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Our proof is entirely different from those appearing in the
literature and is inspired in the idea of bholonomy of a connec-—
tion on a principal bundle ([11] ), the two form » being related
Lo the curvalture tensor.See also [4] for a related idea.

A similar obstruction appears as the curvature tensor of
connections  in the almost  Langent structure of a  ftangsant

J.Marsden and T.Ratiu for their valuable

bundlse [7]. We
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1.— Let K be a normed vector space and let 6 be a Banach

space.Norms will be denoted Y| | " in this paper.lLet U S H be an

open ball centered at », ¢ H.For each choice of a couple of unit

linearly independent vecltors a.b & H,we define

HY = 4xa + wb 1 »,u & Ry , o= N ok HOO L
Foro ogiven  w,L4 F0 we write
R = 4 xy tha +ub (n ,u) & [0,w] [O.&];

£ = ¢ o Thus shrinking L implies shrinking & .

We always

Lt E i=@=H - & be given . ;& ¢ boas

i anc 1

the following sense.

Tor all

Tollows

that this notion o f derivative is

It is important to
weakar than that of Frechdgt derivative, It is wusually ocalled

Satsaun darivati ve,



Elx,vdr.hi. ! cont
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Then, under

®

Theorer 1 There sxists one and on
DE(xI.h = Edx,5(x)I.h

Here D57x).h . By

s <

&t | Zorn's

Remark:

ing

lemma,

oduct norm on oa given vector sp

e Franw e fresdom

ar

(1), (L),

wWe =0me

LLs
atisf

4
£} Replace the Lipschitz conditi

there exist VEG about

Cx,ev "2.h kly

Then the conclusions

inuous for (N.y,h,1)s 7 =Gx3H =i

DECNx vy I(E, Elx,yv). 1), h

the previous conditions we have

iy one such that

definition

we can always define an  inner

ace H . In srxamples H ils given

Lo choonse the norm  so as to

ort in (1) by the following:

NpeYpy @nd a constant & such

v for all xsid vey TEV,

L

~

of theorems I and 2 subsist,



wilth a possibly smaller /.
o) Replace the Lipschitz condition in (I) by the following. Let
KpmEle v al be given. Let UEH be a ball centersd at x Lt H7,

k)

L R N N T that foe sach ball BE§ centered at

Ve Lhere is oa TCEY muoch that

Tharn the conclusion of Theorem I subsists in a weaker form,namely

domain of & iz a star-shaped subset ¥ of H aboub x,

¥ has the following propserty: HY as before, (yx.+H 10K is

:11 cantersd at x4

Tie conclusion of Theorem 2 subsi

Tey prove this theorsm we ne “ome praviouws lemnas.,

art n—partition of £ into o smaller

Faor each no= 1,

g a5
have lenght — 4 — o We will work with
] 14

s L ANear maps g o o paramatrized by arc-lenght,

eact linear pie eilther & or b and having

AN COLNCLOing

rectangle of the n-partition of &. We also the length

)
~h

£
et
A

o and g (dl=x, . glor8E)=yFoarcsd o We denote by 3 the

Ny 2
zel of such g's . fAny g £ @, (and morse generally any piliscewise

linear curve) will be represented by the of its vertices

anm follows

WHEre ¢aFXe o Jo, TN aFoarceb
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We set o= U @ . Given g £ @, , we can write the differential

eauation and initial o problem

—
1
i
o
s

the diftferential sguation has unigque solu-

tion

the Lipschitz condition in vl arci by

o ther

A unigue continuous v 0D,

A £ i £ T e e - N . S T N W - - - LY ey ;o . ]
Peld, o] malled the "Iifding of the cwurve g with origin v

simply vt} Giwven Lwion curves
G

s bald o= J owherse I ods & given space,such

BRI

Lhs 1

g

and It nEw £ as hefore. Then the

"

S
LA )

that there i:

auch thaty for any given plsocswl
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]

!
ro leanght, and having lenght tg - £
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-
i L !

i

al - i A e

[

Thus in particular.given >0 we can shrink A £ 7 so as to satis—

fv the following



lyq(f,yaﬁ =Yl W for all £200 5 o+s1, g6l o, ¥y £

By definition (Gee [B] pag L1&) an s-approximate solution to a
differential equation v =¥ {t,yv) where ¥ : U ~ F , # opsn in R x F
r

Foa Banach space,;is a differentiable map w & 7 ~ F,where T 2 R is

an apen interval such that for 6] we have

(ii} R O AP S O SO A ol 0 B

zalutions of the squation

initial wvaluess for w,,

Fois A-lipschitz in vy and continwous in (F,v)

& l"v':"“l'l.—.ll a0 e 7
gy (T ATl B B ]\Zr ----- ¥ele - + -

5
B
%l

Proof:See [5] pa

Im the fTollowing lemmas., X, Ve HTo owill remain Tixed while U,
Ry Ve will be eventually shrinked so  as to satisfy certain
conditions.

Let V &= ¢ be an open ball centered at v, £ 6 .Using our continui-
ty assumptions D R I and shrinking #,V if necesary, we can

assume that Edx,vl.h and DE/x,v).(h,Eix,v).hl.] are bounded for



(x,y?) U= and h,1 £H7 bounded. Eesides we shall assume that

‘tovpnt g o€ @, t o8 [0, orsl)

satisfies K = V. This can be achieved using the continuity and

Lipschitz conditions (1), and the ot tion beforse Lemma 1.

A number of bounds; either constants like O,0,etc..or functi

Vike =, Ly will appear along the line in the following

lemmas. It

understood that they may depend on the choice of

Ve Revms xpe, bt apart of this, they are fixed.

,.
g

lemma 2 ¢ Let u,v & R, vau+h, A#0, w 2 V. Set T¥T~= X oand lst

. - Ll P R T ]
v o= Elusty o wiT))ox
Y ) o=
oo
R

wid,md = oy b TEum) N PR
al Than there is a continoous function  £07F, Y, 0, m)

Iy (Comd — i€, md ] S20¢, Y ou,.m) for all PR, uaef el provided

that U,V are small. In particular £ is bounded provided that ¢,V

are =mall.

b Moreover if w varies on a compact set K 2 V¥, then there is a

.o ST such that

continuous funo as -0 and S04, N, U, wl
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conditions (L) is satisfied. Then for some D(é), D{é)ﬂt AB N
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prove the following
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aone  vartax only namely gs=p+its g zp+ ¥ +s where PZ{QI!"'qk—I}

Ry - o

A e e Qe T Tr T o Qe Qg3 e 5 =Qppge 90,5

Let & =lenght p , bty = %+§ =lenght ¥ = lenght ¥ .Choose ty

~
Lol
i
=4
i
-
]
=
]

T
I
14
.

Mg = Vst = Vg ltzgevple Wy = Vg tgto, i) = Vg itaevp?
lemma 4: There is a constant iy such that |N3 = ezl O
P -t o n s
Proof : lUsing Lemma J.a) wa have (wa — wif 20 — . Then applving

!

femma I to the

solutions v _{T,m.) , v (t,wa) with Jdiv¥ferent

a =

initial da

A Wagia we getl

Iy =~ wal Z fwa - waf e I

« wWe obtain

7

Let C;,Ch 2la , b1 - 2, CyeCon continuous , Z a metric space. We

define as usual

= oFup JdOC,0T) o Cadtd)
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temma S5: There is a constant &

-~ such if g, g =& Gn zatisty

dlg,g ) <
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moning will show that there is a constant

#ay P, such bhat the number of rectangles of the n—partition of &

which lie "in batwesn" the restrictions gl Jt1=g ,q Lo, t1=g is
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e egual

thers 13 a seguence of
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al most N < G e e qt & &, such that gl are
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Proof: Let t., & [0 . o457, &n elansntary

shows that we

can find  plecewise linear maps .9 :[0 Ayl

= R satisfying the

following conditions, wherse F; is

Fy an appropriate constant.

L) &0a) = nddd) , §00) = git) . wid) = gt

— Y S e O - -~ &
< lfenght & = lepght u < F
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i) Eaoch linear piece of &% and »n is contained in some =i

some rectangle of the n-partition of R.

et p=gll.t4] + & ., O = g 1[04, + n Thaen poiq+0) = .
W apply ths lamma with ¢ = ¢4 and we obtain

Iy it gy md = v nlt, vt |
Satte¥ i Y rtteY e

Lt -

U=ing Lemma I (or more directly, the wniform Lipschitz condition

YY) ) fimd a constant, say Fa, such the PEOS) - 2 T

A1 - o m{G) ] D F L. From +this and the preav

— - - ) ey 3 . - : -
Lemma 7: The zelt K = 4 y {T,.v.}) = e N R
- i} E n

a subzel of &

COMDAa

Abanuous functions from [0, ot

Proofs:s The fTamily (of o

(2 totally Doundad as & consequencs of Grzeld’ s theorsm. Then

we can shiow that  {y 0

the svalualbion map

can be conbtinuously sxtended to the closwure of its domain which

in o compact. Since K ils contained in the image of this exitended

L



map, it is relatively compact.

Lemma 8: Let the same situation as in Lemma 4, and assume tha

condition (L)

o
that v(#) - (7 oas n- oo and |N3 - wgl A r(%),iﬂ

- o

Proof: lsing Lemma 7., we can show that Magtiasma, g,y all vary

-

a compact set K. Thersfore

ki
fy
e

o)
v

Proof of the theorem = L=t QEQ',QE,.:.,QNEq“g whers Hep

DEliaenoe

£ )

1sing Lemma 3 b) we see that [wa —

atisfied. Then there is a function r(%) such

. o _
. such that gf,g?”* are contiguous for
¥R leaaN=1 and g lies in the sum of the two sdoss [x, , ypqtoa ]+

[ e “eoytaatab] of R owhile g7 lies in the sum of the remaining

eages [ygq , xptebh] + [xq+sb o xeqtoa+tsb]). Using the previous lemma

we have

| f/(-., { oyt ) - yq o) E y‘q s ol B v = o) |+ Y 2 ot m) - L a3 |+

! 7 q q-

It
ke
.
\
i

- s 3
..°,+lyq-~;(a%y) =y e (o) | ey



; -2 - - ; e @ ap ) , : - R
Since »(x) —~ Q2 as n — w we obtain Vg Cata Yod = Vg (ora Y )

Now we define the map & appearing in the statement of the

theorem.For this,given & as befores,define Spot R~ 0 as follows.

For any

yrratub=y & Rylet g = (x5, 541 v g 7= X Nytab, ) be

;

piecewise linear maps { having two linear pieces sach ) contained

proved the following. Lat Xpy B U"FU’=XO+H“HU

(1), (L) are satisfied.Then there swist wo,ss0

= U7 as before such that, Ffor sach x=xa+aadub

Y CAFL 5 wa) Iy Rk il b

where g={x. y KNathda v N3 s T EIN Gy oy Hatale KD

o £ e i ' o - T T . c - - . . . fe u
Defin [= 5’;{\ H L B b 3 L.'zr__'ﬂ LS = ¥ e S K b "."'" = B PR {'}:} u I t
! ) %

$0alilows that

= EinyEinti.a

Consequently S, iz of differentis £ and therefors

+ oaisth £ A owe have

-
+

Or 2wy

A= e Eolaimitloxn sl In particular for o (st =nts

This impliss that for any piecewisa~£z ourve Tist on /R such that

Fior o= xy we have
Yo lS g Wnd = Sa(Fistd

We can obviously +ind a finite family of rectangles



Ry ERK e R sl e ;0 @p.b; 5 HT such that its union covers a

ball centered at x5 » say Ddon/=U" o By glueing the 5 togheter

= RJ

we can find 5 (vt 5 satisfying the Frobenius

L [
FRR O 0 A~

differential esquation and initial condition
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L {2 3
IOy D pd

o
Ly
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_‘..} [ "':}l}

Mext we shall e ternd Ly to & map

amiz differential eguation for x£8407 and initial
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& P . o P R 2o UGy S U oAU A O o
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£F
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!

Iy
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H
iy
urt
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can show tha

& continuous

-y
w
i

-
.
N Ty E AU L Find DHw a4 and 8 s 0w T At = E osatifying the
i £ I8 D " ot I

Frobenius differential equation and the imnitial condition:

o

(i Tt o= 5 (x "pt . By compactnes

mooof QU"F we can find a



finite number of such LDixw "xt, covering QU"r and glueing all the

corresponding Sq( B and SU“ together , we find an extension
P

4]

e for some JxL From this we can eeasily conclude that there

is an extension By whare U7'=UMNx+H 7 with the originally given U.

Finally let H :H" "2H be given bidimensional subespaces and let

U= fwgbH 7L o U7 = Go M 700 Let we UNW 7 "and D0sh=x s (kx5

Then wmisyy b = 5, (0053 = S, . . (D0shh. This shows that we can
L, o 154 !

coherently define S:l/ -~ § using its restricticons to each o°
£/

(gt AN where A7 is an arbitrary bidimensional subespace of M,

1

namely S0 = 5 ..

With the notation introduced in the previous theorem, ws have as a

caorollary the following result:

Theorem Z.For each n,let v(t) be the boundary of the R

paramstrized with arc length + £ [0 by

Jezuch that

-3
Nl
"~

PR e X S Y AT
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-
—_
O8]
fowd o)
+
i
—
il
e
-
i
r

Define

—
wm



NN 4 & . -
s YA(208 + 5) .vpa) =y (0,v4)
WIN V) Ca,b) = — Iim
oY ’ 2 e vy
-
n*
Set y,sy.(0) . Then we have
WINp Yl (a,bl) =
Lr : . , . . , -
?LDE{NO,yo)(b,E(xO,y}).b).a - DE(NO,VO)(a,E(NO,yOs.a).b_
from of formula (&6).

ProoT:

The result follows directly

19



2.— EXAMPLES

A. Inverse Froblem in the Calculus of Variations

; - O . - 3 [ . g
bet H o= g 8 CF 0ty o o] W R @ goto=g, , i=i,:

fived alements of RD for i=i,2.lLet OsH, Ditd=q, +

Tty

oL E3

e

By replacing g & H by g — & we Can assumnmg withowut any loss of

genarality that g, = @, § =1.2. Thus the affine space ¥ becomes a

vestor space where the neutral elsment is 0. This minor change

thee situwation exachtly as in Theorem 1.

et £ ¢ TR™ =~ R be a givern Lagrangian of differentiability class

» The Euler-lLagrange operator is by definition

-
-1

where g.h =

. . . . . < roemrs
ample of the situation described in élp whers U EH

s¥doh E Eigl.h is independent of v. The Inverse

[

Caloulus of Variations consists in finding necea-

and  sufficient conditions to snsure existence of L, for a

given Efgl.h o Tt can be shown that in turn sguivalent to
existence of a potential S:¢ - R such that DSc(gl).h = E(gl.h

It is interesting to notice that in this example, the integrabili-
Ly conoition {13 becomes the usual sel¥-adiointrness condi€ion

297, [143, [15]) namely

20
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DECglih.k = DECgY. kLR

This is known to he Lhe necessary and sufficient condition for
exisztence of a potential. Checking our hypothesis (I1).(L) for a

given operator Ed0xi.h 8 Ry (3.8 £ MH«4 becomes a routine task .

el xopa.b 2 Hoand write g = x5 + da(t) 4+ wh(t) , te [ty & tal.
Gimilarly A = wa +8bh {(or A{Ef) = gald) + ghit) . [ [fz o Tal)
and & = Tat+db,

This way E(gl.h , DE(gI.h.k , DE(q).k.h become continuous func-—

ondition is also

iy

tions on Ay &, %, F 2 R and the integrability
checked vary =asily.

The conclusion is that standard theorems on existence of poten-—
tial ogperators ([16]1) under a self-adjiointness cunditioﬁ are
partiticular cases of a version of Frobemnius Theorem. This also
aopens the door for some kind of generalization of the Inverss

Froblem.
B.Constrained Lagrarngian Systems

simplicity Jdiw H = p, din G = m, £ of class ct,

(i = G - R be a given Lagrangian and let us interpret £
ag a {(Lime independent) constraint (Sese [41). A system is called
nolopowis or non-hoelonomic according to whether the imposed cons—

traints are integrable or not.

A curve POt) = (giE),y(t)) g U = G is compatible with the cons—

traint E if yit) = E0qct),y(t)).q(t) (i.e. if y(t) is the lifting

g
of g(i) with y(t,) = v,,.for some y,). Choose variations
+

e, a) = (g, a) , yit,al?) such that for each fived +, v(t,a) is

o)
-l



the lifting of ¢g¢t,a? with initial condition y(tJ), and

git;, Al gqity?) i=0,f , Ytpe DD = vy . y(tz,A) = yy are fixed.

Remark. A different kind of variations is also interesting.

Namely (q(t,lﬁgf(t,&))ﬂ where for each & fft,l) is the lifting

of g, with fixed origin v, . Thus in general

it ond # vyt 00 = yit,a),
a2
Each veacotor — & J7 & Tp 0 U=F conpatible with the constraint is

called a virtual velocity.and D Alambert-Lagrange Frinciple
establishes that Pt} is a mobtion if and only if it is a critical

point of

wWwith respect Lo variations J§° of £ compatible with the

constralnts (vistuwal diselacemsnis). This is equivalent to
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is equivalant

lTooks

is

well Enown that for holonomic

to the integral manifold

aystem . This is in

such that

(i), v(tlr)

e Fligit, ad .y it a) et a) ECalt
- o ¥ s 7 & -~ r * -t
Sa dEs =&

later is no longer true Tor non-holonomic

using our two-form @  and expanding the

the following general formula

A 1 - P ' - !
= I A | &L b SLy
forom e —— | Fg o+ — e — | L g =
P& gt - | oy gt = |
| an l s |

o E
L 4 L 1

estriction of the Lagranmngian to a

to adding an external foroce.If

like a Coriolis force.

constraints

of E,obtaining

nonholonomic

we can simply
an equivalent

turn squivalent to

constraints.However

previous equality we

L .
S e G . Fp )

constraint

then Jwig, .2
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n=d.m=y
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