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conditioning is proposed. Standard sets of exampk

royden's  "qgood" method [11 and the scale invariant

£ Faloschi and Perkins [21. The hybrid method +rom

CEZ1 is enploved as a basis for comparilson. The numerical

demonstrate the robustness of the new implementation both
led and badly scaled problems.

The nunsrical  soluotion of ;
eguations is an dmportant mathematio
teady state

o algebraic mnonlinear
problem in the context of
simulation in Chemical Enginesring.

Several codes are available and have been tested [4-71. The
shaviow of  the codes on well scaled problems was found to  be
satistactory. On the other hand, the behaviour of the codes on
badly scaled problems was poor and attempts to overcome this with
the use of internal scaling failled.

I t e P aper , these deficiencies are overcome by
ful implementation of the methods, and by an internal scaling
procedure  which seeks to  improve the conditioning of the
eguations  to be solved. The ideas are tested by numerical
experiments on a wide range of probl

C

Al SLENIE I

#An o implementation of rank-one Guasi—Newton methods bas  been
proposad and tested. The behaviow of the implementation was
actory  on both well scaled and badly scaled problems. The
of a scaling procedure to optimise numerical conditioning was
fowrd to give a considerable dmprovement in the performance of
the imple tation, and  to produce a code giving better
performance than existing codes for solving nonlinear equations.
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in  order to test the implementation ot WG




Comsider a general function fiR™"——zR" and the problem

v

() o= 0, (1.1)

Mt hod solving (1.1) are wsually iterative. Given am initial
quess Heo of the solution, the a seqguence {Kel,®, in R7,

which i+ the method converges

Lim My = e, (1.2

Fluagy = O ., (1.3
If ¥ is a linear funchtion, the solution #. can be found as

e = H b op™ (1.49)

wher s p™ o= - (g =t f (k) (1.5
provided  FOOGa) (the Jacobian matrix of f evaluated at ) is
norisLroul ar .
I 4 ds not a linear function but x. is a point swfficiently near
Ay We Can expect thalt defining

Hhewn Ky b Py (l.é
will provide a better approdimation to e

g Lae@.

ar T B e B A A A (1.7

ihe dteration process (1.6) is bthe Newton method, and  p,™M is
1 the MNewbton step. This method has been the basis for  many
ods developed in the past.
ion of F7G0 ds often expensive or even impossibles
. iany methods have b devised which do not reguire
evaluation of the Jacobiarn matrix, but which instead seek
Lo approximate  F7(u is some way,giving instead of (1.5 aricl
(1.&)

e = =Bt F (5.0 (1.8)
R S VRE S T " (1.9

I these egquations, By iw the approximation to the Jacobian. The
methods differ in the way By is generated. In the discrete Newton
method, By 1s generated as a finite difference approximation to
Fodad. Brown [8]1 proposed & method similar to the discrete
Mewton 's method but requiring fewer function eval wations: Brent’'s
meEthod [9]1 has a similar mabhematical basis. Broyden [1] proposed
a method in which B. is not obtained by finite differences. This
method  is  a particular case of a more general family which bhas
recel vad the nane Ouasi-Newtorn methods. Dennis and More 107 have
given a detailed study of this family. In the following we will
araly this family according to the characteristics which are of
most importance to ws.

Lony

Convergence properties are normally local, ieoe. applicable



- oo R e e et = QS e oueed O COnlwetrgence 18
often measured in terms of a sEquence {and and a scalar o) such

that

v

FOF & GLVEn morm.
Three rates of convergence are often discussed:

Linesars: e = oa, OTadl, b=l

supesrlinear: Tim &, = O
b

quadratic: Rpe T @,

The family of Quasi-Newbon methods gives superlinear convergence
L1071, Also En-step gquadratic convergence, i.e.

.
—, b

. [N " [
S )} ., o ot e PO S I |

has been proved for Brovden s mebthod L1171,

I+ part  of the Ffunction (1.1 is conposed of linear
i s then the methods of  the (uasi-Newbon family will
them at every iteration.

dly., & code should be independent of the scaling wsed
tor the variables and the functions. We can represent a change of
scale for the variables as

i) = F(D,—1 ) (1.310)

y

A singular matrix Do, arnd a change of scale for the function

£ = De £ (o) (1.11)

More generally, for sinultaneous changes of scale of function and
variables, we have

F0) = De F4D,—% 3. (1.1
We define scale independence as

l: SBoale invariant methods

An iterative method for soclvimng (1.1) will be scale
invariant if  for nonsingular matrices D, and D
defining the change of scale (1.12), the seqguence

e 9
{

Vied generated by the method satisfies

i = Dy M. (1.13)

at 15, the iterative seguence generated by the method im  the
eW o stale ds the seguence that would have been generated in the
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method.,  Also Faloschi and Ferkins 021 have recently proposed
seale invariant rank one Buasi-Newton methods,

In addition to the theoretical aspects of the families we
should consider the results of numerical tests reported in  the
Literatur

Authors  have generally stressed efficiency when presenting
rumerical results; i.e., the speed with which a method Converges.
A very dmportant aspect to us is robustness, i.e. the ability of
a method to converge from initial points far from the solution
anc  in bad numericsl conditions. Ouwr  previous discussion on

- e 18 related to a mneighbowrhood of the solution and

¥ plicable when we are far from the solution. Tests

are comparatively rare. However, three recent
or robustness are available. Bus [4] tested several codes
and  found the best results for the discrete MNewton, Brown and
Brovden methods, Faloschi L1271 obtained good results also  for
Brovdean,Brown  and  for the implementation of Gragg and Stewart
C121  of the secant method. (While results were very good
Fegarding robustness for the last method, it was found to be poor
in  efficiency and it reguires 4n= storage locations). The most
. : 3 test was dorne by Hiebert [&1. Eight codes
fouwr  different methods were tested. Two sets of
considered: a set of 57 "mathematical problems" and
2 chemical egquilibrium problems. Tests for the
etfect of scaling on the perfor we of the codes were designed
for  the matbemnatical problems. To test the performance when the
variables are badly scaled the original problems were modified to

thts
+ o robustness
studi

f ) = FAD™Y

and for badly

with D
arnad 1.

#ing a diagornal matris

elemnents were between 1.E-5

Fivbrid method tested by Hiebert (proposed by Fowell [141)
[Ty mribed as follows:

Detfine the gradient step

e = =T F{(:w) (1.14)
This is an approximation to the steepest descent direction, f ar
the sum of sguares of the function values, and a hybrid step ph»
is obtained from

Froe "= R ko P b ke e (1.1%)

where py. is the Uuasi-Newton step (1.8).

The parameters a,. and b, are chosen according to  the progress
which the code is making. Bince the gradient step is more robust
whi le  the Ouasi-Newton step is more efficient they are combined
by taking aw+b,™*sa, 50 and b, 0. If PiF M) TSI Go) VY then by,
will be small, otherwise &, will be small.

The teoretical properties of this method are the same as the
Ouasi —Mewton methods regarding  convergence since in the
neighbouwrhood of the solution the method is designed so that
ar—=rl. Linear subsystems will rot in ageneral be satisfied as the



Comsider the linear function F{(suy = g4

i F b oand Be = 0/ (1.e.
the eract Jacobian). ASSUME auw=0 and be=1 in (1. 15)

Poh = —AT f (ia)

Flag) = Fixe) — A A& fide) = (I-AAT) f(xo)

and then unless, fia)=0 we can see that F (L) #0 in general. 0OF
CoOurse , it  aw=1 the hybrid method becomes a Guasi-Newton method
and thus possesses the linear subsystemns property. Howsver , as
mentioned above, &.-—*1 only in a neighbouwhood of the solution.
The hybrid method is also dependent on the scaling being wsed. In
the oode tested by Hiebert, an internal scaling procedure 15
provided which results in a scale invariant code; but as found by
Hi L Lé&d and by Chen and Stadtherr [71, this option causes the
perfornance of the code to deteriorate instead of improving it. A
summary of Hiesbert s results for all the methods discussed so far
is  presented in the following table in terms of percentage of
problens sol ved

Mathematical problemns Chem. Eg.Frob
Method ITmplenesntation Well scaled Foorly scaled

BRENT MINFAOE TE] T4 44 8%
BROWN IMBL T153 HT S0 42
BROYDLEN  SANMDIA L1611 4% =9 42
FOWELL. MINFACE LE] Bé a7 S50

The maln conclusion from this table is that while there are very
robust codes available for well scaled problems, the pertormance
of all codes is badly affected by poor scaling.

We will describe in this paper some implementation details
for  methods of the Quasi-Newton family. We will also propose an
internal scaling procedure desigrned to improve the numerical
conditioning of both the problem and the method.

The same set of erxamples as in Hiebert will be used in order
to show that the numerical performance of ouwr code is much better
than  the version of Brovden s method tested in bthat comparison
and also has better overall performance then the hybrid method.
de has been succesfully used in many Chemical  Engineering
simul ation problems (see Paloschi,Ferkins and Sargent [171).

This ©

HENTALION OF

L HEWTON

Wer  will giscuss  in  this section the development of an
Linpl emsntation of Guasi-Newton methods which,for Broyden &
mathod,gives numerical results substantially better than those
published so far.

We will Ffirst introduce the family of rank—one Guasi-Newton
methods and an algorithm imolementing it Implementation details
for this alaoorithm will then be discussed. They congist of choice
of the initial Jacobian approdimation, rules for its
Felnltialisation it progress  1s  poor, the usse of an LU
factorisation, a suitable policy for step control and avoidance
of & rnumerically  singular Jacobian approximation by using &
modification of Bennet’'s algorithm for  the updating of LU
faotors

-

&



Difterent methods have been proposed for the generation of the
seguence  of approximations to the Jacobian matriux. Broyden 13
proposed & whole family of methods based on  the following
upcating formalas

Bowa = By + a. bV . =.1)

e @

Thie  two vectors aw and b, are chosen so that Bu.e. satisfies the
secant relation:
Bh:-a«:l. Dy = 'F(H;.r,.q.i)""'{()-(h:) e

Sow oL

which arises from the fact that if §f 1is a linear function then
its Jacobian F’leed) will satisfy

FroGieaas)d pr = F e )~F i) o (2.7
Using the notation

(i) (2.4)

-

.
H
—+

ard by defining
‘Y’h: = 1':l--:-4~1."""f:h: (“-:"E')

we can see bthat to satisdy (2.2, a. and be must be such that

A F Vi — B e (2.6)
Ba™ pr o= 1. : 2.7)

It is then possible to characterize the familvy of rank-one Quasi-
Newton  methods using & sequence {ved of vectors in R and  the
update formula
(Vi = B Py M7
Fras = B 4+ e o s e 2.8

Ve TF! fo

In particular Broyden’'s [11 method is a member of this family, in
which vie=p,. Other methods based on different choices of v. have
also been proposed. Barnes [181 chose to make v, orthogonal to
the previous steps Di. This assures that linear systems are

solved in one iteration. Barmes’ method was implemented and
tested by Gay and Schnabel [191 and by Faloschi L1231, Faloschi
and PFerkins L£21 have shown that it is possible to obtain scale

invariance of rank-one Guasi-Newton methods by careful choice of
Vie i oegquation (2.8).

It was proposed by Broyoden that instead of using (1.9) the
following sguation should be used

Hiwer = ¥+ 1y Py (2.9)

whaere the parameter L. is chosen according to & particular
policy. Brovden proposed to choose 1, such that

Pifaas 11 dm Diftd (2.1
We ocan formalize this family of methods with the following

alagorithme
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Ve L ( j b F’ b )
vie iw determined by the particular method
e

Two  approaches have been proposed for the selection of the
initial approsimation to the Jacobian, i.e. the matrix Bo in step
L of algorithm 1. Rosen [20]) proposed the use of Bo=1 and Broyden
C11 sugaested the use of a finite difference approximation to
F'ie) obtaining Be as

f (x C)"l"d_j E:‘J) - ‘{:c,
B @, % e (2.1

L

We have used Broyden' s sugg

(Er@3)y 222 Gey T del 14 8y 7ked0
(T.'Jx
(@m=m3yis2 pitherwise

This alternative the disadvantage of reguiring n  function

aluations, but it has been found to perform better than Be=1 in
the past by Metcalfe and Perkins [211 for flowsheeting problems
and by Faloschi 0121 for general non-linear equations. Bogle [22

Ffound the use of Beo=I to be more efficient for some flowsheeting
problemns, but (2.11) was found to be a mor reliable approach
overall. “A important  property of Be obtained using (2.11) is
that it will satisfy

3

Ba = Di Be Dt (2.12)

for & change of scale of the {form (1.13). This property is
required  to ensuwre  scale  dnvarilance [21. Another important
proper-ty  obtained using (2. 11y is that i+ the problem (1.1)
involves a linear subset then all linear equations belonging to
that subset will be satisfied by the sequence X, for k>0, While
it dis not necessary to have approdimations B, being close to
F o) to obtain convergence in practice (101, theoretically
superlinear convergence is guaranteed only if Be is sufficiently
close to F'(te), where 2. is the solution to (1.1). This suggests
that if the algorithm is not making any progress (e.q. the norm
at  the Function is not being reduced) its behaviow may be
improved by re-initialisation of By by finite differences, (Chen
and Stadtherr [73). We also have found re—initialisation to be
very wsetul using the following procedure.




i.&. the one with minimuwn norm for fi), if both the following
conditions holds

¥

al Atter 10+n consecutive iterations, the norm of the function

Has  mnot  been reduced at least by a factor of 0.95 of the
initial value.

b Bince the last re—initialisation, the norm of the function
has, at least once, been reduced by a factor of 0.95 of the
initial value.

This re-initialisation is particularly suitable when s0lving
3 eeting problems because if the funchtion is sufficiently
it is posible in (2.11) to perturb more tham one variable

simultaneously  and thus reduwwe considerably  the number af

function evaluations nesded to obtain Be (see Curtis,Fowell and

Feid CEE1),

i

tep pe
Step 4 of algorithm 1 involves the solution of & linear
system for finding the step p,. as

Brye poe = —F {0y v 2.17%)

For this there are three alternatives:
a) invert R,

b) have available B,

) have available a factorisation of B,..

irst alternative is not practical. Broyden (11 suggested the
alt native b, For this the Sherman-Morrison (241 formul a
wsed to obtain from egn (Z2.8)

(B~ Hu ye) v TH,
Fica s = iy 4 s e (2,145

Ve TH ;.:Y e
where
Hi = Bu-t . (2.15)

There are numerical problems related to the use of (2.14). Small
denominators  or wmerically  singular approdimations  Heea can
ocouwr 1n sone circumstances. In addition, ouw own preliminary
tests for  this approach did rnot  show promising results, and
therefore we abandoned it. It is possible to have alternative o)
using operations of the same order as alternative b, Gill and
Murray [251 describe a method based on the factorisation

Fo = 0. R. ‘ 2.16)
where Gy ig orthogonal and Ky ig upper triangular. This approach
has been used by More,Barbow and Hillstrom [261. While this is a
Very sate procedure numerically it has the disadvantage of using
S22 n® storage locations (as opposed to the n= nacéssary for

#rnative b). It is possible instead to use an LU #actoriéation
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Lty Liie Wla iy al b Ll Uule Lo DElnel La/ 4. 1l s requlraes
gin=)  operations (same as alternative b)) and also n?® storage
locations. This approach has been used by Chen and Stadtherr [7].
We have selacted alternative o) for our implementation.

A disadvantage of using an LU factorisation is the
possibility of bhaving & matrix Be. for  which there is no
F tion (this could be due to an inappropriate permutation
Fows of Be or even to the singularity of Bu). A solution
problem has been proposed by FPaloschi and Ferkinsg  [287.
natrix Be can not be factorized it is replaced by one which
\ closed to By which still satisfies the secant relation
and which can be factorized. This is achieved by a modification
to Bernett s algorithm.  The initial factorisation is obtained by
using the standard algorithm of Wilkinson and Reinsch L[291.

“. 4 Ghoosi

Step U of algorithm 1 has been proposed by several workers
to improve the pertormance of the methods. It has been shown that
provided {luw} converges to 1 then the super—linear convergence
properties of the method remain unmodified (see Dennis and  More

CZEO .
Broyden [11 proposed to choose 1. such that

Pifaewa b = T HE LT 2.18)

Me: alfe  and Ferbkins [2117, when implementing Broyden’'s method
s L g (Za14d) f ound that i+ HEE ST R SV then the
approdiimation  Hysa becomes numerically singular. They suggested
the use of 1. to ensuwwe that

Vit eawa b o= 10 P4 . (2.19)
Numerical results have shown that (2.19) is better than 2.18)

(e Bogle (221 and Faloschi D121 .More and Cosnard (51 suggested
using 1y to kesp control on the size O0f Pu. Since Guasi-Newton
methods are based on linear approxdimations it might make sense to

restrict moves from the cuwrent point to an area where the linsar

approximation is likely to be valid. More and Cosnard (5] defined
e = omasd (10,10 Tidet t)

2.20)

Qrers = max (e, O Vixuw i 1) k=1
and thern used 1, to ensure that

H :]‘.3;::: O dh: n (2.21)
Numerical results for various methods bave confirmed the value of
this rule (Faloschi [121). We have used in ow implemsntation
moditied versions of (2.19) and (2.21). We define

W T e (

~
~
i~

b g % ow o 33-(,-,;<)
Fae™ = {PansPamyan s gPmn)

t iF M = Q

YAy
e w Al

e =



oAl bRl L LAWY Ly 1 s

o ensure simultansously
R e ] Oy : - v ) (3,2

» A=l LB, ... n 2025

Pifiea bt <= w lidgld (2. 24)

CIE 03,
“The “reason for using (2.2% instead of (2.71) is that this
choice is scale invariant for changes of the form  (1.17).
weire made to obtain, instead of (2.24), a control which
1] invariants but none was found to work as well as (2.24).
g should note that (2.24) can make the code fail if Heo 15 inside
gilion containing a none-z local minimum of 11411, We have
inoowr implementation, t and w=100 .

2.5 DM

Lmple

A facility has b provided in our code to allow bounds to
be placed on the variables to restrict the region of search for a
sl ution. The iterates generated by the code gsatisfy the relation
As A Dxldy = by, o, i=1l,dh. .. ,n where a, and by, are user-—-supplied
constants., To ensure this,l, in (Z.9) is used it possible. The
sar for this is that we would like to keep the direction of
the Guasi-~Mewton step. In doing so we ensure that if x4, satisfies
#a  linear subsystem then, since d... (taken with the full Duasi-
Newton step) will also satisfy the linear subsystem, any My,
taken with 1,#1 will A A If the point x. is already on a
boundary and Xe.a is predicted outside, no reduction of the step
is possible and then we have no choice but to abandon the Guasi—
Mewbtorn direction. Im this case we project the step onto the
Boundary .,

Convergence is tested by ensuring that

HEE SRSV oeps . (D, wE)
While we are aware of the scale dependence of this test and the
darnagers  of its use with badly conditioned problemns we have not
found a better one, from a practical standpoint. There are some
alternative proposals in the literature (see Hioustelides C3I11)
but  they are of little practical use for chemical englneering
problems where the evaluation of f(x) is EHPDernslve.

Wes will propose  1n  this section an  internal scaling
procedure  designed to improve numerical conditioning. We will
first introduce the concept of condition number for systems of
nonlinear equations, discuss its relation to methods of the form
2.1 and then propose a scaling procedure.

S.l The condition number

The condition number has been introduced as a measure of
numerical conditioning for general matrices (see Todd [321y. For
a nonsingular matrix A in L(RY) the condition npumber E(Q) i
detined as

EAs) = 1iall tia-r A

11



3.2
it is a well known result that i€ B in L (R0 is close to A in the

sense that

PIATLL LE-AL 41 3.3

then B is also non-singul arsg and for b#0 the solutions M. of 5.2
and v of

v

B vy = C (3. 4)

satisty the sstimate (see Rheinboldt [33D)

VIS 2] FTBR-AL Vib-o i
e e et L e o i i o o 1 e i s sy st s s s s b i s e b v e e s s s Yy (F.5)
DMl ) I-ECA P iB-ATI/VIAL HE AR bt

fAs an example of the use of this number let us assume that in
s0lving numerically the equation Ge2) we have found an
Approximation  va. to xe (the exact solution). I+ K(A) is a large
nunber then the fact that A ve is close to b does not mean  that
Yo is close Lo w.; we can deduce this using (3.5) to obtain

VIV HIR w Ry SRRV B
erere seane sewes et reren et sonin v meon ot } ( Q ) s s s o e e
HE B B P

In general we can say that the smaller EAY, the better the
result  obtained in solving numerically (Z.2).  This important
result  has led to methods to transform (3.2) into an  eguivalent
linear system having the same solution but smaller condition
rumbier . '

The concept of condition number $for linear svstems has baen
gensralized to systems of nonlinear eguations by Rheinboldt [ 33]
follows.For a given function f:RO-:Rn, closed set © in D and
point = in C define

s

i

Wit 0,z sup <t in L0, E-EIRE NGBt R - B I o

woin €

L

vt ,Cux) = dinf &t in L0, Ya i Gy —F(zy b=t in—z2i i3
2 oin C

and thern,define the localired condition number

PovF,CLz)
o if Odu{f,Chz) and v§,0C,2)4
E(f,C,z) = wit ,C,z) (3.7)
otherwise . ‘

It can be shown that (3.7) reduces to (2.5 if § is a linear
furmction. Rheinboldt [33%1 has shown that if £ is a continuous
function in D and if the Jacobian F 0 of f is nonsingular in D
then for any eps>*0 there is a deltar0 such that i

C o= & in R, 1 ix—z!l<=deltal (3.8)

12



v T, Cyz) — VIF (z) it | 2= eps (5.9}

TF,Cyx) — IR @)=y vy oo eps 3 T.10)
and  theng asymptotically near =, the conditioning of the

norlinear  function + and its Jacobian F'(z) are the same. n
aquivalent formula to (3.9 is obtained for the non-linear case,
and then the condition number for systems of nonlinesr egquations
plavs a similar role to that for linear systems.

As  in solving linear systems, in dealing numerically with
the problem (1.1), one should try to solve a system for which the
condition number is small.

.

F.d OQptimizing the condition number
The nunerical performance of algorithm 1 is affected by the
condition number in two different ways:
a) The conditioning of the problem 1.1 itself, as explained in
section 3.1 . ‘
b)Y  The conditioning of Bu. since step 5 of algorithm 1 implies
solving the linear system

Bun pun = —f (ku) . Z.11)

We will show that it is possible Lo reduce the condition number
of Bu. by using an internal scaling procedure. In addition, if B.
is  close to the real Jacobian F7 (0 (which is not necessarily
true, even when convergence is achieved, see Dennis and More [61)
then ow  discussion of section 3.1 shows that we will also be
improving the condition number of the problem itself.

& now define a property for nethods implemented using
Algorithm 1 which will be tha basis for our results. For a change
of scale of the form (1.12) define

By = De B D, . (3.12)

I+ a method satisfies property % then we can obtain the
approximation R.  for the Jacobian in the new scale just by
muyltiplying the approximation in the original scale by the
staling matrices. It has been shown by Paloschi and Ferkins [2]
that property 5§ is a sufficient condition for a method to be
srale  dnvariant for changes of the form (1.12). For a method
satisfying property 5, it is easy to apply a change of scale of
the Form (1.12)3 and since in general

EADe By Dyot) % K (B, 3.173)
wa could try to obtain matrices de and D, such that
EADe By Dy—2)  K(EL) . Z.14)

Iri the JFollowing theorem due to Bauer [341 we will +ind the
theoretical basis for ow choice of De and D,..

BEM 2.1:  For a nonsingular matrix A in L (R
onal matrices D, and De, i+t the
used, then

and nonsingul ar
maximum norm for matrices is



min K8 D) v F.16)
Dz

are achieved when D, and Do are determined from

S.17)

AT e = Dp e S 18)

(AL means the matrix formed from A by taking absolute value of
its elenents and ev=01,1,...,11).

Therorem 3.1 shows how it is possible Lo minimize  the
condition number of  the approdimation by scaling either the
variables or the function. Conditions for achieving the same by
zcaling simultaneously the variables and the function are
available but since that eigenvalues are reguired to determine
De and D, the procedure is quite costly.

Al we need to apply these results is to be able to obtain
EBv in the new scale, given it in the original one. In fact, it is
sutficient that & method satisfy property 5§ with D,=I when
sualing the function or with De=I when scaling the variables. In
either case B is obtained by multiplyving the scaling matrix
according  to (Z.12).Newton's method and the mathods proposed by
Faloschi and Ferkins [2] satisfy property 8 for all k.
that we can optimize E(BO) at all iterations using an  internal
sizaling based on Theorem 3.1 . Broyden's method only satisfies
property S5 3Ff De=] (ses Malathronas and Ferkins {51) which means
we o can  only optimize F(B) at all iterations by using Ffunction
scaling. I+ the initial approdimation Fe is obtained by finite
differences and all components of o atre away from the origin, Be
zatisfies property 5 (see Paloschi [361). Thus we can optimize
Foile) for any method in which Ee is ohtained by Finite
differences by scaling the variables or the Tunction.,

The scaling procedure we propose is as follows:

This means

- brale the variables at the first iteration using (3.18)
- Scale the function at every iteration using (3.17) .
Z!

We will use the same set of edamples as Hiebert [61. In
that report an implementation due to More and others [261 of
Fowell ‘s hybrid method was fournd to be the best overall. We will
use this same code as a basis for owe COMParison.

4.1 Methods to be compared

Three methods are compared. Method 1 is Broyden's method. An
implaemnsntation of this method was also tested by Hiebert. Method
< ds the scale invariant method proposed by Faloschi and Perkins
L. The last method will be the hybrid code of More and others.
AlLL  computations were performed on a VAX11/780, The AFfirst two
methods  are  our own implementations, and contain the features

described in section 2. Method 3 is taken from the IMSL library
L1531,

14



ST s meEit BRE OF problen
The basic set of exanples cofisists of
each one having a standard initial point.

18 different problems,
The list of problems g

=g
function, n=4
Fowell ‘g badly scaled function
D. Wood's 4unctimn, =4

Hellical valley function, n=3
Fo Watson’'s function

G. Chebyquad function

H. Brown's almost linear function
T. Discrete boundary value problem

J.o Discrete integral equation function
Fo. Trigonometric function

Lo Variable dimensioned function

M. Broyden's tridiagonal function

M. Broyden’'s banded function

A. Rosenbrock g function,
Bo Fowell ‘g singul ar
C.

y =2

They are collected in the MINFADE test
pEobl

routines VECFCN and INTITFT,
Fins Foto N are of variable dimension.

9.2.2 The selected sets of problems

Two  sets of problems have been constructed.

which will be called the "general set", consists of 34 problems
takern  from the basic set, 21 having as initial point e {(the
stanc ( oned 18 with 20x¢ and 195 with 100%60.. In Table 1 we
summarize the problems in this sel.

The  second set will be called the "chemical equilibrium
set". It is summarized in table 2 and consists of 12 cases based
o problems 0 to @ with different initial points. These two sets
of problems were used in the Hiebeert report.

The first one,

For  the purpe

=

of testing the behaviour of methods wnder
different scaling conditions a diagonal matrix 85, ., is defined
AsE ‘

loGaolSm,alsy = MEC2i-n=1)/An=1)), lo=i<=n . (4.1)

To compare the methods Fegarding its efficiency a number Cy

is defined for each method on each problem as:

18] if the method failed to converge
Ca

Neo/Ny if the method converged

where j indicates the method, Ny is the number of Ffunction
evaluations used for method J oand N is the number ot function

evaluations used {for the most efticient method of ail1l on this
particular problem.

We will first discuss the results obtained with the general

set of examples. These results can be found in table 3 and table

4 for single and double precision respectively. Théfperformancas;



P ELLSLUN Lalses metnod o to improve much more than the others
indicating more dependency on the precision for method 3. However
method 2 plus  internal scalinge is still better in terms of
robustness. Regarding efficiency our implementation is better
than method % in all cases.In single precision, the use of the
internal scaling causes afficiency to deteriorate when the
functions are badly scaled.
The value of eps in equation (2.25) was set to 10-9, This is
A sate value for the equations in the original scale. When the
#quations are badly scaled this convergence test failed as  shown
in table 5, The results in table S are shown in terms of number
X when the convergence test failed. The first row (Case 1)
those cases when the code had converged but did not
detect it(we do not consider thig a failuwre). The second row
(case ) indicates cases when the cade returned as converged but
had not in the original scale (we consider this a failure). The
numbers in parentheses are those for double precision (when none
is indicated it means there was no change). For method 3 the
Lonvergence test is based on an estimate of the digits correct.
This parameter was set to & atter some trials, since this value
showed the best results.

The use of the internal scaling procedure improves
considerably the performance of the implementation. Method 3 also
has  an  internal scaling procedure but its use worsens the
performance of +the code. This was found by Hiebert [&] and
confirmed by Chen and Stadtherr £73. Both of these workers also
observed the bad pertormnance of the code under badly scaled
conditiors.

The cohemical equilibrium set of exampl es

consist of 18
problems. The results for

this set are preserted in tables & and
show a similar behaviour to that found for the general
regarding the improvement in rabustness due to the use of the
internal scaling. This set of examples is badly scaled by its own
(while the first set is artificially badly scaled with (4,1)).The
Fesults for this set are consistent with those which ong  woul d
erpactythat  ds,the internal scaling procedure does improve much
Mmer & the scale dependent method (Broyden) than
invariant one. We believe this
& set naturally badly scaled.

-F

the scale
is produced by the fact of having

\
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Frob Orig Dim Frolm Orig Dim Frob Orig Dim
nY e pirob prob

19 L 10 B7
20 M 10 a8
21 I 10 a9

o 2 40

b
I
o

-

U1 B Ry e
o
f

PE-SpTN A

E 23 B 4 41

& F 24 C & 42
= 25 D

4 47
K 44

26 E
27 F
26 F

& 4%
9 46
€] 55 47

~N
LN B DO bR DR

12 H 10

G 6 48 10
123 H 20 G 7 49 2
14 H 40 .

H 10 50

15 I 10 I 10 51

1é J 2 J 2 52 10
17 J 10 J 10 SE 10

ZICrAGu-sIooomppo»Zz Iz r

16 k. 10 k: 10 4

Table 1: List of problems and dimensions for the general set

Frab Orig.prob Dim
1 0 2

2 8]

! F &

4 F &

5 F &

& = b
10

LO

IS
b

7 & 1
s G} 1C
2 8} 10
10 (] 10
i1 8} 10
12 ] 10

Table Z: List of problems and dimensions
for the chemical eguilibrium set
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unscaled
var.scal ed
func.scaled

f—y
0
L m .
~N
s8]
0

-
o
-
D
e
o
in
o
I
]
—
o
P
~N
o

var.scaled P0.85% 0,87 0.87 0.91 0.68
0,88 0,920 .77 0.73 O.63%

func. scal ed

i TaTAL P 0.B9 0,88 0.84 0.8% Q.70

I
oaverages of oy | unscaled 0.9 0.8 0.6868 0.85 0.74
I

jﬁSlmmarv of re%ult% ¥or Lhe general set (single prec1s1un)

-
P
ot
rJ
Lo

fails i unscaled H ] ] S
tovar.scal ed H ] 14 16 & 16
v func.scaled b

P TAOTAL ! 55 47 4 25 25
averages ot oy | unscaled 0.9 0.d7 0.89 0.85 ©.78
i var.scaled V0,83 0,87 0.90 0,88 0.71
V func.scal ed 091 0,86 .89 0.87 0.79

Q.87 Q.89 .87 Q.76

o
T
s
@

.4 %ummdry o{ results for the u@neral swt (doublp prec:510n)

m e ¢ ot o d

1
Case 1 & i 1 2 VA
] i 1

; 1 owith scaling!

2
' i
: DR e i e R : W St beid e Sabes S4me Srins Meses eter rMem TINl SETE e MWes Stes AAVK 190N MM $00YT AN MAM W Eim i ne deren eAr FHemt et Sries WEOSs MAEMY Siee Sredm Sris PROVE BREY Meres miee e :
Vounscaled i1 H C 0O 0 Q 21300
: P2 ] O 0 0 8] i
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: P2 O 0 0 8 IRy
; RAB4C SRSt Ge40s trets VRS L0Me AMhe arbas tnems meme emats ase Seese SEe : —r i phess e mms Safbs sties areir Feses Seese Beens e e e e e e :
i func.scaled i1 : 160 1600O) 20€00) 2500) 4(0)
; P2 1 140 1¢2y 2 ZC0
1) 1] i []
! [rStp L . ' P ! e aree b G Seim GeEm 6304 Shvie bires Sernt bhem famin hemem Seate YO Semmé G S Armee AReT Seele SPEe AIed POTER SAGY SHOSS ubih S b S Vo b e !
Table :Failures detecting convergence for the general

set in single precision, () double precision
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1 2 d 1 2 T3
t

rwith scalingd

func.scaleaed

i
|
H
Vounscaled H 4 o 5 & 12
i var.scal ed H ® 3
H :
1 I
)

TOTAL : 22 23 1% 19 39 [
[}

averages of oy,

uriscal ed

: Q.99 O.8% 0,91 0.84 G.73
i\ var.scaled

i

]

.82 0.81 O.27 0.96 G.72
func.scaled 0,82 0.93 Q.85 0.9% G.81

TOTAL Q.90 0.85 0,90 0.91 0.74

& {Dr th "hem:ra] equllxbrlum %9L(:1nq]e precision

iwith scalingi
s 5 12
G A 4 & 11
4 )
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unscaled
var.scal ed

func.scal ed
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3]
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-
8]
[
e

L5 0,83 0.598 0.88 .51 H
var . scal ed 68 0,72 0.56 0.84 O.63 H
func.scal ed :

[l

28 0.96 0.86 .97 Q.66

0.88 0,82 O.%93 0.90 Q.61 :
i
1

averages of o, | unscal ed
i TOTAL

JikResults for the "h@nlcml uqu1]1br1um set (duublL precision)
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