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Abstract.Bv uszing the idea of holonomy we get a new proof of Fro-

benius Theorem on integrability of & given distribution on a

givern manifold.This proof also works for distributions given on

5 F =

Barmach (infinite dimensional) manmnifolds.An interesting point is

that Frobenius integrability condition.,in terms of the Lie bra-
] 3 3

cket of two vector fields,appears in a natural way being egquiva-

lent to "zero holonomy" for the arven distribution. The paper be-

gins with a description of tha ideas underlying previous proof

of Frobenius Theorem to facilitate the comparison with ours.
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§1'INTRODUCT10N.Let Mobhe a ¢ manifold of

dimension n.A distribu-
tion of p-planes on M is a p-dimensional subbundle of the tan-—
gent bundle TH .The distribution L 18 called Integrable 1f for

given O vector fislds on M,say X |7 ¢ AM),the following con-

dition 1z satiefied:

5]

Kim?yYim) & Lim) for all m £ M ==X Y3 (m) € L (m) (1)

An integral manitold of L ,is a ¢ p-submanifold 2 Z M such
that Tpo = Lom) for all m o 3,

A distribution of p-planes is said to arise Trom a Regular
Foliation if for each » & M there is an integral submanifold

S such that m ¢ =.

Theorem [.(Frobeniusz).Let L be a given distribution on M.

If is integrable then L arise from a regular foliation.

Frobeniu’'s Theorem has been proved by using several different
arguments that we can found in the standard Differential
Geometry literature . In this introduction we would like to
sketch the basic geometric picture behind those arguments,for
coﬁvenience of the interested reader,who may wish to compare
them among themselves and,later ,also with our own appropach
to the subjet.The latter will be discribed in § 2 . In §3 we
discuss some ideas relating our main result in this paper to
the notion of the curvature of & connection given on a princi-

sal bundle.



Before wo continue a couple of remarks are in order.First,let
we abserve that infinite dimensiconal generalizations of Theo-
rem 1 are alsoe important and well known 1in the literature @
for 1 a Ramach manifold,{ should be assumed to be a direct
subbundta bf TH.Then we get sssentially the £.ne result . Our
proof in § Zois also valid for infinite dimensional cases.
Second, Theorem l,as stated,is tlearly local in nature,in the
sense that,by choosing a local chart about any given g & M
we reduce the guestion to the case of M being an open ball .
Im the finite case this means that we can choose local coordi-
nates  rxl,....5". about Xpo® (0, ..0) such that the integral

manifold is defined by equations y OFr , equiva-

lently,L is spanned by

Soms  of the proofs sketched below are valid for infinite di-
mensions.Some others wuse induction on p=dim L{m),thus they are
naturally adapted for # a finite dimensional manifold.The case
p=1 1 a trivial one,at least from our point of view, since it
follows from ODE’'s theory (existence and unigueness results )
which we take for granted here , both for finite and infinite
dimensional cases.
a)T(See for instance Sternberg [71)
et 1 be n dimensional and [ p-dimensional . Choose XI,...XP
linearly independent vector fields on M spanning L on some

neighborhood of a given X- & M.By using ODE’'s existence and u—

nigueness theorems , we can inmediately show that there are

=4
coordinates (NI,...,N”) about x, such that XI=§’T . Let W be
: Ay

defined by I=0. 7t is not difficult to show that,in this « -

7

tuation, if & 13 an integral manifold containing x, th#n



(e E& ) T S, where (- K, s ) de mome interval in the Nt oasswo
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« Mow., to aoply the induction hypothesis,we oniy
nesed to check that L being intearable,the (p-1)- dimensional
distribution W 1s also integrable . Ih&muﬁL will be =impds

the inteqgral manifold of LW containing My WMo mstablish
integrability af LT as perbaps the only part of the prood
presentinng soms btechnical daffroul by,

by toee for anstance Hermann (275

The picture for this proof 13 similar to the previous one.
Faret we oust prove,that vor any given pe-dimensional integra-
ble distribution on a given n-dimensional manifold M , we can
find (locally) vectors fields xl,,.,x

o spanning L and  conmu-

ting among themselves 1.e. satisfying

[Xi,xjj =, Lyd=1,2,cu.p (2

Next we prove .by induction on p . that (#) implies existence

of local coordinates about any given point & M

[
N

. such that

-

. . .~ - "y e 3 . .. .
Xl = T i=1,2,...p .Thus »F 1 = . N = O define the inte-
[t h %

gral manifold containing Mo To periorm the induction step,we
i )

basically find coordinates (v',...,v"7) such that XIZE:Y aricl

then prove that LNTW 1s spanned by conmuting fields. (& defired

by = (1)

¥ l =

c) (See Chern S.S.Wolfson J.5. (17 )

This proof is technically simpler thanm the pravious two onas.,

on



However the underliying idea 1s the same.

dy (mwe Tor anstance Lang [4] Eoly.

This proof i1z valid also for infinite dimensional cases.

First . observe fthat any given distribution Lo on a (Kanacoh)
mani1fold M can be described by wusi1ng a Lo sl chart about ALy
s

Qiven x4 £ Mooy oa O omap

~—

Trlfs ~ [ (E,F)
where £.+F are Ranach spaces and USE , VEF are open ball cen-
tered at G.Then the plane LiXpeyn) 1s defined by the equation

Vo J M Y

\"-—\('(:_ = F (,"\'",-:').' ¥ ¢

The integrability condition becomes

DE (M y IR, TN,y )@t dihd=DF (M, vISh, Fix,vIib) as (2

for all (x,v) & (= &s b 5 E

Maoreover we can always assume Mo = (G,0) and F{Q,0) = O,
Now let Xpilngy) = (G Fitn,vIvn, ‘be a time dependent vectar
field on >V and let F, be the flow of XeThen we can prove

using (Z) that there is ball U1 centered at ¢, Ul S . such

that Felx,r) is defined for all (x.0) = Uyxltiie & & [O,1] and

moreover.f, (U w {07) is an integral manifold of, L containing

FI(O,C)=(u,O),which is the graph of S:UI*U defined by

S(x)=onF1(x,O).Equivalently,S is the solution of the problem

DS(x) = Fin.S0(x)) (4) f



S0 ’) N

e)i See Fenot Lé&l).This paper is indeed a rather comprehen-

sive reference on Frabenius Theorem up to 1970,
Using the notation of d) we want to zhow existence of Saidy

satisfying (4) . Roughly speaking.Fenot s proof consists in
using the Implicit Function Theorem.ln fact some kind of e-—-
quivalence between the latEﬁ and Frobenius Theorem 1s esta-—
blished 1n Fenot’'s article.

To start.set 6 ={ ¥ & CI([O,IJ,F):7(0)=O Y. H=CO(LO,1T).F).
& and H are Banach spaces with norms [ ¥l=sup( ¥ (t)l+ 17 (t)])
and |nl = supin(t)| where £ 2[0,11,respectively.lLet B, (L) be
the open ball of radius r centered at ¢ in the Banach space L.
The derivation map P ols oa linear ilsomorphism from & onto

H.Now detfine for some small s> Q:BF(E)MBF(G)*H as follows:
GUMN,FI(T)=F" ()= F(tx, w(t)ITnr,

Since Dog(C,) ed=6", the Implicit Functiom Theorem implies

existence of B (£) % H.(E) and & map w K (E) - B, (6) such
re. ry
b Az

that w(dl=0 and g(x,w(x))=C0 for all x = N S

"
Define S(x) = wix)(l) . It remains to prove that & satisfies
(4) of d). This calculation presents the same type of techni
cal difficulty as it does the proof of (4) from (%) in d).
Indeed we should remark the obvious similitude between
gixevI(t) above and the vector field Xt(x,y) in d).
There are some other approachs to Frobeniu's Theorem,uging the

language of differential forms, (See Sternberg [7]).How§ver,

1



they Tinally rely on a) or b)) above.We claim thal our proot. oo
be described 1n the next paragraph is based on an ar Lt L
wich difrters substantially from tne Previous ones.

——

&2



§2.ln this section we qQive a proof of Frobenaus Theorem which., we
believe.,1s new.
The zituation being as 1n§ lodd) we want to grove that (3)
implies (4),
First.let us introduce the following notationg
Let MNit),t = Ltpets] be a O™ curve on U having origin Mo=X(tn)
Let PO=(xO,yO) be given .The Jjifting of X with origin Fn (for

a given distribution f) is the curve
TiRP, X)(t) =z ¢X(t),v(it))

on Uxv defined as the (unigue) solution of the problem
7EI(PQ,X)(t) =X T OX(E), Y (EIIVX (E)N)
o ’

TOFRe XD )= (X e Vi)

This means that the curve J1(F _,X) 1s the (only) curve having
it

origin Feaesuch that

a) it is tangent to the lirnear manifold L defined by f at each
point I (F,X)(t),and

b) its projection on the first factor of U=V is the given cur-—
ve X(t).

Obviously,we can also define I(Fn.X) for a piecewise differen-—

tiable curve X. !

In particular we will usually work with piecewise lineér

curves in this article,for convenience.

Let Gix,) be the set of all piecewise linear curva g(t)



e Lta,t; 0 an U such that gl )=x.0iven a curve g = GEx ) awe

will say that the endpoint of the lifting I(Pu,q)(tl) 1&  1nede
pendent of the path if for every § & &(x;),say GUtlatsl T, %,

such that E(flj=q(t1) we have I(FO,Q)(t1)=1(PO,§)(EI).

Now we will describe the idea of the proof.

Suppose that, for ebery g & {d(x5) the endpoint
I(Fr.qi(t;) 1s independeng ot the path.Then define S:U-+V as
follows:

Given x, & U choosse g £ Hxn) such that gltyld=s;.
Let I(PO,Q)(tlJ = (xl,yl),Then 1 f S(x1) =V g it is easy to
check that & satisfies (4) of § l.d).Therefore to conclude the
proot it only remains to show that integrability condition
(%) of § l.d) implies the property of independence of the path
which is the only point of the proof presenting some technical
dificulty.

First,we wiil reduce the question of independence of the
path to a very particular case of itself as follows.
Let e;,e5 be any choise of two axis ot the basis of Eyand let

A be a rectangle with vertices MueXgaNope Xy where fhe sides

NoMg NNy are paralell to ey while the sides MyMopedpMz are pa-
ralell to eos.

The lenght of xgx; is A;.while the lenght of MpXs 1s &

Let w(t),t = L0, Dy+8-]1 be the path MpNgdo (1.e, the uqion of
the line segments ¥y oand xgNo).Bimilary,let ﬁ(t),té[d,dl+d2]
be the path NDNSNE.The property of independence'of the path of
endpoints J(PO,Q)(tl) « for all g = Hixnlyis equivalent to the

following:



.Z (F\(_}; QZ',) ( ;’Jl +..’.3'2) ):"1 l'.,F"(_"'; 5 A7 ,’ [ '132 +c‘j_/2 ) 5 )

for all rectangles RZY having sides paralell to a couple of
AMiS e;.e; of £.
The argument to establish this equivalence can be described as

follows.Let qi EQ{NO),i=i,Q be two given paths having vertices

¢ reay qﬁ = x; » Two such paths ql,qz are called

[N

Neop 5 49p ¢ 9

“contiguous” if there is a number ik, ¢ ¢ k < r.such that

B

= i e e 1
qé = Qof~~-rqﬁ—z = Qk-i- Q£+z‘ qk+1,...,q£— 9y« and qf~1'qk’
q£+1,qg are vertices of a rectangle.Now given any two paths g

q = Lixele by (possibly) first antroducing some new appropiate

1
vertices 1n (the line segments of)g and g we can find a findite

oy

sequence g= gl,q%, ....q"=5 of paths gt

contiguous to q1+1 for 1=0,f,....,h~1. We can then use (%) to

iy

G(xglsuch that gt is

show that the endpoint. of the liftinas I(PO,qi) all coincide

for i=0,...,h~1,thus in particular TP aq)(t;) = }(PO,E)(Eij .
We can conclude that to finish the proof it is enough to prove

the followinags
Lema H (5 of § 1.d) implies (5).

Froof : Without loss of generality.we can assume, from the be-
ginning that A S K where K 1s & compact ball centered at O g£
and such that & = U.let us also assume that the sides ot R are

paralell to es.e5.



VAT
A) Let » be the ratio p=—% ., Next we prove

s

=1

1P e o) (Bytdad =1 (Fpy, &) (D8,+85) | & Co™

where C is a constant provided that K,» are fived.

To prove this , first observe that a given continuous function
on & is bounded and that , » being fired,we can write O(ax ;) =
aid) . d(a; A:)=00d%), etc.

Now let us denote the vertices of the liftings of o and & as
follows: |

}

T Otneynld o Fp = 1Fqo) (D) = (Nyavy)
F": = ] {.P(_‘_‘\, Q'..) fﬂl'/'.ﬂz) = q .?‘\'E, }f':) s P:* = ] (F‘{_";,A?") (L"j}‘_?) = (.-\'.::;, )v’:;)

F‘4 = ] (F](__-""fl") (.'_’Slfw_’):) = (-/‘\': _;)1'4,)-

i

Thus . what we want to show is that by v gl Ca. From: () of
§l.d) by using the Taylor development of I(PO,&J at PG {up to

order Z)we can show that

T I L D oo w
ViTverTy Pplap v N r (Pt (Po )Ty (Fpd | &y + O(d™) o

Similary,by using the Taylor devalopment of TiFn0)  at

Fo & (Mo, va) we can show that



1 [er. aF . " -
— (P )R (PR )P (P30 | &% + 0(dF) (&)
Syt By -

<

k3

VaTvETl g (Fg)dy 4

But we can approdimatesagainsby using Tavlor development

, Sy e
-ﬂ: + &’>‘.S(F‘(_}' r‘?(P(_');' d: +

“"1 ('F-":‘:'l} = i (.P(_},’ +
=N

+ 0gE

G
Lopt + 0cd)

S
Lipg) =
éeed et
Lipet = = (Fe )+ Oid)
EYE R EWCR
S e — = . s
Tl(!_j:;') - Tl({—‘:') + (_.-"!C',)

becomes
(7

Thus ) 3
E aF -
lfpo)fg(PO)}alag + a(d>)

* “‘7(P0)+ays

Similarly we can prove
£ (T )

(&)

L P
Y L EE

T
VoV - ,\/' o e e (FJ . ) s
o 4 IR ‘3’\‘,2 [ h,
By substracting (7¥) from (dl,we get
Cre [vomvgl & O

Ivpmwgl = 0(d7)



By goinmg through the previous proof we can see that,for fixed

» the constant ¢ comes from fixing bounds for certain Taylor

remainders,which in turn,only depend on bounds for fj and 1its

derivatives up to order 4 at most . on a fixed compact bail
K scontained in U.such that & contains all rectangles é under
consideration.

B)Now we will prove that the_constant L that we have found in

A) 1s,1n fact ©.In other words,the endpoints y<=I(F,, o) (d;+5:)

ard y4 = I (Fa6)(A;+8,)  coincide,which establishes (5).
Let
< i
M I oy )"'" ; { M z A i J g o n v 00 » FaE it E “r"; [ L’ =N i ‘) J O X4 i
and
i J
M (e RN (:’f"‘— { .-“\'_;:;""' N Ci ) v e ow g M (.':;'f""" i ."\'4“:;"_' M i o o s ox x -‘-"":;
n ’ mn - - -

be partitions of the segments Mt poand xex s respectively.

[
This gives rise to a partition of & into a e rectangles  sacii
having diagonal of lenght % -The ratio of the lenghts of the
sides for each rectangle ot the partition is the fixed number
2 NOw wevcan obviously find a finite sequence of elements qié
E(xpy) im0, ... 2ach of lenght A7+0- such that

al The vertices of each qk are points of the vertices of

the partition of A , i.e. of type

{ 3 _ i ,

Me T e (NN b — (M= ) )

I I5E Ng=Ne ) ).

- n Lt no ot

, o _ o » , o =

In particular we have gt (0i=xg, qr (D Fdn )=, for i=0G,..,.n~
14



I 3
big“=o g = &3 and

c) Each qiis contiguous to q1+l.in the following sence:

For each 1 we can find tf N t% 5 [O,AI+A2] such that

qil[t%,té] =:a-1 \ qi+lil[t.li"t§] ==,:;1

Where o' ,&t both together form the border of a rectangle of

-

the partition.Now ,for each i=0,...n".set:

PL = 1(Pa.qt)ctl)
P o= 1oPh.ot)ctd)

PL = 1(FPl,et)ced)

é
FL = 1P}, 80 (8;%85) = 1(Fgh.qt )(a,+8,)
Py = 1(PE. FY)(87+85) = 1(Fa,q L) ca,+a2)
- Then we have
. L . ’72 L Y i R n;. .
Ivg=veol = Pixgevgl)=(Nayyvall 2194 - P71= W (Fn, g )1 (Fp.q )2
n2~1
L2 v‘—-—, Y ) Y S i o i ' T .1.+ ’{ ;o P! i
= ‘:)’J | I(F e aq 2o ,.’__31 *L\f I—1(F (e (&) 4 ) -!.-\1 '{'LJE i
1==i

Now for sach i.we have for some (g i



il(Pm,qi)(d1+ﬂz)—l(PO,qi+l)(dl+dQ)| =

s '\i "l - : - '\i l - .z " ‘wi l
VICFR o820 (A +8) = 1(F_,d) (ayraq)| 2 Oy T

Since lenght of &' is bounded by 4,44, by using the theorem on
continuous dependence on the initial data for the 0.D.E appea-
Fing in (2) of §l.d) we get the last inequality ( for some

Ly o Now since the lenght of the diagonal of a rectangle of

e
the partition 18 — we can use part A) to show that
n
1 s ¢
1Py — Po | #C |d/n|

By collecting results we finally get

ni—l
| vg-vo | 2 CC z: (d/n)~ =¢ € C; d7)/n
1=

Since n is arbitrary,we can conclude that VgTy o=,

This finishes the proof.

16



§I3.Let i1 : P -~ B be a principal bundle (See Kobayaschi S. and

Nomizw K [194%] ) with structure group & and let W 1 7F ~+ % he

a connection, % beina the Lie alyebra of G. Hp = Ker Np is the
caorresponding distribution of horizontal planes, (dim Hp = dim B

for all p £ FP) and let h :TPP - Hp be the horizontal projection.
Then the curvature 2Z-farm 2 is defined by 2 = diW h = DiW .

Here # is viewed as a %-valued l1-form and ¢ is exterior differen-—
tiation.

The holonomy theorem implies that the‘curvature 2 is @ if and on-—
ly 1t the holonomy groups £ ofw) . ow g Foare ail trivial, and the

latter, in twn ,is equivalent to the distribution of horizantal
planes being integrable.

Recall the definition of holonomy group. Let flfu) = x £ H,and let
C(x) be the loopspace at x.Each v £ €(x) determines and element,
say &,0f & such that +(u) = ua ,where +(u) is the endpoint of the
horizontal lifting of + having origin u.

We can easily see that the set aof all such elements & form a
subgroup #(u) of G.

By using & local trivialization we can represent /A by a trivial
bundle & ~ & — {4 and in this representation the connection & be-

comes distribution ol w3 -~ L{E,F) where £ , F are vector

n

spaces and U = E, & = F are open as ;rsgl,d yo The concept ot ho-
rizantal lifting coincides with the rotion of lifting introduced
ingiz.The holonomy groups are all traivial if and only 1if the pro-
party of independence of the path .considered n1§2 holds.

Thus our proof of Frobenius Theorem in % 2 appears, at least at a

local level.,as a generaliration.for any given distribution on
given manifold ., of the known fact that . & given connection on o
principal bundle is integrable iff itts curvaturese form 1s  ild@nco -

cally i,



According to the previous ideas,the curvature measures how Far is
a connection of being trivial.
In the same spirit we can define,at least at a local level ,a sort
of measure of how far is a given distribution on a given maniftold
of being integrable.as follows.

et Pzl x5V~ L{E,F) be a local representative of the gi-
ven distribution ,as in § 1.d}. ’
et X .Y be given vectors fields on U NV, say X o= (X

Y = (V

wr X s

wr V) oand let (uw,v) £ Uox V be a given point.

o7

For each A = R «farm the paralelogram A, contained in U,whose

vertices are: . L T Wt AX F AX. . . woF AX, .

Consider the border ey of QA as a closed curve with both end-—

points coinciding with w .,and parametrized by arc lenght.

Let v, be the lirting of ¥y osuch that 7, (0} = (u,v).

.

~

Thus A lEACIX F (X 0 = (u, vyl 1s the endpoint of s

Now define the F-valued 2-Ffarm 2 on U x by

1
$Eo(nev) (X, YD = lim, o (W)
MG Area £,

By using an argument similar to the one described in § 2o{but a

little bit more involved .since, there.,the paralelogram had sides
of lenghts dl sAsaparalell to some axis Jwe can see that 4 is o
1ff the distribution is integrable.In thisc sense we can consider
that & measures the non integrabil ity of the distribution.

The zimilitude of this definition of 2 and the idea of halonomy
become now obvious,at least,once a local chart has been chosen.

A more global version of all this with some possible applications

to mechanics is being planned for a future work.

ig
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