-—
sembled by R4). In the interval []'Tmin] only the first message of each node
is generated. These messages can be transmitted within the interval and it is
clear that the ordering of the transmissions does not matter. The occasional
failure of the mechanism in serving the FPD at the first slot would not pro—
duce any further modification on the assignment of the medium from the

Tm1n+1_th slot on. Therefore S(n) is steady crisis-free.

The above property means that we should restrict ourselves to the case n > Tmin
Nevertheless we shall proceed to study a system S(n) without assuming such

restriction on n. But it will be worthwhile to bear Theorem 1 in mind.

In order to establish the desired results it is convenient to study first

another kind of defective observance of the FPD.

Consider the following situation: Given a crisis-free system operating under
a FPD, suppose that the mechanism fails in granting the first slot and that

it remains empty, that the node with the highest priority just gains the sec-
ond slot and that from this slot on the FPD is observed. In this case we shall
say that the system skips. If even so all the messages from the nodes can be

transmitted without crisis, we shall say that the system can skip.

DEFINITION. Given a crisis—-free system under a FPD, it will be said that the
system can skip if all the messages can be transmitted without crisis even
though the first slot is forbidden to the system and the FPD is observed from

the second slot on.



2.7. A characterization of the systems that can skip.

We wish to give a necessary and sufficient condition for a crisis—free non
saturated system to be able to skip. To this purpose we pay attention to
the slots left empty by each subsystem S(i) consisting of the first i nodes,
i=1,...,n-1, and reckon that, as S(n) is crisis—free, the messages of

each node i, i > 1, are fulfilled at slots left empty by S(i-1).

The effective computation of the empty slots is given by R2).

THEOREM 2. Let S(n) be a crisis-free non saturated system operating under a
FPD. If S(n) can skip then:

a) If {e1,e2.e3. ..... } is the set of slots left empty by S(n) when operating
normally, then the set of slots that it leaves empty after having skipped
is {ez,e3. ..... }.

b) The transmissions that must be relocated lie all in the interval [1.e1—1]

and are those corresponding to the first message of each node.

c) After skipping, the first message from node 1 is transmitted at the sec-
ond slot and the first message from node i, i = 2,...,n, is transmitted
at the stot 92(1_1), being e2(i—1) the second slot left empty by the sub-

system S(i-1) when operating normally. Therefore T > for i =

i 2 %2(4-1)
2yuenyn,

Proof. Let {e1,e } be the set of slots left empty by S(n) when oper-

P
ating normally. ?hei the interval [1,e1—1] is completely filled with trans-
missions, which are fulfilled in the interval [2,e1] if the system skips.
Since at the slot e, the system does not generate any message, it is clear
that from this slot on all the subsequent messages will find available in
[e1+1, +o ) the same slots that they are able to gain when the mechanism

behaves well.

Therefore when the system skips it leaves empty the same set of slots as be-



fore, except e1, what proves a), and the transmissions that must be relocated

lie all in the interval [1,e1—1].

To finish the proof assume that the system has skipped. It is clear that the
only message from the node 1 whose transmission has to be delayed is the first
one. As for the node i, i = 2,...,n, we restrict our attention to the system
S(i-1) consisting of the first i-1 nodes, that clearly is crisis—-free and can
skip, and regard the situation as this system having skipped. The messages
from node i must be transmitted at slots left now empty by S(i-1). The first
of these empty slots is e2(1_1). as we have just proved above, and thus the
first message from node i is transmitted at e2(1_1) instead of at e1(i_1)
as before. Then Ti S e2(1_1), which proves c). From this inequality follows
that all the subsequent messages of the node i ‘are generated from the slot
e2(1_1)+1 on. Since in the interval [e2(1—1)+1' +w ) the system S(i-1) leaves
empty the same slots as before skipping, it is clear that all the messages
from the node i, except the first one, can be transmitted at the same slot as

earlier. This ends the proof of b).

The posed problem of finding a necessary and sufficient condition for a crisis—
free non saturated system S(n) under a FPD to be able to skip is trivial for
n =1, since any non saturated system with only one node can skip. For n z 2

we have:

THEOREM 3. For n z 2, a crisis—free non saturated system S(n) operating under

a FPD can skip if and only jf Ti 2 e2(1_1) for i = 2,...,n.

Proof. Assume S(n) is a crisis—free non saturated system such that Ti 2 e2(1_1)

for i = 2,...,n. We must prove that S(n) can skip.

Suppose that S(n) skips. As S(n) is non saturated T. > 1, and it is clear that

1
all the messages from the node 1 can be transmitted in time since the only one

whose transmission must be delayed is the first message, that can be fulfilled



at the second slot.

Reasoning by induction on the nodes, suppose that all the messages from the
i-1 first nodes can be transmitted without crisis and let us prove that this

is also true for the messages coming from the node i, i > 1.

We restrict our attention to the system $(i-1) which, by the inductive hypo-
thesis, has skipped being able to do it. By Theorem 2, a) the first slot left

now empty by S(i-1) is e2(1—])' Since by hypothesis Ti 2 it follows

e
- 2(i-1)°
that the first message from the node i can be fulfilled without crisis at
e2(i—1)' As for its subsequent messages, they will find still avaiTable the
same slots as before because S(i-1) leaves all of them empty, again by Theo-

rem 2, a). This proves that S(n) can skip.

The converse has already been proved in Theorem 2, c).

2.2. A characterization of the steady crisis—free systems.

Now we are ready to give a necessary and sufficient condition for a system
S(n) to be steady crisis—free. As a system with only one node is obviously

steady crisis-free, we consider n 3 2.

THEOREM 4. For n 2 2, a system S(n) operating under a FPD is steady crisis-
free if and only if it verifies:

n-1

1) Z 1/T1,<1.

i=1

2) T for i =2,...,n-1 and T =2

i” e2(1_1) n - e1(n—1) :

Proof. Suppose S(n) is a system operating under a-FPD such that 1) and 2)
hold. We shall prove that S(n) is steady crisis-free.



In the first place we claim that S(n) is crisis-free. To see this let us con-
sider the systems S(i) consisting of the first i nodes, i = Ty.oeon. S(1) ds
crisis—free non saturated since 1) implies T] > 1. As for S(2), since

and by 2) T2 2 it follows that T, 2 Then by R3)

®2(1) 7 41(1) ®201) 2= %101)
S(2) is crisis-free, and from the hypothesis 1) follows that S(2) is non sa-
turated. Repeating the argument for S(3), we obtain that S(3) is crisis—free

non saturated. By iteration, we have that S(1), S(2)y...,S(n-1) are crisis-

v

free non saturated. Applying again R3) to S(n-1) and Tn we have

®1(n-1)
that S(n) is crisis—free.

Suppose now that the node k, k # 1, gains the first slot. We have to prove
that all the messages from the system can still be transmitted without cri-

Sis.

When the mechanism behaves well the first message from the node k is trans-
mitted at the slot e1(k_1) and the interval [1, e1(k_1)—1] is completely fill-
ed with messages from the k-1 first nodes. As the node k gains the first slot,

such messages must be transmitted in the interval [2, e ]. And this is

1(k=1)
all the change required because the subsequent messages from the first k nodes
as well as all the messages from the remaining n-k will find available in the
interval [e1(k_1)+1. +o ) the same slots that they are able to gain when the

mechanism behaves well,

In order to prove that those messages from the first k-1 nodes find suitable
slots in the interval [2, e1(k_1)] to be fulfilled in time, we may regard the
situation as the system S(k~1) having skipped. And it actually can skip, be-
cause if k = 2, S(1) can skip since T1 > 1, and if k 2 3, from Theorem 3 fol-
lows that S(k-1) can skip since it is crisis—free non saturated and

T. 2 i = 2400, k= i .
i 2 e2(1_1) for i = 2, k-1 by hypothesis 2)

This proves that S(n) is steady crisis-free.

Conversely, assume that S(n) is a steady crisis—free system. As a steady

crisis-free system is crisis-free, it is clear that S(n-1) is crisis-free

10



non saturated. Thus 1) holds and also the last inequality in 2), which fol-
lows from R3).

Suppose now that the node n gains the first slot. Since S(n) is steady cri--
sis-free, this means that S(n-1) can skip, and then the remaining inequal=

ities in 2) follow applying Theorem 3 to S(n-1). This ends the proof of the

theorem.

From this theorem easily follows a useful criterion for enlarging a given

steady crisis-free system:

THEOREM 5. Let S(n) be a steady crisis—free non saturated system operating
under a FPD. Then the system S(n+1) obtained by adding a n+l-th node at the

bottom of the stack is steady crisis-free if and only if Tn 2 e2(n—1) and

Thl 2 &)

Proof. Immediate.
Applying Theorems 1 and 5 and property R1) we can conclude that

THEOREM 6. Let S(n) be a system operating under a FPD. Then

I) Ifn

A

T ., S(n) is steady crisis—free.
min

II) Ifn> Tmin then S(n) is steady crisis-free if and only if it verifies:

i-1
X.
for i =T _ ,...,n-1 :3 x. e [i+1,T.] such that 2 + Z: [ : 1= x,
min i i 3
h=1 h
n-1
X
and :] x € [n,T ] such that 1 + E:: [—" ] =x .
n n h=1 Th n

Proof. Assertion 1) is Theorem 1.

Suppose n > Tmin and that S(n) verifies the conditions in II). We must prove

11



that S(n) is steady crisis—-free. Let k = Tmin' As S(k) is steady crisis-free,

it is crisis—free. By hypothesis there exists x, € [k+1,Tk] such that

1 x, k
f (x,) = 2:: [ 1 = x, - 2 which implies ([2]) that in the interval
(k=1)""k he Th k

[1,x, ] the system S(k-1) generates exactly x, -2 messages and therefore 1in

k] k

this interval there are empty slots, at least two. From f(k—1)(xk) =X - 2

follows by R2) that X, z e2(k—1) and therefore‘Tk 2 e2(k—1) (*).
Since there exists X4l € [k+2'Tk+1] such that f(k)(xk+1) = X1 " 2, the
number of messages generated by S(k) in the interval [1,xk+1] is xk+1—2, so

S(k) Teaves empty at least two of its slots, e As

106 2" Sk F Xt
% ;
e1(k) < eZ(k) < X1 < Tk+1 , we have that Tk+1 2 e1(k) (**). Applying

Theorem 5 to S(k), (*) and (*%), it follows that S(k+1) is steady crisis—free.

Iterating this argument we obtain that S(n) is steady crisis—free.

Conversely, if S(n) is steady crisis—free then it verifies the inequalities

2) in Theorem 4, On the other hand, e2(1_1) z i+1 and e n always

1(n-1) 2
hold. From this and R2) follows that the inequalities 2) may be written as

the conditions in II).
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