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The numerical solution of systems of nonlinear equations
i the +final stage in the computer simulation of steady state

Marmy mathods are available, based on Newton s method,
] by attemplting to emulate different characteristics. of
shiar approdimati ons. None of the available methods achieve a
v important property of Mewbon s method,its invariance to fun-
ction o varisbhle scaling.

- | e ‘

W

In this paper, we propose scale invariant methods (under
3 with diagonal maltrices for the variables).The new methods
2y similar to the well Enown Broyden's method {19651 and
2:xhibit similar swerlinsar convergence properties. These are

- by extending the convergence results of Broyden et al

Sufficient conditions for a rank-one Ouasi-Newton method
tor solving systems of algebraic nonlinear equations being scale
invariant are derived. Methods which are invariant under changes
in  the scale of the eguabtions with a general matrix and  with
matrices for the variables are proposed. The cdnvergence
results of Broyden,Dennis and More 192731 are extended in  order

C 5L Linear convergence of the new scale invariant
; Msive  numerical tests of the proposed methods are
performed  showing the superiority of the rmew methods especially

wcaled” problemns.

di agomal

o "hadly




Wer are concerned with the problem of finding a vector 1.

{which will be assumsd to exist) such that for a given function

My Hae 18 & solution of

F () =0 (13

v

Almost all methods for solving this problem are
wually iterative., They agenerate a sequence of veclors {12 in
Fowhiaoh provided the method suo zdds, Will converge Lo M.

I H X is the Jacobian of the function ¥ evaluated at
+ linear function we  can  sese  that for & Ome

: Hope to thie solution, i+ F ool is
nonsingul s, defining

Sh Ci) T F Gl (2
allows us to find He from x. as
e o pi (3

I+ 4 is not a linear function but ¢, ig sufficiently near e we

can gxpsct that detining

Hagas = Mg, o+ @M (4)

[ T
PR I BN

p2s

P
s

wWwili provide & better approgimabtion to H oy i. . IR RTINS
LISV X B Thi s Mewton ‘s method and thus p™N  is

e Mewbton step. A overy important featuwre of  Newton's
s dts invariance  to function or variable scaling. Given
matrices 5, and S

H
t

2 4 Te

o BL0ou (3

Fim) = S5 (1), (&)

[ - U r ds the seguence of vecotors generated by Mewtorn ‘s method

0 unscaled problem then i+ {x.) denotes the segquence
far  the problem scaled wsing (5 and (6) we can see

s

QEN@W&t;I

that

M WD, M o4 for o all k. (7)

Bince the evaluwation of the jacobiam will often be Mpensive
Newton  like methods have been developed which do not need to
evaluate F{x). If B is an approdimation to F’(¢.) then if we
define

P = =Eh,=d f " ()

we  will  have an approdimation to p™ and thus we can predict a
MEW approadimation M., as

E [ S 8 =N e -+ D e w ( ':; )
We will denote f(x) by f,. arnd then define
Yo ® Fay = Fy (10

and if Wwe assuine as before that § is a linear function then we



can easily verify that

rnatuwral to

SEE-RPC S
LTy

arid it owill
Jacobian to

gach approd<imation Buees to the

Frws Dr = Y (11)

This relation betwsen Rewa o, P and v i3 called the secant
lation and is the basis for & very important class of methods
systemns of nonlinear eguations called Ouasi-Newton
Fach method in thi - ] 5 gensrates & sequence of
) wrooand a quarce of maltrices (Bl satisdiying (8, (9}
(113, This ol aof methods will not in general gsnerate  a
sequance  of vectors (3.0 invariant to changes of scale of the
form (35 and (&) i.e., (73 will not in general be satisfied.

We will obtain in section 2 sufficient conditions Ffor a
i-MNawton method being invariant under function or variable
limg. We  will proposes in particular a method satisfying the
conditions  for scale invariance for any matrix S and  diagonal
matirices D, .

A e ension to the convergence theory of Broyden,Dernnis and
More D19731 0 will be proposed in section 5.0 This will in
suwlar allow us  to show supselingar  convergence  for  the

srale invariant methods.

L 4w will present a description  of o
of Quasi-NMewton methods and finally in section 5
1

.
W

AL

itmplamnentation

wer i L1 e il SOme  NUmer Lo

WO i

the Jacobian of §F evaluwated in the new
] of scale of the form (5 and (&) ) and
Jacobian in the original scale is given by

i) = S F/(x) 6, (12
The Jfollowing lemna will show that this relation is  the

sis for a sufficient condition for a Quasi-Newton method being

@ invariant.

Given the changes of scale (5 and (&) and seguence of

(
nonsingular matrices {(B.} satisfyving the following relation

By = Dy H, 9,.,7* (13

Mewton method detdimed by (8, (%) and (119

L. Lis scale invariant.

Sinoe e satisfies (7)) it will be sufficient to show that if
Wy Satisfies (7)) then it also does Hepes-From (8) and (13) we
can show that pe = 5. pw and then dfrom (9 follows that Xees
cmatisties (7).

y o dimportant ola of Buasi-Newton methods is  obtained

Bover :
the following rank-one updalte formul &

wWith

Blrws = B, + a, bT. (14)



Sirce (11) must be satisfied it follows
#io= (Y. = B pu)
and by

We then have a family of methods which can be characterised with
a ssguence (v, > in R using the update formula
(Ve = B ) vl
Bliea s = [, 4 e (153
Ve P

By using lemnna 2.1 we can now establish swfficient conditions for
a rank-one Quasi-Newhton method of the form (13) being scale
invariant.

Lonsider a rank-one Ouasi-Newbton method generating
seguences 0. and  {Bw) such that 8),((9) and (15) are
gatisfied and that Ffor any change of scale of the form
(H) and (&) Be is such that

Bo = 5 Beg S,

Thern i+ {ve is such that

Y g T Vi ¥ = Pl “ for all k (16)

satigfies (7)), i.e. the method is scale invariant.

wer can prove using induction that (B} satisfies (13)Y. From
the hypothesis By satisfies (13) hence we should show that
provided B, satisfies (173 thaern 1t also does  Buag. This
follows by using (1é&) and the hypothesis. How by using lemma
2.1l we can show that the method is scale invariant.

We  will now show the i

nce of methods satisfying  lemma

ey

2. when  we  restrict the scaling matrix 8. to be diagonal . The

tollowing notation will be used for a general vector v

RV ) denotes the i-th component of v

*

antd for a general matris A

denotes the element in row i, column j.

Detine the pseudolnve a* of a real number a as

&
+
i

17a if &#0

Given the sequence O3 define the sequence {v.} such that for
each i, 1 <= 1 <= n

Evidy = [pedy ([, = (17

[
~d



n
B

The seqguence (Vi) defined by (17) satisfies (1&).
Fe ooty

ﬁzuﬂimtgwui (Csne 180 2208, puld. [(8,. #.18)=,
Since 5, 1s restricted to be diagonal then

Evieldy = 05,740 Ipwndy (IS5 L=
and since 5, is nonsingular it follows

Cvds = [veda/L08, 0,0,

hence (14) is satisfied .

T. CONY

ENCE RESULTS

In this section we will extend a convergence theorem of
Brovden,Dennis and More LI9730 and apply the result in order to
show local superlinsar convergence for the scale invariant method
PEOpRo in the previous section .

1o (Broyden,Dennis and More [19731,Theorem 4.3,pp.35%)
Let F:R? —wk R be differentiable in  the open.,convex

Xl D and assune that for some s. in D, F o) =0 and F (L)
is nonsingular and for some

R S O R S B A - T RV SO A (18)

vor o oall xoin D.
Aasuine there exist W20 and a nonsingular symmetric matrix M
such that

M v MTt opd L ) M I FUR IR - S A S o B S T O D,

+ o all s« in D and B, such that T BEL-F ()1 i9d For  some
dx0,  where p, is defined by (8) and sge. by (9. Then

wod detined by (8),(9) and (15 is well defined in  a
el gh wlw Of Hoaa arnd the segquence {2.r 1s locally and

superlinearly cornvery

the

2l DO M .

I+ in (15) we replace vy by o Broyden's [19651 method is
obtalned. This method is scale invariant for changes of the form
() (bhat is,  scaling the function), but iF a change of scale of
the form (&) is  applied, a different iteration seguence will be
obtai ned (il % D, is orthogonal). The new update proposed in
section 2 also retains the invariance with respect to transforma-
tions of the function which Brovden s method posseses.

We will consider choices o quaences vyt such that there
eist a seguence of matrices V. ardcl

-

[

il = Vi pad. (200

With vl defined in this way we can establish  an
equivalent condition like (1&6) for (Vi) as

Vie = (5,47 VY, 3, —r (21)



We will now extend theorem 2.1 for the case when {ve) is  of
the form (Z20) by proposing a relation similar to (19).

FrRP 2R gatisfy the conditions of theorem 3.1 and
let M be a sequence of matrices such that for a fived
symneti-ic positive definite matrix V. the following relation
is satisfied for all k

L L o e - S . A [ P [} k]
:me“v”-.n—u deillhwwi—hwll’llﬂk et 4 (e

for gome  real positive u.  Then the method defined by
(82, (9) ., (15) , (20 arndl (219 ig locally and superlinearly
convergent.

P oot s
Since the method is scale invariant it will be sufficient to

show convergence for a particular scale. Define the change

of scale

We can ses that

. . s . L= N . Voo b1 - e 1 — L
T I I R Y I RV VN G« PV R I AVl R SV Vel

v b . Pt o o e vow s 1 H [ 1 i fod I
IRV IS N VISV Pt tim (i, t /Ry RIIY, ) ] iy R Pt it

Mow detining w, = u IV, 1722
it Ffollows
::v*wi/ﬂ Ve . vwi/ﬂ DH:: ﬁm

_— i e E I I 01 g - [}
Ll MaEH L 0 s ™Mt 1 41 gl 13 L IVMRYTE b,

We now apply theorem 3.1 identifyving M as YV, —-1-s2

We will naw show that (v} as defined by (17) satisfies the
nditions of theorem 3.2, l.e. generates a scale invariant rank-—
P Buasi -Newton method with local superlinsar convergence., The
salution vector xe will be required to have no zero components.

e ds wmuch
saguence (vl defdined
Frood

it has no rero conponents then the
by (17) satisties condition (22).

The matrix Ve in this case is dhiagonal y its elemants are
EVacldaa = (Iuud)=
Detine Ve as the diagonal matrix defined by
Valia = (Ex.dg3d=®
Ve ds symmetric and positive definite since €. has no
il

EErO COMpBanents. Since X, must be in an open set containi
Mo n we can assume 1t to be suwificiently small such that o



has  also all its components away from the origin. Thern we
can put

Ve dsa=IVades = (Il @-Ux 00 (0 aldilug I =

e

oMy~ Da ) (It e+l da ) (I ddlu, )=

and we can show there exists a constant g, such that

(e ds v I 12 (W I 0x I8 = g, =
hence by using the Frobenius norm for matrices and since Ve
and V,, are diaqgunal

~

R T = (U S WLV PR VI DA B
4 mo f,

~
TEoGum DT~ da 12 gy %3,
4 wma

I we define g2 = madimumn {9, then it follows

E R R Y o

i immediate.

WE G

We:  will present  in this section ow implementation of
reral Buasi-Newton methods gererated with the updating formul a
" In particular, Brovden s (194651 "good” method will be a
particul ar  case (V™50 as wWill the scale invariant method
section &.

proposed in
4.1 The initial approximation Be.
obhtained using a finite difference approximation to

af  F evaluated &t He. For this purpose a
ad i1s used defined as

thie

|
1B it Tlxelstl <= 1.E-&

Lo b=y

-
b
-,

o
1
=
P
==
-
-

Bao obtain in this way will satisty

« for k=0, provided

PhHeds b wm LLE-6 , ) d=m i o= op

Uibrtaining the Quasi-Meswbton step

19 b = ~f at each
iteration. This have been solved in the past by updating the
inverse of Be using the formula of Sherman and Morrison  L[19497
(Broyden LLe6E1) . More recently, a UR factorization of B, has
been used (More and others [198501), which is claimed to be more
stable but  with the disadvantage of using n®/2 additional

We  must  solve the linear svstem By




st o age. We have used for our implementation an LU factorization

of B (also used by Chen and Stadtherr [19811). This does not
require additional storage and ow numerical “parience  suggests
that it is reliable.

The initial matrix Bg g factorized into Le and Usy Lo being
lower triangular and Ue unit upper triangular. If we find that Ee
is  singular (or numerically singular), " which results in a small
diagonal element in e, we simply replace the small element with
one which does not make Be singular.  On sach iteration L. and U,
must be updated according to (15) and for this we use a modified
version of Bernett’'s (19651 algorithme which can be found in
Faloschi and Perkins C198617. The modification has been specially
designed to avoid Lee: being singular.

More  and Cosnard L1791 haver proposed to control the norm
of the step at sach iteration to satisfy the following relation:

o = max (10,10 [iugiil
e = max s 1O Tl 13, k20,
Ta achieve this, instead of (8) the following is used

D = lamda Hy~1t F (4,0 (24)

whare O < lamda <= 1 is chosen to satisfy (23
simple control, :
ave modified it in order

us e

is scale dependent and we
scale invariance. We have

el <= Ldnd, , 1:

whisre

50 1F Uweldy = O

H

Codye Ja =

SO e da b i e dy #00

The constant lamda is then chosen in (24) satisfying (25

IR | -

initialising the approdimation to the Jacobian

We have obtained a considerable improvement in the performa-
nece  of the code by reinitialising Be using {inite differences
when good progress is not being made. We consider good progress
ig not being made if after 104n consecutive iterations the norm
af  the function has not been reduced at least by a factor of 0.9
last reinitialisation the norm of the functiorm has been reduced
at least once by a factor O.9% . The point used for the reinitia-
ligation is the one with the minimum norm found during the itera-
tion process.

4.4 Other implementation details
A oproblem is considered to be solved when

VL Gty dy b o L E-7

l_‘}')



A simple control on the norm of fF¢,,) is used such that

et Gaed v e 100 T (de)

constant lamda in (24) is  used to reduce the step if
sar'y to achieve it. This control will make the code fail to
converge  to  a solution of (1) 1if an initial point close to a

[ mirimuin  of HER SO R is specified. The use of this
rule causes loss of scale invariance

W
b

Hi e " 19621 did a conprehensive comparison of different
codes  avallable for solving sy ems of nonlinear eguations. We
wi il use  the same set of examples which was proposed by
More,Barbow  and Hillstrom 19781 and was also used by Chen and
Stadtherr 19811, In the Hiebert report an implementation due to
More and others LL198%1 of the hybrid Powsell "s method was found to
ez ) on the general set of problems. We will use the same
code O COMPAarison.

9.1 Fethods to be compared

ar

Im flition  to  the scale inveriant method proposed in
=ction & many  more  methods can be found. The Following
definitions will also give seguences {ver satisfying the scale
invariance property (1é).

L e P [ bt d ] T {(2é)

Evieds = [pyeds (Lpeli)= (27

Waeda = [y ds (L ~Xeoli)® (28)

The methods given by (27) and (& are also scale invariant under
atfine changes of the more general form

g o= B, (x-b)

foar a constant vector b.

The wmethod given by (27) will be local superlinearly
nvergent provided the vector pe has all its  compornents away
no othe arigin while the one given by (28) will require (Me-mgo)

e
having  all its components away from the origin in order to have
suparlinear local convergend

We  will compare these fouwr omnethods with the colassical
Brovden's "good" method (vieps in (15)) and the hyvbrid code of
More and others [19801. The methods will be nunbereds

Method 1 Vi by (E2é&)
Mathod 2 Ve by (17
Method 3 Ve by (G
Meathod 4 Vi Dy
Method 95 Ve, (Hrovden s “"good” method)
Method & hybirid method

Methods 1 to 8 are implemented using the same code (only
differing in  the way v, i

obtained) in order to minimize the
(auch as precision in  intermediate
iorms) on the bahaviows of the methods.

e of edternal factors

calcul at

intluaeng

10



ALl computations were performed on a CDC CYBER 174 in
singles precision.
.2 The problems

Ga.2al The basic set of problems

basic set of examples consist of 18 different problems,
having a standard initial point.

list of problems is:

oy

weanbrock ‘s function, n=R
"wosingular function, n=4

‘s badly scaled function, n=2
function, n=4

al valley function, n=3

s functidon

G. Uhebvauad funclion

Hoe Brown’'s almost linear functiaon
boundary value problem

J. Disorete integral eguation function
B Trigonometric funchtion

L. Variable dimensioned function

M. : s tridiagonal function

N. 2 s banded function

They are collected in the MINPFACK test routines VECFUN and INITR,
problens F oto N are of variable dimension.

e ey 3

Se.d The selected sets of problems

Two  sets of problems have bheen constructed. The +irst one,
which will be called the "general set”, consists of 54 problems
taken from the basic set, 21 having as initial point *o (the
standard Orie) , 18 with 20x4 and 15 with 100Xeo. In Table 1 we
summarize the problems in this set. This sebt of problems was used
in the Hieber port and also in the work of Chen and Stadtherr.

The second set will be taken as a subset of the general set
arnd thus will be called the “general subset”, It consists of the
16 problems listed in Table 2 &all having the standard initial

aiit. ALl the problemns of this last set were selected such that
all methods considered converge from Lhe standard initial point.

Results

For  the puwpose of testing the behaviour of methods under
different scaling conditions a diagonal materix S, i defined
ams

lmgio[Bm,nlii = m((ﬂiwnwl)/(n~1))? Taimiemny (29)

To comnpare the methods Fegarding its efficiency a number o,

is defined for each method on each problem as:

0 it the method failed to converge

fi
w

Mo/ if the method converged

wheare i indicates the method, Ny is the number of function
evaluati usead for method i and ne is the number of function
evaluations used +for the most efficient method of all on  this
particul ar problem.

11



The first results are presented in Table 3. They have beeen
abtained wsing the general set in the same way as in  the
Higbert 's report. The problems are used in their original form
plus  the following two cases: {for testing a set with variables
bhadly scaled we used (as did Hiebert)

and for function badly scal ed

whers Se, . is defined by (9. In all we have then 167 problems.

The cond set of results 1is presented in Table 4. For this
we have used the general subset and to test the behaviour under a
garadual deterioration in the scaling we have used

Ty = £ {8n,m ®)
tor m=0,4,8,12,and 146, which gives then a set of BO problems.
The storage requirements for the methods is:

methods -5 N2 a4 8ny

method 6 M= a4 29 +10R

For the statistics related to  the efficiency measure Cay only
those cases where convergence has been achieved are considered
& tailing cases do not degrade efficiency). By this means we
to study efficiency and robustness independtly of each

From the results in Table 3% we can ses that the hybrid code
clearly superior on the unscaled set of problems but on badly
sete its performance is poor whereas bad scaling does not
cause  the performance of the other methods to deteriorate. Thus
overall the hybrid method gives worse results than the other
methods. This finding coincides with the results reported by Chen
and Stadtherr [19817.
While it can be seen in Table % that there is not too much
~difference  in the baehaviowr of the scale invariant methods and
¥ "good" method on the general set, we can see in Table 4
of scale invariance on problems which are very badly
s The amount of work per iteration is the same (as is
nesded  for the impl entation) for all the (Guasi
hotds it je clearly an advantage to use method 3 with
seale  invariance  and  superlinear  convergence properties
instead of the classic method of Brroydern.

2l
r:
i
i
P

Wa have proposed scale invariant Ouasi-Newton methods which
are competitive with the best codes available. Numerical results
show the advantage of using them as an alternative to the classic
Brovden s "good" method.

The theory of convergence of Broyden,Dennis and More [15973]
o entended such that, in particular, it can be used to
superlinear convergence for the methods proposed here.

has
S Cw

12
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