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1. INTRODUCTION

Our purpose is to answer a question that arises when the problem of scheduling
a set of tasks that must be performed within certain constraints of time is
studied. It‘was proposed to us by Ing. Jorge Santos, of the Laboratorio de Sis-

temas Digitales, Departamento de Ingenieria Eléctrica, Universidad Nacional del

Sur, as an open matter, in octbber 1989.

The use of computers‘for control and monitoring of industrial processes and the
requirement of an efficient utilization of the medium make necessary a careful

scheduling of the operations.

The problem is the following: There is a set of sources N . ﬂn (nodes)
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that emit electric signals to activate n mechanisms that perform tasks T1,...,
Tn , which by simplicity will be assumed to require the same time to be ful-

filled. Each source hi emits its signal at reqular periods of width Ti and the
corresponding task Ti must be performed exactly once before ﬂj sends its next

Signa1 and not simultaneously with any other task.

As an example one can think of‘an automatic industrial process where a set of
operations must be regularly performed, each at a time and no one can be miss-—
ed, although their frequencies may not be the same and the beginning of the

execution of each task can be delayed within certain limits.

We shall then consider a set of n nodes that periodically request to transmit

a message, on the following conditions:
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1" -~ At the starting point of the process all the nodes request simultaneously

to transmit their messages.

2 - Each node requests to transmit its message at regular intervals. The time
elapsed between two consecutive requests of a node is called the crisis

time of this node.

3 - When a node requests to transmit, the corresponding message must be deliv-
ered exactly once before its next request. It is said that the system op-
erates in a hard real-time environment (when some misses are allowed it is

called a soft real-time environment).

4 - A11 the messages require the same time to be fulfilled. This time, that
will be called the slot-time, also includes the time of transmission of
the signal from the sending node as well as some additional necessary for
the computer to determine which node will be the next to accede to the

medium, if there is any ready to transmit.
5 - The crisis times of the nodes are integer multiples of the slot-time.
6 - The starting of any message is synchronous with the beginning of a slot.

7 - The transmission of a message is not interrupted until it is finished. Be-

cause of this condition the system is said to be not preemptive.

8 - The medium does not remain idle if there is any node requesting it.

When a message is not delivered before its deadline it is said that crisis

occurs. The problem is to schedule the system avoiding crisis.

Following [1] we sha1j say that a priority discipline PD is given for a set of
nodes if at the beginning of each slot a Tinear ordering relation is defined
on the set of nodes. The ordered set is called the priority-stack; at the be-
ginning of each slot the medium is assigned to the node that has the higher
position in the stack among those with messages generated. Most of the deter-
ministic (i.e. non-random) priority disciplines suitable for real-time systems

are variations or combinations of three main types of priority assignments:



Round Robin, Fixed Priority and Least Time to Crisis.

In a Round Robin discipline (RRD), the priority stack for a given slot is ob-
tained from the preceding one transferring the node at the top to the bottom,

It is a dynamic discipline in the sense that the stack is a function of time.

In a Fixed Priority discipline (FPD) the stack is assembled once for all; it
is therefore a static discipline. For instance, the stack could be ordered by

inCreasing crisis times.

In a Least Time to Crisis discipline (LTCD), the stack at each slot is induced
by the time available to each node before reaching crisis. If there are sever-
al nodes with the same time left, these nodes are ordered according to a cer-

tain linear ordering on the set of nodes chosen beforehand.

Given a.set of n nodes‘ﬂ1,..., ﬂn and chosen any priority discipline PD for it,
eventually a random one, we shall say that the system is crisis—free or compa-
tible for that PD if none crisis occurs. Otherwise it will be said incompati-
ble. A crisis—free system will be said saturated if every slot is engaged in
the transmission of a message and non saturated if not. We shall say that a

slot is full or empty according there is or there is not a message being trans-

mitted at it.

Taking into abcount the assumptions already made, we can regard the slot-time
as ‘'the time unit, time as always measured by an integer number of units and
the time space (the slot space) représented by the set N of natural numbers,
and so we do throughout this paper. Sometimes we shall say instant meaning

slot.

The interval [a,b] will denote the set {x & N: a s x < b}. The case a = b is

not ruled out.

We consider here the following questions:

(A) Decide if a system of nodes is crisis-free for a given PD.



(B) Given a crisis-free non saturated system of n nodes for a PD, find

conditions to enlarge it to a crisis-free system adding one more node.

An answer to (A) was given in [2] in the case the chosen discipline is a LTCD,

and in [1] in the RRD case. The remaining question is to answer it for a FPD.

Liu and Layland proved in [2] that a system of n nodes is crisis-free for the
n

LTCD if and only if ?;% —%— < 1, being TT""' Tn the crisis times of the
1'

nodes. But this condition does not characterize a crisis-free system for other

types of priority disciplines, since although any compatible system for a PD

verifies the above relation, the converse is not necessarily true. In partic-

ular, this is the case for a RRD or a FPD.

As an example, consider a set of four nodes Nqe Nor Nge N with crisis times

p 2 3 4
> | .
T1 = 5, T2 = 4, T3 =7, T4 = 3. Then ot —T; < 1. It is clear that this set

of nodes is incompatible for a RRD. Choose now the FPD that orders the set of
nodes according to the usual increasing ordering of their Crisis times, that

is {n4, nz, Ny n3}, This‘FPD is called the rate-monotonic FPD. It can be easi-
ly seen that the system is incompatible for this FPD. Since in [2] it was also
proved that if a set of nodes is crisis-free for a FPD then it is crisis-free
for the rate-monotonic FPD, it follows that the set of nodes in our example

is incompatible for any FPD.

In [1] Santos, Orozco and Alimenti gave the following criterion: A set of n
nodes is c¢risis-free for a RRD if and only if n is not greater than the min-

imum of their crisis times, as it is easy to see.

In this paper we shall answer (A) for a FPD, and (B) for any PD, choosing a
suitable PD for the enlarged system.



2. RESULTS

Observe that if a node has crisis time T then it requests to transmit its mes-
sage at the instants 1, T+1,‘2T+1, ..... , kT+1,..... » ke N . So from the be-
ginning up to an instant x it makes [-%-] requests, where‘[y] denotes the
smallest integer larger than or equal to y.

Therefore the number of the requests that makes a system of n nodes with

crisis times T], T2,..., Tn up to an instant x is equal to

We introduce the following function

DEFINITION. Given n nodes with crisis times Troeewn T Tet

f(T ‘ T) : N » N be the function associated with them defined as follows
preeerl

: n
_ > X
fr )= 55 7

' n i

+For simplicity in notation we shall henceforth delete the subscript and write

simply f(x) if no confusion is possible.

f is a non decreasing function of x and has the following property that will

be used further on:

LEMMA. f(x+y) = f(x) + f(y) - j with 0= jsn, x,ye N.

Proof. It is easy to see that




Hence

[ azb =21+ 1 2 ] -3 with 0s3jzi
Then
n n.
F(xty) = ; =1 - % 1+ 51 -3,) -
i 1 i
" 0 o
- %;% [—$:] + %2; [—%:] - %ii By = FOO 4 F(y) = where

n
j= ;;% j. « As 0 = jl £ 1 for all index i =1,2,...,n s 0

£ 3 =n,
i : i J=n

This proves the lemma.

As we pointed out

() f(x) = number of the requests that the system of n nodes makes in the

time interval [1,x].
Then
(2) f(x+1) - f(x) = number of the requests that occur at the instant x+1.

Therefore, for a cr{sis—free system, if f(x+1) - f(x) > 0 the interval

[x+1 , x+(f(x+1>—f(x))] is full, that is, all its slots are occupied by trans-
missions; if f(x+1) = f(x) then the slot x+1 can be full or empty. It is al-
so clear that if f(x) 2 x then the slot x is full; if f(x) < x‘ then the

slot x can be full or empty.

In general

(3) f(y) - f(x) = number of the requests that occur in the interval [x+1,y].



Notice that since at the starting point all the nodes are simultaneously acti-
vated, this situation arises again for the first time at the instant M+1, being
M the least common multiple of their crisis times. Therefore to study the be-

haviour of the system for a PD it suffices to analyse it in the time interval
[1,M].

If the system is crisis—-free then all the requésts produced in [1,M] can be
satisfied within this interval and in consequence f(M) £ M, and the difference

M - f(M) gives the number of slots left empty by the system in [1,M].

Then, a crisis-free system is saturated if and only if f(M) = M.

M

Since M is a multiple of each crisis time we have [—¥“] =7 for
i=1,...,n, and thus ! !
bu > -
M M Y 1
= - = — = L——— h—
f =45 = = =
1 1 1
Therefore
‘2_
F(M) s M if and only if - l < 1

.i

So the above criterion for a crisis—free system to be saturated is equivalent

to the following:
n
T
T Z 1.
J

A crisis—-free system is saturated if and only if ?:3

Now we are going to compute the set of slots left empty by a crisis—freé non
saturated system. Being the system non saturated is f(M) <M and s =M - f(M)
is the number of empty slots in the interval [1,M]. Let them be e],...,es.

Then the slots left empty by the system in [1, +% ) are e] + kM, ..., eS + kM,

for k = 0,1,2,.... . Consider the set of empty slots with the usual ordering.



THEOREM 1. Given a crisis—free non saturated system for a PD, the i-th empty
slot e, left by the‘system‘is the least x e [1, +o ) such that f(x) = x - 1,

for ad] i E;N-

Proof. Let e, be the 1i-th gmpty”s1ot. As in the interval [1, e1—1] there are
exa¢t1y i-1 empty §1ots, it must be f(e1—1) z e, - 1-(i -1) = e, - i.
The inequality  f(e141) >ei -~ 9 would imply that the slot e is full, so
that f(ei—1) =e, - i. Moreover, since none request occurs at e it fs
f(e1—1) = f(ei), then f(ei) =e. - i. It remains to show that e, is the
least x € [1, +o ) such that f(x) = x - i. For this it suffices to notice
that if x < e, then the number of empty slots in the interval [1,x] is at most
A—]. which imp]iés tHat f(x) 2z x - (i-1), that is f(x) > x -= i for all

X' < ei. This ends the proof.

COROLLARY. Any two PD that make a given set of nodes crisis—-free leave empty

the same set of slots.

Proof. As the value of the function f(x) does not depend on the ordering of
the set of nodes but just on their crisis times, the corollary clearly follows

from the proof of theorem 1.

THEOREM 2. Given a crisis—free non saturated system for a PD, let {e], €

be the set of slots left empty, with the usual ordering. Then

a) e 1 T & s e for all 1.

b) The slot M is an empty one, where M is the least common multiple of the

crisis times of the system.

Proof. To prove a) it will suffice to show that e, £ [e1+1, e1+ e.] for

i+] 1



slots and there is none request pre-

all 1. THé interval [e1+1, e+ e1] has e,

vious to the instant e1+1 waiting to be fulfilled since e, is an empty slot.

We compute the number r of requests that occur in this interval using (3) and

the Lemma:
r f f(e1+ §1) - f(ei) = f(ei) + f(e]) -J- f(ei)
r = f(e1) - j with 0= 3j<n, n=number of nodes in the system.
As ’f(e1) =e, - 1. we have
= -1 -3«
r=e 1 J e1

1
Since the number of requests is smaller than the number of available slots in

the interval, there must be at least one empty slot, hence

e, € [e.+1, e.+ e ] as was to be shown.
i+ i i 1

To prove b), let s =M - f(M). We already know that s is the number of empty

slots e

Prereer € in the interval [1,M] and that e . =e, + M By a) is

s+1 1

e - e £ e, which implies M2 e . As e =M it follows that e = M.
s+1 s 1 s s s

We now consider the question (Bj put before: Given a crisis-free non saturated
system with n nodes for a PD, enlarge it to a crisis-free system with one more
node. To do this the PD chosen for the new system will be the one obtained
extending the PD defined on the given set of n nodes such as the added node

has the last priority at each slot.

THEOREM 3. Let S = {ﬂ1------ nn} be a crisis-free non saturated system for

a PD and consider a system S' = {n],...., n.» nh+1} with the PD that is ob-

tained adding the new node to the PD for S as the last choice at each slot.



Then S' is crisis-free if and only if Tn+1 z e, where e, is the first emp-

ty slot 1eft‘by S.
Proof. Suppose that Tn+1 z e- The new node generates its message at the in-

stants 1, T + 1, 2T + Teouney kT + Jyenane , k=20,1,2,
n+1 n+1

To prove that the system S' is crisis—free it suffices to show that each re-
quest of the new node finds an available slot in the corresponding interval

[an+] + 1, (k+1)Tn+]] , being an+1 + 1 the instant at which the given re-

quest occurs. But all these intervals have length T and since T 2 e,
n+1 n+1 1

from Theorem 2, a) follows that in each of them there is at least one of the

slots left empty by the system S, which proves that S' is crisis-free.

Conversely, suppose that S' is crisis—-free. As by hypothesis the new node has

the last priority at each slot, it is obvious that it must be Tn+1 = e,

THEOREM 4. A set of n nodes with n not greater than the minimum of their

crisis times is crisis-free for any fixed priority discipline FPD,

Proof. Let {n1,...., ﬂn} be a set of nodes ordered according to a gfven FPD,

n <min {T_,...., T }.
1 n

Proceeding by induction on n, if n = 1 the system is obviously crisis—free.
Let n > 1 and suppose the theorem true for any set of n-1 nodes satisfying
the condition on the number of nodes.

Then the subsystem {n],..... nn_1} is ¢crisis—-free since n-1 < n =

< min tT] Tn} < min {T],...., Tn_1} . The first slot left empty by it

is e] = n, as the crisis times of the n-1 first nodes are greater than or e-

qual to n. S‘ince‘Tn 2z n, from Theorem 3 follows that the system

{U1,...., n ' nn} is crisis-free for the given FPD.

n-1
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Next we shall consider the question (A) and answef it in the FPD case, develop-

ing a method for deciding if a set of nodes is crisis-free for a given FPD.

In what follows to say that {01,...., ﬂn} is a system with a given FPD will
imply that the set of nodes appears ordered according to it. Each subset

{n],...., nk}. 1< ks=n, with the given FPD restricted to it will be called

a'subsystem of {ﬂ1;...., ﬂn}

It is clear that a system {n],...., ﬂn} is crisis—-free for a FPD if and only

Nl is crisis—free, k = 1,...,n.

if every subsystem {n ‘

pree

To simplify notation, let S be the given system, and for k = 1,...,n denote

Sk the subsystem (ﬂ1...... ﬂk} , T the function f associated with Sk . M

k k
the least common multiple of the crisis times T],...., Tk and (k) the num-
k ‘ «
R
ber o] ‘?f

i

3. METHOD FOR DECIDING IF A SYSTEM {ﬂ1,..., ﬂn} WITH A GIVEN FPD IS CRISIS-FREE.

letm=min {T_,...., T}
1 n

CASE I, n

IA
3

Then by theorem 4 S is crisis—free,

If n<m, S is non saturated.

If n

m then S is saturated if and only if Z(n) =1, that is,

if andonly if T. = ...=T .
o n

11



CASE II. n>m
By Theorem 4 the subsystem Sm = {n]....., nm} is crisis—free.

If Z(m) =1 then Sm is saturated and as n > m, S is incompatible

and we finished.
Z < _ . .
If Z(m) <1, Sm leaves empty Mm fm(Mm) slots in the interval

[1,Mm]. We Took for the first of them , which by Theorem 1

()1

x=1.

and our assumptions is the least x € [m+1,Mm] such that fm(x)

Then, by Theorem 3 the subsystem Sm+ ={n_,..., ﬂm, n .} is cri-

m+1

1 1 m+1
. . i >
sis—free if and only if Tm+1 e(m)].
If n=m1, S = S and we have finished.
m+1
If n>m1 , Sm+]‘fncompatib]e implies S incompatible and we finish-
ed. ff‘ S is crisis—free, as n > m+1, we next repit the process

to analyse the compatibility of Sm+ =

he subsystem S
“on t‘e subsystem n+ 2

1

., n_ L}

‘{n]‘,....,rj "

m+1

Now we give a more systematic description of the procedure, useful

for computational purposes. With the above notation, THE METHOD CONSISTS IN
PERFORMING THE FOLLOWING STEPS:

A

m theh S is crisis-free and we finished.

(1) If n

(ii1) If n>m then the subsystem Sm is crisis—free. Apply (iii), being

e(m_UT = m.

(%ii) If the subsystem Sk , with m s k s n-1, is crisis—free compute Z(k).

If (k) =1 then Sk is saturated and as k < n it follows that S is

12



incompatible and we finished.

If Z(k) <1 , look for e(k)1 = the least x > e such that

| (k=11
fk(x) = x-1,

If e(k)]‘> Tk+1 then S is incompatible and we finished.

If e(k)1 < Tk then S is crisis-free. If k+1 =n, S is cri-

+1 k+1

sis-free and we finished. If k+1 < n apply (iii) to Sk+1'

REMARKS.

1)

2)

3)

If a system {n],...., nn} with a given FPD is incompatible, the above

method determines the smallest k such that the system {n],...., nk} is in-

compatible, which eventually would allow to replace the crisis time Tk by

another more convenient.

Given a crisis-free non saturated system {n1,...., nn} the method shows how

to find the least crisis times T ., T _,.... to extend the given system
n+1 n+2

to compatible ones.

In [2] it was proved that if a set of nodes is crisis—free for a FPD then
it is crisis-free for the rate-monotonic FPD.

Therefore to know if it is possible fora given set of nodes to be crisis-
free for some FPD, it is sufficient to find out if it is s¢ for the rate-

monotonic FPD.
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