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COMBINATORIAL HOMOTOPY THEORY

ELIAS GABRIEL MINIAN

ABSTRACT. This article intends to summarize the main results of homotopy theory in
algebraic or combinatorial settings. It includes new results in this area and investigates
some old results with a new insight.

1. INTRODUCTION

In his beautiful paperHigher Algebraic K-Theory I([Q]), Daniel Quillen defines the
homotopy groups of a small categoryC as the homotopy groups of its classifying space
BC . Recall that the classifying space ofC is a CW-complex whosen-cells are in one to
one correspondence with then-tuples( f1, . . . , fn) of composable maps inC such that none
of them is an identity map. He shows that the fundamental groupπ1(C,x) can be defined
algebraically without the use of topology and he remarks that “the existence of similar
descriptions of the higher homotopy groups seems to be unlikely, because so far nobody
has produced an algebraic definition of the homotopy groups of a simplicial complex”.

In [M0] I introduced a homotopy model structure applicable in combinatorial settings,
such as simplicial complexes, small categories, directed graphs, global actions and finite
topological spaces. This homotopy theory is based on a family of natural cylinders and
generalizes Baues’ homotopy theory forI -categories [B].

There are applications of this theory in various directions. InK-theory, via small cate-
gories and global actions; in topology, by computing homotopy groups of CW-complexes
and in category theory. A homotopy model structure on a combinatorial setting allows one
to do homotopy theory in that particular setting and provides all the constructions and tools
available for topological spaces.

In [T1] Thomason proved that the categoryCat of small categories admits a structure of
closed model category in the sense of Quillen. This structure is lifted from the one defined
on simplicial sets. In [M1] I proved thatCat admits also this homotopy model structure
based on a family of natural cylinders. This homotopy theory forCat differs from the
one induced by the closed model structure given by Thomason. If we denote byq : Cat→
H o(Cat) the localization ofCat with respect to the class of strong homotopy equivalences
and byγ : Cat → H oT(Cat) the localization ofCat with respect to the class of weak
equivalences in the sense of Thomason (i.e.H oT(Cat) is the homotopy category ofCat
as a closed model category), there exists a unique functorF : H o(Cat)→H oT(Cat) such
thatFq = γ and this functor is not an equivalence.
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100 ELIAS GABRIEL MINIAN

Our approach to an axiomatic model structure has the advantage that all constructions,
whether main ones or subsidiary ones, are done inside the category. This means that a so-
lution of an algebraic problem can be followed step by step (algebraically) in the category.

This article summarizes the main results and constructions of this theory, which was
developed in previous papers [M0, M1, M2, M3, M4]. We give some new examples and
prove some known results with a new insight.

2. CYLINDERS AND SUBDIVISIONS

The classical homotopy theory for topological spaces is based on the existence of a
natural cylinder. Given a topological spaceX, the cylinder ofX is the topological space
IX = X× I , whereI denotes the unit interval[0,1]⊂ R. The notion of homotopy between
continuous mapsf ,g : X →Y is defined using the cylinder ofX. It is a continuous map

H : IX →Y

such thatH(x,0) = f (x) andH(x,1) = g(x) for all x∈ X.

In general a natural cylinder(I , p, i0, i1) on a categoryC , as defined by Baues in [B], is
an endofunctor

I : C → C

together with natural transformations

i0, i1 : id → I p : I → id

whereid is the identity functor, such thatpi0 = pi1 = 1 (the identity natural transforma-
tion).

The presence of a natural cylinder in the categoryTop of topological spaces, together
with a suitable notion ofcofibrationallows us to develop the homotopy theory (cf. [B,
KP]).

To develop homotopy theory in algebraic or combinatorial settings, such as categories,
simplicial complexes, global actions, directed graphs and finite topological spaces, we
require a family of natural cylinders instead of just one. In fact, in these settings, for any
natural numbern there exists a finite modelIn of the unit interval and all these finite models
are needed to develop the theory.

In order to exemplify the use of the natural cylinders in these settings, we begin by
recalling the classical notions of homotopy inCat, the category of small categories.

There are three different notions of homotopy for categories. The notion of strong ho-
motopy is the symmetric transitive closure of the relation given by:f ∼ g if there is a
natural transformation between them. The notion of weak homotopy (studied in [Q] and
[S]) is related to the classifying space functor

B : Cat →Top.

Two functorsf andg are weak homotopic ifB f andBg are homotopic continuous maps.
In [H1, H2], an intermediate notion of homotopy is introduced by using path categories.

In this paper we work with the notion of strong homotopy [M1]. We will introduce the
family of natural cylinders in this category and reformulate this notion of homotopy via
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COMBINATORIAL HOMOTOPY THEORY 101

these cylinders. When we refer to homotopies of functors and homotopy equivalences of
categories, we will mean strong homotopies and strong homotopy equivalences.

2.1. Definition. Let f ,g : C →D be two functors. We say thatf is homotopicto g if there
is a finite sequence of functorsf = f0, f1, . . . , fn = g such that for eachi = 0, . . . ,n−1 there
exists a natural transformation betweenfi and fi+1. We denotef ' g.

Note that this is an equivalence relation which is preserved by composition, i.e. iff '
g : C →D andh' i : D → E thenh f ' ig : C → E .

2.2. Definition. A functor f : C →D is ahomotopy equivalenceif there existsg : D → C
such thatf g' 1D andg f ' 1C . A small categoryC is contractible if it is homotopy
equivalent to the singleton category∗.

2.3. Proposition. If f : C → D has either a left or a right adjoint then it is a homotopy
equivalence.

Proof. If g : D →C is for example right adjoint off , then there are natural transformations
f g⇒ 1 and 1⇒ g f and thereforef g' 1 andg f ' 1.

2.4. Corollary. If C has either an initial or a final object then it is contractible, since the
functor fromC to the category∗ has an adjoint.

We recall next from [M1], the definition ofinterval categories In (n ∈ N). We show
later that these categories constitute the family of natural cylinders inCat which is used to
define the structure of aΛ-cofibration category [M0].

2.5. Definition. Given n∈ N, let In be the following category. The objects ofIn are the
integers 0,1, . . . ,n and the morphisms, other than the identities, are defined as follows. If
r ands are two distinct objects inIn there is exactly one morphism fromr to s if r is even
ands= r−1 ors= r +1 and no morphisms otherwise. The sketch ofIn is as follows (case
n odd).

In : 0 // 1 2oo // 3 . . . . . .oo // n

By using the interval categoriesIn one can reformulate 2.1 as follows.

2.6. Definition. Two functorsf ,g : C →D are homotopic if there is ann∈N and a functor
H : C × In →D such thatH(a,0) = f (a) andH(a,n) = g(a) for all a∈ C . The functorH
is called ahomotopyfrom f to g and we denoteH : f ' g.

2.7. Definition. Let n,m∈ N with m≥ n. A functor t : Im → In such thatt(0) = 0 and
t(m) = n will be called asubdivision functor.

2.8. Remark.Let H : f ' g with H : C × In → D . If m≥ n there exists at least one
subdivision functort : Im → In. Thus there is a homotopyH ′ : C × Im → D from f to g
takingH ′ = H(1× t).

In [H1, H2] a weaker notion of homotopy is presented by using textitpath categories.
Hoff defines the categoryN whose objects are the nonnegative integers and the morphisms
between two objectsr ands are defined as in 2.5. A functorf : N → C is finite if there
existsm∈ N such thatf (n) = f (m) ∀n≥ m. The path category ofC , denoted byC h(C )
consists of all finite functors fromN to C . Two functors f ,g : C → D are homotopic in
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the sense of Hoff if there exists a functorH : C → C h(D) such thatαH = f andωH = g
whereα : C h(D) → D is the functor which assigns to each path its initial value and
ω : C h(D)→D is the functor which assigns to each path its final value (see [H1, H2] for
more details). We denote this equivalence relation byf 'H g.

2.9. Remark.Let f ,g : C →D . If f ' g then f 'H g. For a mapH : C × In→D induces a
mapH : C →D In whereD In can be seen as a subcategory ofC h(D) whose set of objects
consists of all finite functorsT : N→D such thatT(m) = T(n) ∀m≥ n.

It is easy to see that both notions of homotopy coincide if one considers categories with
finite sets of objects. In general the notion of homotopy given in this paper is strictly
stronger as it is shown in the following example.

2.10. Example.The categoryN is contractible in the sense of Hoff but it is not contractible
in the sense of this paper. The functorH : N→ C h(N) defined asH(n)(m) = m for m≤ n
andH(n)(m) = n for m≥ n induces a homotopy in the sense of Hoff between the identity
of N and the constant map 0. Since there is nofinite homotopy between the identity and a
constant map, this category is not contractible in the sense of this paper.

There is a weaker notion of homotopy for functors defined using theclassifying space
functor

B : Cat →Top

introduced in [S]. Two functorsf ,g : C →D are weak homotopic ifB f ,Bg : BC →BD
are homotopic continuous maps. We denote this equivalence relation byf 'B g.

2.11. Remark.If f 'H g then f 'B g (see [H1, H2]). Thus

f ' g⇒ f 'H g⇒ f 'B g.

One can prove directly that the homotopy in our sense implies the weakest notion of ho-
motopy using that the classifying space of any interval category is the topological unit
interval.

Quillen’s famous Theorem A ([Q]) gives sufficient conditions for a functorf : C → C ′

to be a homotopy equivalence in the weakest sense (i.e.B f is a homotopy equivalence
between the classifying spaces). The following example shows that the strong version of
this Theorem is not true.

2.12. Example.Consider the categoryN as in 2.10 and letM be the following category.
The objects ofM are the same as inN and the maps ofM are the maps ofN together with
the following maps. Ifr = 4k+2, with k≥ 0, there is a map fromr to r−2 such that the
composition of this map with the map fromr −2 to r −1 is the map fromr to r −1. We
can sketchM as follows.

M : 0 // 1 2ooee // 3 4oo // 5 6oo //ee 7 . . .oo

We consider now the inclusioni : N → M . For n ∈ Ob j M , the categoryn\i is the
category∗ if n is odd, the category(I2)op if n = 4k, the categoryI3 if n = 2 and the
category(I4)op if n = 4k+2. Thus the categoriesn\i are strong contractible for alln. But
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the functori is not a (strong) homotopy equivalence since there is nog : M → N such that
gi' 1N.

Now we consider the case of simplicial complexes. We will define the models of the
interval in this setting and show that the classical notion ofcontiguity classes, as defined
for example in [Sp], coincides with our notion of homotopy.

2.13. Definition. Givenn∈ N, let In be the following simplicial complex. The vertices of
In are the integers 0,1, . . . ,n. The simplices ofIn are the subsets{ j} for j = 0, . . . ,n and
the subsets{ j, j +1} for j = 0, . . . ,n−1.

2.14. Definition. Two simplicial mapsf ,g : K → L are homotopic if there is ann ∈ N
and a simplicial mapH : K× In → L such thatH(a,0) = f (a) andH(a,n) = g(a) for all
verticesa∈ K.

We recall the definition ofcontiguity classesgiven in [Sp] and show that this definition
coincides with our definition of homotopy.

2.15. Definition. Two simplicial mapsf ,g : K → L are contiguous iff (s)∪ g(s) is a
simplex inL for any simplexs∈ K. We say thatf ,g : K → L have the samecontiguity
classif there exists a finite sequencef = f0, f1, . . . , fn = g such thatfi , fi+1 are contiguous
for eachi. We denotef 'c g.

2.16. Proposition. Let f,g : K → L be simplicial maps. Then f'c g if and only if f' g.

Proof. Suppose first thatf 'c g. Then there exists a finite sequencef = f0, f1, . . . , fn = g,
with fi , fi+1 contiguous.

Consider the mapH : K× In → L, given by

H(a,m) = fm(a)

By the definition of the product ofK andIn and sincefi , fi+1 are contiguous for eachi,
thenH is a simplicial homotopy betweenf andg.

Conversely, given a homotopyG : K× In → L, consider the mapsfi : K → L defined by

fi(a) = G(a, i).

The categoryCat of small categories, the categorySC of simplicial complexes and
many othercombinatorialcategories are examples ofΛ-cofibration categories.

The homotopy theory forΛ-cofibration categories was introduced in [M0]. We recall
now some basic facts on this theory.

For a comprehensive exposition of definitions, examples, results and applications of
Λ-cofibration categories we refer the reader to [M0] .

Let Λ denote a set with a relation≥ which is reflexive, transitive and directed, i.e. for
anyα,β ∈ Λ, there existsγ ≥ α,β .
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2.17. Definition. Let C be a category. AΛ-cylinder onC consists of a family

{(Iα , pα , iα0 , iα1 ) | α ∈ Λ}

of natural cylinders onC (as defined above) and for each pairβ ≥ α in Λ, a non-empty set
(β ≥ α) of natural transformations fromIβ to Iα such that the following conditions hold:

(a) tiβε = iαε andpαt = pβ ∀ t ∈ (β ≥ α), ε = 0,1.

(b) If t ∈ (β ≥ α) ands∈ (γ ≥ β ), thents∈ (γ ≥ α).

(c) Givent1 ∈ (α1 ≥ α) andt2 ∈ (α2 ≥ α), there existβ ≥ α1,α2, s1 ∈ (β ≥ α1), and
s2 ∈ (β ≥ α2) such thatt1s1 = t2s2.

The categoryCat has aΛ-cylinder withΛ = N, with the usual order. For anyα ∈N, the
α-cylinder of a categoryC is the product with the interval category

IαC = C × Iα .

The natural transformationst ∈ (β ≥ α) are induced by the subdivision functors defined
in 2.7.

The categorySC of simplicial complexes and many other combinatorial categories
admit a naturalN-cylinder in a similar way.

One of the most important notions in a category with aΛ-cylinder is the concept of
subdivision. If an object such as a cone, a suspension or a mapping cylinder is constructed
using a particular cylinder, it will be necessary to relate it to corresponding objects con-
structed using other cylinders from the family{Iα : α ∈ Λ}. To this end in [M0] and [M1]
we introduced the concept ofadding pointsor subdivisionavailable in any category with a
Λ-cylinder. We illustrate this idea with the following example.

2.18. Example. Let {Iα | α ∈ Λ} be aΛ-cylinder on a pointed categoryC with base
point∗. Suppose that for some objectA of C and for everyα ∈ Λ the pushouts

A

Pushiα0
��

// ∗

��
IαA

kα // CαA

exist. For any fixedα ∈ Λ, CαA is called theα-coneof A.
If one takesβ ≥ α and a transformationt ∈ (β ≥ α), one gets the pushout

A

Pushiβ0
��

// ∗

��
Iβ A

kβ // Cβ A

and a morphism of diagrams
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A

iβ0
��

//

1

��2
22

22
22

22
22

22
22

2 ∗

1

��0
00

00
00

00
00

00
00

0

Iβ A

tA

��2
22

22
22

22
22

22
22

A //

iα0
��

∗

IαA

which induces a morphism
T : Cβ A→CαA.

The coneCβ A is called a subdivision ofCαA and the mapT is called a transformation.
Note also that we have commutative diagrams

A

1
��

iβ0 // Iβ A

t
��

A
iα0 // IαA

A
∗ //

1
��

Cβ A

t
��

A
∗ // CαA

Iβ A

t
��

kβ // Cβ A

t
��

IαA
kα // CαA

The mapsiβ0 : A→ Iβ A, ∗ : A→Cβ A andkβ : Iβ A→Cβ A are subdivisions of the corre-
sponding mapsiα0 , ∗ andkα .

The notion of homotopy in a category with aΛ-cylinder is clear:

2.19. Definition. Let {Iα | α ∈ Λ} be aΛ-cylinder on a categoryC . Two morphisms
f ,g : A→ B in C are homotopic if there existsα ∈ Λ and a morphismH : IαA→ B such
thatHiα0 = f andHiα1 = g.

Note that, by definition, for anyβ ≥α there exists at least one natural transformationt ∈
(β ≥ α). Therefore, for any given homotopyH : IαA→ B we can find another homotopy
H ′ = Ht : Iβ A→ B from f to g.

Note also that this notion does not induce, in general, an equivalence relation. For that,
we need more hypotheses on theΛ-cylinder and the notion ofcofibration.

3. COFIBRATIONS

Besides the concepts of natural cylinders and subdivision, the other main ingredient in
the theory ofΛ-cofibration categories is the notion ofcofibration.

The classical notion of cofibration of topological spaces corresponds to maps with the
homotopy extension property. In the combinatorial case, since we have a family of cylin-
ders instead of just one, the right notion of cofibration uses the concept of subdivision, i.e.
the replacement of a given homotopyH : IαC→ D by a homotopyH ′ : IβC→ D defined
in a bigger cylinderIβ with β ≥ α.

Let C be a category with aΛ-cylinder.
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3.1. Definition. A map i : A→ B has thehomotopy extension propertyif given α ∈ Λ and
a commutative diagram

A

i
��

iαε // IαA

H
��

B
f // X

there existβ ≥ α andt ∈ (β ≥ α), such that the commutative diagram

A

i
��

iβε // Iβ A

Ht
��

B
f // X

satisfies the following extension property: there exists a mapG : Iβ B→ X, with Giβε = f
andGIβ (i) = Ht.

We shall frequently setH ′ = Ht.

In [M0, M1] we defined the notion ofspecial arrowin any category with aΛ-cylinder.
A special arrow f : A → B is a map induced by a morphism of diagrams inC , as in
example 2.18, and these special arrows can be naturally subdivided, as it is shown also in
that example. A subdivision of a mapf : A→ B is denotedf ′ : A′→ B′.

Another simple example of special arrow is the following. LetA+A denote the coprod-
uct of two copies ofA and consider the mapf = (iα0 , iα1 ) : A+A→ IαA whichgeometrically
corresponds to the inclusion of each copy ofA in the top and bottom of the cylinder.

This map is an example of a special arrow and for anyβ ≥ α, the mapf ′ = (iβ0 , iβ1 ) :
A+A→ Iβ A is a subdivision off .

3.2. Definition. We say that a mapi : A→ B has theweak homotopy extension propertyif
after a suitable subdivisioni′ : A′→ B′, it satisfies the homotopy extension property.

In a Λ-cofibration category, cofibrations must satisfy the weak homotopy extension
property. In fact, in most important examples (topological spaces, categories, simplicial
complexes, global actions, etc), cofibrations are precisely the maps with this property.

In a similar way one can define thehomotopy lifting property. This notion is not nec-
essary for the development of the homotopy theory inΛ-categories. However, it is a very
useful complement to the theory (cf. [M4]).

3.3. Definition. A map p : E → B has thehomotopy lifting propertyif given α ∈ Λ and a
commutative diagram

A

iαε
��

f // E

p

��
IαA

H // B
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there existβ ≥ α andt ∈ (β ≥ α), such that the commutative diagram

A

iβε
��

f // E

p

��
Iβ A Ht // B

satisfies the following: there exists a mapG : Iβ A→ E, with Giβε = f andpG= Ht.

3.4. Remark.In Cat, functors with the weak homotopy lifting property are calledfibra-
tions. They are the analogues of Hurewicz fibrations inTop. We showed in [M1] that any
functor f admits a factorization of the form

f = ri

with i a cofibration andr a homotopy equivalence. In a similar way, it can be proved that
f has a factorizationf = pr with p a fibration andr a homotopy equivalence. To prove
this, one proceeds as in the case of the cofibration, but replaces cylinder categories by path
categories.

We are now in condition to define the notion ofΛ-cofibration category.

Fix Λ a directed set with relation≥.

3.5. Definition. A Λ-cofibration categoryis a categoryC with structure

(C ,co f, /0,(Iα)α∈Λ,(β ≥ α))

where /0 is an initial object inC andco f is a class of maps inC calledcofibrations, such
that the following axioms(Λ1), . . . ,(Λ6) hold.

(Λ1) {Iα | α ∈Λ} is aΛ-cylinder onC with natural transformations(β ≥ α) for each pair
β ≥ α ∈ Λ.

(Λ2) If i : A→ B is a cofibration andf : A→ X is any map, the pushout

A

Pushi

��

f // X

j
��

B // B∪
A

X

exists andj is also a cofibration. Moreover, for allα ∈ Λ, the functorIα carries pushouts
into pushouts andIα /0 = /0.

(Λ3) Isomorphisms are cofibrations. For all objectsX, the map /0→ X is a cofibration.

(Λ4) Cofibrations satisfy the weak homotopy extension property (3.2). We call a cofibra-
tion strongif it satisfies the homotopy extension property (3.1). The composition of strong
cofibrations is a strong cofibration. In general, compositions of cofibrations are cofibra-
tions.
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(Λ5) If i : A→ B is a cofibration, then for eachα, the map jα defined below is also a
cofibration.

A+A

Push(iα0 ,iα1 )
��

i+i // B+B

�� (iα0 ,iα1 )

��

IαA

Iα (i) //

// B∪
A

IαA∪
A

B

∃ jα

$$
IαB

.

(Λ6) For all α,β ∈ Λ , there exists a natural transformation

Tαβ : Iα Iβ → Iβ Iα

such that, for allX:
Tαβ iαε (Iβ X) = Iβ (iαε (X)) : Iβ X → Iβ IαX

and
Tαβ Iα(iβε (X)) = iβε (IαX) : IαX → Iβ IαX.

Note that the categoryTop is aΛ-cofibration category withΛ = ∗ (only one cylinder),
that is,Top is anI -category in the sense of Baues [B].

As we pointed out above, the categoriesCat andSC admit aΛ-cylinder withΛ = N.
These are examples ofΛ-cofibration categories. In these cases, the natural cylinders are
induced by taking products with the models of the interval, cofibrations are the maps with
the weak homotopy extension property and the natural transformationsT : InIm→ ImIn of
(Λ6) are induced by the interchange maps

T : A× In× Im→ A× Im× In

defined byT(a, r,s) = (a,s, r). With these definitions, axioms(Λ1)–(Λ4) and(Λ6) are eas-
ily verified. As we showed in [M1], the proof of(Λ5) can be deduced from the following
lemma (3.6).

Givenm,n∈ N, the product categoryIn× Im will be sketched as a rectangle, where for
example the upper side corresponds to the objects(0,0), . . . ,(0,m) ∈ In× Im, the left side
to the objects(0,0), . . . ,(n,0), etc. A functorF : In′ × Im′ → In× Im will be sketched as an
((n′+1)× (m′+1))-matrix (ai j ), whereai j = F((i, j)). There will be no confusion about
the values ofF on maps since between two objects inIn× Im there exists at most one map.

3.6. Lemma. Given n,m∈ N, there are m′,n′, with n′ ≥ n and m′ ≥ m, and a functor
φ : In′× Im′ → In× Im with the following sketches on the boundaries

−

−
b′

a′

d′

e′

f ′

c′

>
φ −

−
b

f

a
e

c

d
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where a′ → a, b′ → b, etc are subdivision functors. Moreover, there exist n′′,m′′ ≥ n′,m′

and a functorφ ′ : In′′ × Im′′ → In′ × Im′ with the opposite sketches on the boundaries, such
that the compositionφφ ′ : In′′ × Im′′ → In× Im has the formφφ ′ = t1× t2, where t1 and t2
are subdivision functors t1 : In′′ → In and t2 : Im′′ → Im.

Proof. Let n,m∈ N. Supposen andm are even (the other cases are similar). Taken′ =
2m+n andm′ = m and defineφ : In′× Im′ → In× Im as follows.

φ =

(0,0) . . . . . . . . . (0,0)
(0,0) (0,1) . . . . . . (0,1)
(0,0) (0,1) (0,2) . . . (0,2)

...
...

...
...

...
(0,0) (0,1) (0,2) . . . (0,m)
(1,0) (1,1) (1,2) . . . (1,m)

...
...

...
...

...
(n,0) . . . . . . . . . (n,m)
(n,0) (n,1) . . . (n,m−1) (n,m−1)

...
...

...
...

...
(n,0) (n,0) . . . . . . (n,0)

Now taken′′ = 4m+n andm′′ = m and defineφ ′ : In′′× Im′′ → In′× Im′ as follows.

φ
′ =

(0,m) (1,m) . . . . . . (m,m)
(0,m−1) (1,m−1) . . . (m−1,m−1) (m,m)
(0,m−2) (1,m−2) . . . (m−1,m−1) (m,m)

...
...

...
...

...
(0,1) (1,1) . . . (m−1,m−1) (m,m)
(1,0) (1,1) (2,2) . . . (m,m)
(2,0) (2,1) (2,2) . . . (m,m)

...
...

...
...

...
(m,0) (m,1) . . . . . . (m,m)

(m+1,0) (m+1,1) . . . . . . (m+1,m)
...

...
...

...
...

(m+n,0) (m+n,1) . . . . . . (m+n,m)
(m+n+1,0) (m+n+1,1) . . . . . . (m+n,m)

...
...

...
...

...
(2m+n,0) (2m+n−1,1) . . . . . . (m+n,m)
(2m+n,1) (2m+n−1,1) . . . . . . (m+n,m)

...
...

...
...

...
(2m+n,m) (2m+n−1,m) . . . . . . (m+n,m)

It is easy to check that the compositionφφ ′ is indeedφφ ′ = t1× t2 for some subdivision
functorst1 andt2.
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4. HOMOTOPY THEORY FORΛ-COFIBRATION CATEGORIES

Let C = (C ,co f, /0,(Iα)α∈Λ,(β ≥ α)) be aΛ-cofibration category. By definition, one
can easily verify the following properties.

(a) /0→ A is a cofibration for any objectA.
(b) The natural “inclusions”(iα0 , iα1 ) : A+A→ IαA are cofibrations.
(c) Strong cofibrations are stable under pushouts.
(d) If i : A→ B is a cofibration thenIα(i) : IαA→ IαB is a cofibration for eachα.

In the previous section we defined the notion of homotopy for any category with aΛ-
cylinder. ForΛ-cofibration categories, homotopy is an equivalence relation (this is not
necessarily true for general categories withΛ-cylinders).

4.1. Proposition. In a Λ-cofibration category, homotopy of maps defines an equivalence
relation.

Proof. Takeα big enough such thatH : IαA→B andG : IαA→B are homotopiesH : f ' g
andG : f ' h. Consider the commutative diagram

A+A

(i0,i1)
��

i0 // Iα(A+A) = IαA+ IαA

(H,G)
��

IαA
f p // B

.

Since(i0, i1) is a cofibration, there existsβ ≥ α and a homotopy extensionE : Iβ Iβ A→ B.
The mapEi1 : Iβ A→ B is a homotopy fromg to h.

This proves that the relation is transitive and symmetric (takeh = f ).

In a pointedΛ-cofibration category (i.e. aΛ-cofibration category where the initial object
is also a terminal object, which is denoted by∗ ) the groupsπA

n (U) for n≥ 1 are defined
using theα-suspensions(α ∈ Λ).

To exemplify this construction, letCat∗ be the category of pairs(C ,x) with C ∈ Cat
andx∈ Ob j C . This category is a pointedΛ-cofibration category and for anym∈ N, the
m-suspension of an object(C ,x) is the pushout

(C ,x)+(C ,x)

Push(iα0 ,iα1 )
��

// ∗

��
I ′m(C ,x) // ΣmC

whereI ′m is the reduced cylinder

I ′m = (C ,x) = C × Im/{x}× Im.

The groupsπ(C ,x)
n (D ,y) (or simplyπC

n (D)) are defined by

π
C
n (D) = colim

m
[Σn

mC ,D ].

Note that this colimit is constructed using all (reduced) cylinders and all transformations
from the structure ofΛ-cylinder inCat. In [M0] we proved that these groups are Abelian
for n≥ 2.
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Denote byS0 the category with two objects and with no maps other than the identities.
Let πn(D) = πS0

n (D).
SinceS0 is finite, one can check thatπn(D) = πn(BD). This important result gives a

method to compute higher homotopy groups of some topological spaces using combinato-
rial tools.

In [E] M. Evrard defines the groupsπn(D) of a pointed small categoryD introducing
a loop functorΩ : Cat∗→ Cat∗ which is very similar to the loop functor defined by Hoff.
Evrard constructs that functor using interval categories and he reproves Quillen’s theorems
A and B. The homotopy groupsπn(D) defined above are isomorphic to the ones defined
by Evrard and by Hoff.

We have similar definitions and results in the categorySC of simplicial complexes. For
instance:

4.2. Proposition. The homotopy groupsπn(K) of a simplicial complex K coincide with
the homotopy groupsπn(|K|) of its geometric realization.

4.3. Example. Consider the border of the two simplex ˙s with vertices{a,b,c}. Using
the above result we give an elementary proof thatπ1(S1) = π1(ṡ) = Z. Let a be the base
point of ṡ. The elements ofπ1(ṡ) are, by definition, homotopy classes of finite sequences
[a1, . . . ,an] for n∈ N with ai ∈ {a,b,c} anda1 = an = a.

Since the transformations ‘repeat points’, it is easy to see that

[a1 . . .aiai+1 . . .an] = [a1 . . .aiai+2 . . .an] if ai = ai+1

and by the simplicial structure of ˙s, we have also:

[a1 . . .ai−1aiai+1 . . .an] = [a1 . . .ai−1ai+1 . . .an] if ai−1 = ai+1.

Thus the elements ofπ1(ṡ) are of the following three types:[a], [abcabc. . .a] or
[acbacb. . .a].

Note also that
[abca]+ [acba] = [abcacba] = [a].

Thereforeπ1(ṡ) = Z generated by[abca].

In Λ-cofibration categories one can obtain the best known results of classical homotopy
theory. For example, ifi : A→ B is a strong cofibration (i.e. a cofibration which satisfies
the homotopy extension property) then for any objectC there is a long exact sequence of
the cofibre

. . .→ π
A
n+1(C)→ π

B/A
n (C)→ π

B
n (C)→ π

A
n (C)→ . . .

Recall that the cofibre of the mapi : A→ B is the pushout

A //

i
��

∗

��
B // B/A

We finish this section of the paper with a brief discussion about homotopy equivalences.
In a Λ-cofibration category, there are different notions of homotopy equivalences.
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A map f : A→ B is ahomotopy equivalence in the strong senseif there exists a homo-
topy inverseg : B→ A such thatf g' 1B andg f ' 1A.

A map f : A→ B is a homotopy equivalence in the weak senseif there exists a sub-
division f ′ : A′ → B′, transformation mapsTA : A′ → A andTB : B′ → B (see 2.18) and a
homotopy inverseg : B→ A such thatgTB f ′ ' TA and f TAg′ ' TB.

Note that the tranformation mapsTA : A′→A are not necessarily homotopy equivalences
(even in the weak sense) since one cannot find in general homotopy inversesA→A′, as we
can see in the following example.

4.4. Example. Consider the following categoryT3

∗+∗

Push(i0,i1)
��

// ∗

��
I3 // T3

This category can be sketched as follows:

0
α // 1 2

βoo

γ

{{

with αγ 6= β . ReplacingI3 by I4 we construct in the same wayT4 whose sketch is as
follows:

0
d

88
a // 1 2

boo c // 3

The subdivision functort : I4→ I3 defined byt(r) = r for r = 0,1,2,3 andt(4) = 3 induces
a transformation mapT : T4 → T3 which is not a strong homotopy equivalence, since there
is noF : T3 → T4 with TF ' 1.

5. COMPLEXES AND FREUDENTHAL THEOREM

In this section we work specifically in the categoryCat∗ of pointed categories. Note,
however, that many constructions and results that we obtain here can be obtained in other
settings like simplicial complexes.

Let Mor∗(A,B) denote the set of pointed functors fromA to B. This is a pointed set; its
base point is the functor̃b0 : A→ B which takes all maps ofA to the identity ofb0.

Let Cat∗(A,B) be the following pointed category. The set of objects is the pointed set
Mor∗(A,B) and the morphisms are the natural transformationsγ : f → g between such
functors such thatγ(a0) = 1b0 : f (a0) = b0 → g(a0) = b0.

Given two pointed categoriesC andD, we denote byC∨D the following subcategory
of C×D. The objects ofC∨D are all the objects of the form(c,d0) and (c0,d). The
set of maps ofC∨D is generated by the maps of the form( f ,1) : (c,d0) → (c′,d0) and
(1,g) : (c0,d)→ (c0,d′) with f : c→ c′ in C andg : d→ d′ in D. We denote then byC∧D
the following pushout inCat

C∨D

Pushi
��

// ∗

��
C×D // C∧D
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The set of objects of this category can be described as the set of classes[(c,d)] with (c,d)∈
C×D such that[(c,d)] = [(c′,d′)] if c= c′ andd = d′ or (c,d),(c′,d′)∈C∨D. We consider
C∧D as a pointed category with base point[(c0,d0)].

Using these definitions it is easy to prove the pointed exponential law for categories.

5.1. Proposition. Given pointed categories A, B and C, there is an isomorphism of pointed
sets

Mor∗(A∧B,C)'Mor∗(A,Cat∗(B,C))

which is natural in A, B and C.

Givenα ∈ N, we denoteS1
α = ΣαS0 and define theα-loop functor

Ωα = Cat∗(S1
α ,−) : Cat∗→ Cat∗.

It is clear thatΩα is right adjoint forΣα for any α ∈ N in H o(Cat∗) = Cat∗/ ', the
strong homotopy category ofCat∗. Explicitly,

[ΣαA,B]' [A,ΩαB].

Given a pointed categoryB andα ∈ N, we can describe theα-loop categoryΩαB as
follows (caseα even). The objects ofΩαB are the sequences of the form

b0
f0 // b1 b2

f1oo f2 // . . . . . . // bα−1 b0
fα−1oo .

The maps ofΩαB are commutative diagrams

b0
f0 // b1

γ1

��

b2
f1oo f2 //

γ2

��

. . . . . . // bα−1

γα−1

��

b0
fα−1oo

b0
f ′0 // b′1 b′2

f ′1oo
f ′2 // . . . . . . // b′

α−1 b0
f ′
α−1oo

5.2. Remark.For β ≥ α, any subdivision functort ∈ (β ≥ α) induces a mapt∗ : ΩαB→
Ωβ B. If we consider allα ∈ N and all the subdivision functors, we can interpret the
homotopy groups in terms of theα-loop functors

π
A
n (B) = colim

α
[A,Ωn

αB].

5.3. Definition. Define abig loop functor

Ω = colim
α

Ωα : Cat∗→ Cat∗.

The mapsΩαB→ΩB induce a map

ε : π
A
n (B)→ π

A
n−1(ΩB).

Note that this map is not in general an isomorphism.

A categoryA is calledfinite if its set of morphisms is finite. IfA is a finite category then
the natural mapν : colim

α
[A,ΩαB]→ [A,ΩB] is a bijection.

The following result is an immediate consequence of this remark.
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5.4. Proposition. If A is finite, the mapε : πA
n (B) → πA

n−1(ΩB) is an isomorphism. In
particular for A= S0 we obtain the isomorphisms

πn(B) = πn−1(ΩB) = π0(ΩnB)

whereΩnB = Ω(Ωn−1B) = colim
α

Ωn
αB.

Note that our big loop categoryΩB is similar to the loop category introduced by Hoff
[H2] which we denote byΩHB. In fact there is a quotient mapΩHB→ΩB which induces
an isomorphism

π0(ΩHB) ' // π0(ΩB) .

Given a topological spaceX, the adjunction mapX → ΩΣX induces a mapπr(X) →
πr+1(ΣX). The classical Freudenthal suspension theorem says that this map is an isomor-
phism forr ≤ 2n and an epimorphism forr = 2n+1 if X is ann-connected CW-complex.

If A is a pointed small category andr ∈ N, for everyα ∈ N the adjunction mapA→
ΩαΣαA induces a map

Σα : πr(A)→ πr(ΩαΣαA)→ colim
β

πr(Ωβ ΣαA) = πr+1(ΣαA).

We know thatπr(A) = πr(B(A)) and in particular ifA is ann-connected category then
B(A) is ann-connected CW-complex. We will prove that under a certain cofibration con-
dition on A, the spacesB(ΣαA) and ΣB(A) are homotopy equivalent and therefore in
that case we obtain the analogue of the Freudenthal theorem forΣα : πr(A)→ πr+1(ΣαA).
This cofibration condition is satisfied by any complex-category. Complex-categories are
analogous to CW-complexes and were introduced in [M2].

If A andC are pointed categories it is not in general true thatB(A∧C) andB(A)∧B(C)
are homotopy equivalent, even ifA or C are finite. This is because the natural map from
the pushout of the nerve to the nerve of the pushout is not in general a weak equivalence
of simplicial sets.

Under a certain cofibration condition onA andC the mapΓ : N(A)∧N(C)→N(A∧C),
which is defined via the identificationN(A×C) = N(A)×N(C), is a weak equivalence of
simplicial sets and therefore in this case we obtain a homotopy equivalenceB(A)∧B(C)→
B(A∧C).

5.5. Remark.Given a functorF : K → Cat, recall the Grothendieck construction onF ,
K

∫
F (cf. [T0]). A pushout

X1 //

i
��

X2

��
X0 // X0∪X1 X2

in Cat can be seen as the colimit of a functorF : Iop
2 → Cat , whereIop

2 is the oposite
category ofI2. If i : X1→X0 is a cofibration, thenIop

2

∫
F andX0∪X1 X2 are weak equivalent.

This result is analogous to the well-known result about homotopy pushouts and pushouts
of simplicial sets. In our case, the Grothendieck constructionK

∫
F plays the role of the

homotopy colimit (see [T0]). To prove this, note that the cofibrationi satisfies the extension
property with respect to mapsX1× Iop

2 →Y up to subdivision.
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5.6. Proposition. Given a pushout

X1 //

i
��

X2

��
X0 // X0∪X1 X2

,

if i is a cofibration then the natural map

NX0∪NX1 NX2 → N(X0∪X1 X2)

is a weak equivalence of simplicial sets.

Proof. By [T0] and sinceNi is a cofibration of simplicial sets one has a weak equivalence
NX0∪NX1 NX2 → N(Iop

2

∫
F), and by the last remark the mapN(Iop

2

∫
F)→ N(X0∪X1 X2) is

also a weak equivalence.

5.7. Corollary. If the inclusion A∨C→ A×C is a cofibration and either A or C is a finite
category, thenB(A∧C)'BA∧BC.

5.8. Definition. We say that a categoryA satisfies theS1
α -cofibration condition if the

inclusionA∨S1
α → A×S1

α is a cofibration. In this case, by the last corollary,B(ΣαA) '
ΣB(A).

The most important example of categories which satisfy theS1
α -cofibration condition

are the complex-categories. We recall the definition of complexes inCat given in [M2].

Let S0 be the discrete category with two points. Forn∈N, we define then-dimensional
α-sphereas the pointed categorySn

α = Σn
αS0.

Given a pointed categoryA andα ∈ N, thereducedα-cone CαA of A is the pushout

A+A

Push(i0,i1)
��

(1,∗) // A

��
IαA // CαA

HereIαA denotes the reducedα-cylinder ofA.

5.9. Remark.Note that the natural inclusionjβ : Sn
α →Cβ Sn

α is a cofibration.

5.10. Definition. A categoryX̃ is obtained fromX by attaching ann-cell of length(α,β )
(or simply ann− (α,β )-cell) if there exists a pushout

Sn−1
α

Pushjβ
��

f // X

��
Cβ Sn−1

α
// X̃

for someattaching map f: Sn−1
α → X.

Attaching a 0-cell will mean to add a disjoint point.
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5.11. Definition. A pair of categories(X,A) is a relative complex category if there exists
a sequenceA = X−1 → X0 → X1 → . . . with X = colimXn andXn is obtained fromXn−1

by attachingn− (α,β )-cells.

For A = ∗ we denote the pair(X,∗) simply asX and call it a complex category.
We say thatdim(X,A) = n if X = Xn andX 6= Xn−1. A relative complex(X,A) is finite

if X is obtained by attaching a finite number of cells.

5.12. Example.Sn
α is a finite complex with the base point as 0-cell andSn

α asn-cell.

The following result follows from the basic properties of cofibrations.

5.13. Proposition. Let (X,A) be a relative complex. Then the inclusion A→ X is a
cofibration.

As in the case of CW-complexes, we have proved in [M2] the following result. IfX =
colim(∗→ X0 → X1 → . . .) is a complex, then for anyn, the pair(X,Xn) is n-connected.

5.14. Remark.If X andY are complexes, the categoryX×Y is also a complex and the
inclusionX∨Y → X×Y is a cofibration. In particular ifX is a complex, then it satisfies
theS1

α -cofibration condition.

5.15. Theorem.Given a category A which satisfies the S1
α -cofibration condition, there is

a commutative diagram of groups

πr(A)
Σα //

'
��

πr+1(ΣαA)

'
��

πr(B(A))
Σ

''OOOOOOOOOOO
πr+1(B(ΣαA))

πr+1(ΣB(A))

'
66mmmmmmmmmmmm

.

Proof. Follows from 5.7 and 5.14.

5.16. Corollary. (Freudenthal Theorem forCat). If A is ann-connected complex inCat,
the mapsΣα : πr(A)→ πr+1(ΣαA) are isomorphisms for allr ≤ 2n and epimorphisms for
r = 2n+1.

Proof. Since A is an n-connected complex inCat then B(A) is an n-connected CW-
complex. By the classical Freudenthal theorem for CW-complexes, the map

Σ : πr(B(A))→ πr+1(ΣB(A))

is an isomorphism forr ≤ 2n and an epimorphism forr = 2n+1. Now the result follows
from 5.15.

The mapsΣα : πr(A)→ πr+1(ΣαA) can be used to define the stable homotopy groups as
follows.

5.17. Definition. Given a categoryA andr ∈ N, we define the stable homotopy groups

π
st
r (A) = colim

n
πr+n(Σn

αA) (for anyα).
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5.18. Remark.Note that in general the stable homotopy groups do not coincide with the
stable homotopy groups of the classifying spaces. But ifA is a complex, thenπst

r (B(A))'
πst

r (A)' πr+m(Σm
αA) for m big enough.

It is well known that CW-complexes are paracompact spaces. We have a similar result
for complex categories. In order to understand the meaning of paracompact in this setting,
we need to find the analog of an open covering for categories. To this end, we introduced
in [M4] the concept offamily of strong generators.

5.19. Definition. Let A and B be categories and let{Ai}i∈J be a family of categories
together with monomorphismsφi : Ai → A for every i ∈ J. A family of functors{ fi :
Ai → B} is calledcompatiblewith the family{φi} if given any categoryH and any pair
of functorsgi : H → Ai andg j : H → A j such thati, j ∈ J andφigi = φ jg j , it follows that
figi = f jg j .

5.20. Definition. Let A be a category. A family of categories{Ai}i∈J strongly generates
A if there exists a family of monomorphismsφi : Ai → A such that for any categoryB and
any family fi : Ai → B of compatible functors, there exists a uniquef : A→ B such that
f φi = fi . The family{φi : Ai → A} is called afamily of strong generatorsof A.

5.21. Example.Let A be the category with three objects 1,2,3 and with one morphism

1
a−→ 2 and two morphisms 2

b−→ 3 and 2
c−→ 3 such thatba 6= ca. The inclusions of the

subcategoriesA1 : 1
a−→ 2

b−→ 3 andA2 : 2
c−→ 3 strongly generateA. If B is the quotient ofA

by the relationba= ca, thenA1 andA2 do not strongly generateB.

5.22. Remark.Let {φi : Ai → A}i∈J be a family of monomorphisms. For any pairi, j ∈ J
we denote byAi ∩A j the pullback

Ai ∩A j

Pull
��

// Ai

��
A j // A

.

The family {φi : Ai → A}i∈J strongly generatesA if A is the colimit of the diagram of
categories induced by theA′is and all inclusionsAi ∩A j → Ai .

5.23. Definition. A categoryA is contractibly generatedif there exists a family of con-
tractible categories{Ai} which strongly generatesA.

5.24. Example.It is clear that a contractible category is contractibly generated (by itself).
Note also that sphere-categories are contractibly generated but not contractible.

Now we can translate the concepts of compact and paracompact space into our context.
First, we need the notion of refinement of a family of strong generators.

5.25. Definition. Let A be a category and let{φi : Ai → A}i∈J be a family of strong gen-
erators ofA. A refinementof {φi : Ai → A} is a family{Bk}k∈K together with inclusions
ψk : Bk → Aik for someik ∈ J (∀k ∈ K) such that{φikψk : Bk → A} strongly generatesA.
The refinement is calledfinite if K is finite and it is calledstar-finiteif and only if for ev-
ery k0 ∈ K the intersection ofBk0 with Bk (i.e. the pullback of the inclusionsBk0 → A and
Bk → A) is not empty for only a finite number ofk∈ K.
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5.26. Definition. A categoryA is calledcompactif every family of strong generators of
A admits a finite refinement.A is calledparacompactif every family of strong generators
admits a star-finite refinement.

5.27. Remark.It is clear that finite categories are compact. In particular the sphere cate-
goriesSn−1

α and the cones of the spheresCβ Sn−1
α are compact; in the same way, any finite

complex category is compact. Note also that compact categories are paracompact.

5.28. Lemma. Consider the pushout

Sn−1
α

Pushjβ
��

f // X

��
Cβ Sn−1

α
// X̃

in Cat. If X is contractibly generated, theñX is contractibly generated.

Proof. Let (
◦

Cβ Sn−1
α ) denote the full subcategory ofCβ Sn−1

α on the set of objects ofCβ Sn−1
α −

Sn−1
α . Note that(

◦
Cβ Sn−1

α ) is contractible.

If {Ai}i∈J is a contractible family strongly generatingX, then{Ai}i∈J∪(
◦

Cβ Sn−1
α ) strong-

ly generates̃X.

5.29. Theorem. If X is a complex category, then it is contractibly generated.

Proof. SinceX = colim(∗ → X0 → X1 → . . .), it suffices to prove the theorem forXm.
Now this follows by induction and the previous lemma.

5.30. Theorem.Any complex category is paracompact.

Proof. It is clear that a complex category can be strongly generated by a family of finite
subcomplexes, each of which intersects only a finite number of members of the family.

Since every finite complex is compact, it follows that any complex category is paracom-
pact (compare with [FP, Appendix A.2]).
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