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COMBINATORIAL HOMOTOPY THEORY

ELIAS GABRIEL MINIAN

ABSTRACT. This article intends to summarize the main results of homotopy theory in
algebraic or combinatorial settings. It includes new results in this area and investigates
some old results with a new insight.

1. INTRODUCTION

In his beautiful papeHigher Algebraic K-Theory ([Q]), Daniel Quillen defines the
homotopy groups of a small catego#y as the homotopy groups of its classifying space
A% . Recall that the classifying space ¥fis a CW-complex whosa-cells are in one to
one correspondence with thetuples(fy,..., f,) of composable maps f& such that none
of them is an identity map. He shows that the fundamental gmaU@, x) can be defined
algebraically without the use of topology and he remarks that “the existence of similar
descriptions of the higher homotopy groups seems to be unlikely, because so far nobody
has produced an algebraic definition of the homotopy groups of a simplicial complex”.

In [MO] I introduced a homotopy model structure applicable in combinatorial settings,
such as simplicial complexes, small categories, directed graphs, global actions and finite
topological spaces. This homotopy theory is based on a family of natural cylinders and
generalizes Baues’ homotopy theory fecategories [B].

There are applications of this theory in various directionsKitheory, via small cate-
gories and global actions; in topology, by computing homotopy groups of CW-complexes
and in category theory. A homotopy model structure on a combinatorial setting allows one
to do homotopy theory in that particular setting and provides all the constructions and tools
available for topological spaces.

In [T1] Thomason proved that the categafit of small categories admits a structure of
closed model category in the sense of Quillen. This structure is lifted from the one defined
on simplicial sets. In [M1] | proved thatat admits also this homotopy model structure
based on a family of natural cylinders. This homotopy theory#at differs from the
one induced by the closed model structure given by Thomason. If we denqtedat —
0(%at) the localization ofsat with respect to the class of strong homotopy equivalences
and byy: ¥at — o7 (%at) the localization of#at with respect to the class of weak
equivalences in the sense of Thomason (¥#or (%at) is the homotopy category &fat
as a closed model category), there exists a unique fuRctof’o(¢at) — .70t (¢at) such
thatFq = y and this functor is not an equivalence.
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100 ELIAS GABRIEL MINIAN

Our approach to an axiomatic model structure has the advantage that all constructions,
whether main ones or subsidiary ones, are done inside the category. This means that a so-
lution of an algebraic problem can be followed step by step (algebraically) in the category.

This article summarizes the main results and constructions of this theory, which was
developed in previous papers [MO, M1, M2, M3, M4]. We give some new examples and
prove some known results with a new insight.

2. CYLINDERS AND SUBDIVISIONS

The classical homotopy theory for topological spaces is based on the existence of a
natural cylinder. Given a topological spa¥e the cylinder ofX is the topological space
IX =X x 1, wherel denotes the unit intervgd, 1] C R. The notion of homotopy between
continuous map$,g: X — Y is defined using the cylinder &f. It is a continuous map

H:IX—=Y

such thaH (x,0) = f(x) andH (x,1) = g(x) for all x € X.
In general a natural cylindét, p,ip,i1) on a category’, as defined by Baues in [B], is
an endofunctor
|1:4—>%
together with natural transformations
ig,i1:id — 1 p:l—id
whereid is the identity functor, such thatip = pi; = 1 (the identity natural transforma-
tion).

The presence of a natural cylinder in the categ@p of topological spaces, together
with a suitable notion otofibrationallows us to develop the homotopy theory (cf. [B,
KP]).

To develop homotopy theory in algebraic or combinatorial settings, such as categories,
simplicial complexes, global actions, directed graphs and finite topological spaces, we
require a family of natural cylinders instead of just one. In fact, in these settings, for any

natural numben there exists a finite modé| of the unit interval and all these finite models
are needed to develop the theory.

In order to exemplify the use of the natural cylinders in these settings, we begin by
recalling the classical notions of homotopydfat, the category of small categories.

There are three different notions of homotopy for categories. The notion of strong ho-
motopy is the symmetric transitive closure of the relation given by g if there is a
natural transformation between them. The notion of weak homotopy (studied in [Q] and
[S]) is related to the classifying space functor

B . cat — Jop.

Two functorsf andg are weak homotopic i#4 f and#g are homotopic continuous maps.
In [H1, H2], an intermediate notion of homotopy is introduced by using path categories.

In this paper we work with the notion of strong homotopy [M1]. We will introduce the
family of natural cylinders in this category and reformulate this notion of homotopy via
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COMBINATORIAL HOMOTOPY THEORY 101

these cylinders. When we refer to homotopies of functors and homotopy equivalences of
categories, we will mean strong homotopies and strong homotopy equivalences.

2.1. Definition. Let f,g: ¥ — 2 be two functors. We say thdtis homotopido g if there
is a finite sequence of functofs= fy, f1,..., f, = gsuch that for each=0,...,n—1 there
exists a natural transformation betwekand f;. ;. We denotef ~ g.

Note that this is an equivalence relation which is preserved by composition, i.e: if
0:¢9—%andh~i: 2 — &thenhf~ig: % — &.

2.2. Definition. A functor f : ¥ — 2 is ahomotopy equivalendéthere existyy: ¥ — €
such thatfg ~ 14 andgf ~ 1,. A small categorys’ is contractibleif it is homotopy
equivalent to the singleton category

2.3. Proposition. If f : ¥ — 2 has either a left or a right adjoint then it is a homotopy
equivalence.

Proof. If g: 2 — %€ is for example right adjoint of , then there are natural transformations
fg=1and 1= gf and thereforédg~ 1 andgf ~ 1. O

2.4. Corollary. If & has either an initial or a final object then it is contractible, since the
functor from% to the category has an adjoint.

We recall next from [M1], the definition ohterval categoriesd (n € N). We show
later that these categories constitute the family of natural cylindes&invhich is used to
define the structure of A-cofibration category [MO].

2.5. Definition. Givenn € N, let I, be the following category. The objects lgfare the
integers Q1,...,n and the morphisms, other than the identities, are defined as follows. If
r ands are two distinct objects ity there is exactly one morphism fromto sif r is even
ands=r —1 ors=r+1 and no morphisms otherwise. The sketch,a$ as follows (case
n odd).

|n : 0 1 2 = nn n

By using the interval categoriésone can reformulate 2.1 as follows.

2.6. Definition. Two functorsf,g: ¥ — 2 are homotopic if there is ame N and a functor
H:% xIn— 2 such thaH(a,0) = f(a) andH (a,n) = g(a) for allac ¢. The functoH
is called ahomotopyfrom f to g and we denotél : f ~g.

2.7. Definition. Let n,m e N with m > n. A functort : I, — I, such that(0) = 0 and
t(m) = nwill be called asubdivision functar

2.8 Remark.LetH : f ~gwithH:% x|, — 2. If m> n there exists at least one
subdivision functot : I, — 1,. Thus there is a homotogy’ : ¢ x I, — Z from f to g
takingH' =H(1xt).

In [H1, H2] a weaker notion of homotopy is presented by using textitpath categories.
Hoff defines the categoy whose objects are the nonnegative integers and the morphisms
between two objects ands are defined as in 2.5. A functdr: N — % is finite if there
existsm € N such thatf (n) = f(m) ¥Yn > m. The path category of’, denoted bys’h(%)
consists of all finite functors froml to ¢’. Two functorsf,g: ¥ — 2 are homotopic in
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102 ELIAS GABRIEL MINIAN

the sense of Hoff if there exists a functdr: ¥ — ¥’h(2) such thaioH = f andoH =g
wherea : €h(2) — 2 is the functor which assigns to each path its initial value and
o :¢h(2)— 2 is the functor which assigns to each path its final value (see [H1, H2] for
more details). We denote this equivalence relatiorf byy g.

2.9. Remark.Letf,g: ¢ — 2. If f ~gthenf ~4g. ForamaH : ¥ x|, — Z induces a
mapH : ¢ — 2'" whereZ'» can be seen as a subcategorggti( 2) whose set of objects
consists of all finite functor$ : N — 2 such thafl (m) =T (n) Ym> n.

It is easy to see that both notions of homotopy coincide if one considers categories with
finite sets of objects. In general the notion of homotopy given in this paper is strictly
stronger as it is shown in the following example.

2.10. Example.The categor\ is contractible in the sense of Hoff but it is not contractible
in the sense of this paper. The funckbr N — €’h(N) defined a$d (n)(m) = mform<n
andH (n)(m) = nfor m> ninduces a homotopy in the sense of Hoff between the identity
of N and the constant map 0. Since there idinite homotopy between the identity and a
constant map, this category is not contractible in the sense of this paper.

There is a weaker notion of homotopy for functors defined usingldmsifying space
functor
B . Cat — Jop
introduced in [S]. Two functor$,g: ¢ — 2 are weak homotopic ¥8f, Aq: € — B
are homotopic continuous maps. We denote this equivalence relatibn-g\g.

2.11 Remark.If f ~ gthenf ~g g (see [H1, H2]). Thus
f~g=f~yg="f~gQ

One can prove directly that the homotopy in our sense implies the weakest notion of ho-
motopy using that the classifying space of any interval category is the topological unit
interval.

Quillen’s famous Theorem A ([Q]) gives sufficient conditions for a fundtofs’ — ¢”
to be a homotopy equivalence in the weakest senseifeis a homotopy equivalence
between the classifying spaces). The following example shows that the strong version of
this Theorem is not true.

2.12. Example.Consider the categofy as in 2.10 and leM be the following category.
The objects oM are the same as M and the maps d¥l are the maps dX together with
the following maps. If = 4k+ 2, with k > 0, there is a map fromto r — 2 such that the
composition of this map with the map from-2 tor — 1 is the map fronr tor — 1. We

can sketciM as follows.

M: 0 1 2 3 4 5 6 7
~_ ~_

We consider now the inclusion: N — M. Forn € Obj M, the categoryn\i is the
categoryx if nis odd, the categoryl,)°P if n= 4k, the categorylz if n =2 and the
category(l4)°P if n=4k+ 2. Thus the categorigs\i are strong contractible for afl. But
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COMBINATORIAL HOMOTOPY THEORY 103

the functori is not a (strong) homotopy equivalence since there ig nd — N such that
gl ~ 1N.

Now we consider the case of simplicial complexes. We will define the models of the
interval in this setting and show that the classical notiooarftiguity classesas defined
for example in [Sp], coincides with our notion of homotopy.

2.13. Definition. Givenn € N, let |, be the following simplicial complex. The vertices of
I, are the integers,Q,...,n. The simplices of,, are the subset§j} for j =0,...,n and
the subset$j, j+1} for j=0,...,n—1.

2.14. Definition. Two simplicial mapsf,g: K — L are homotopic if there is ane N
and a simplicial mapd : K x I, — L such thatH (a,0) = f(a) andH(a,n) = g(a) for all
verticesa € K.

We recall the definition ofontiguity classegiven in [Sp] and show that this definition
coincides with our definition of homotopy.

2.15. Definition. Two simplicial mapsf,g: K — L are contiguous iff (s) Ug(s) is a
simplex inL for any simplexs € K. We say thatf,g: K — L have the sameontiguity
classif there exists a finite sequende= fo, f1,..., f, = g such thatf;, fi, 1 are contiguous
for eachi. We denotef ~¢ g.

2.16. Proposition. Let f,g: K — L be simplicial maps. Then#. g if and only if f~g.

Proof. Suppose first that ~¢ g. Then there exists a finite sequerfce: fo, f1,..., f, =0,
with fj, fi 1 contiguous.
Consider the mapl : K x I, — L, given by

H(a,m) = fn(a)
By the definition of the product df andl,, and sincef;, i1 are contiguous for eadh

thenH is a simplicial homotopy betweehandg.
Conversely, given a homotopy: K x I, — L, consider the map§ : K — L defined by

fi(a) = G(a,i).
O

The categorysat of small categories, the categoy’C of simplicial complexes and
many othercombinatorialcategories are examplesAfcofibration categories.

The homotopy theory foA-cofibration categories was introduced in [M0O]. We recall
now some basic facts on this theory.

For a comprehensive exposition of definitions, examples, results and applications of
N-cofibration categories we refer the reader to [MO] .

Let A denote a set with a relation which is reflexive, transitive and directed, i.e. for
anya, 3 € A, there existy > a, 8.

Actas del VIII Congreso Dr. Antonio A. R. Monteiro, 2005



104 ELIAS GABRIEL MINIAN

2.17. Definition. Let ¢ be a category. A-cylinder on%” consists of a family

{(la, Pasi§iT) | ¢ € A}

of natural cylinders of#’ (as defined above) and for each pair « in /A, a non-empty set
(B > «) of natural transformations fromg to I, such that the following conditions hold:

(@) tif =i%andpst =pg Vte(B>a),e=0,1.
(b) Ifte (B > ) andse (y > B), thentse (y> a).

(c) Givent; € (o > a) andty € (o > ), there exis{B > oy, 02, s1 € (B > 1), and
2 € (B > ap) such that;s; = tps).

The categoryat has a\-cylinder withA = N, with the usual order. For any € N, the
a-cylinder of a category’ is the product with the interval category

Iaig:%xla.

The natural transformations: (8 > «) are induced by the subdivision functors defined
in2.7.

The category¥’C of simplicial complexes and many other combinatorial categories
admit a naturaN-cylinder in a similar way.

One of the most important notions in a category witA-&ylinder is the concept of
subdivision If an object such as a cone, a suspension or a mapping cylinder is constructed
using a particular cylinder, it will be necessary to relate it to corresponding objects con-
structed using other cylinders from the famjfll, : a € A}. To this end in [M0] and [M1]
we introduced the concept afiding pointr subdivisionavailable in any category with a
N-cylinder. We illustrate this idea with the following example.

2.18. Example.Let {l, | @ € A} be aA-cylinder on a pointed category with base
point x. Suppose that for some objekbf ¢ and for everyx € A the pushouts

A *
ig‘i Push l
I A—<s C A

exist. For any fixedx € A\, C,A is called thex-coneof A.
If one takesB > o and a transformatione (8 > a), one gets the pushout

A *
ig J/ Push l
kg
IgA —~ CgA

and a morphism of diagrams
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A— %

N

A— %
;
oA
which induces a morphism
T:CgA— CoA.

The coneCgAis called a subdivision d€, A and the mag is called a transformation.
Note also that we have commutative diagrams

ig * ks
A4>|[gA A4>C[gA |3A*>CBA
li \Lt li lt ti \Lt

ig x Ka
AHIQA AHCaA IQAHCQA

The mapsig A= IgA x: A— CgA andkﬁ 1gA— CgAare subdivisions of the corre-
sponding mapg;, * andk,.

The notion of homotopy in a category withacylinder is clear:

2.19. Definition. Let {l, | o € A} be aA-cylinder on a categoryg’. Two morphisms
f,g: A— Bin ¥ are homotopic if there exists € A and a morphisnd : 1,A — B such
thatHig = f andHif = g.

Note that, by definition, for ang > « there exists at least one natural transformatien
(B > a). Therefore, for any given homotopy : |,A — B we can find another homotopy
H'=Ht:IgA— Bfromftog.

Note also that this notion does not induce, in general, an equivalence relation. For that,
we need more hypotheses on theylinder and the notion afofibration

3. COFIBRATIONS

Besides the concepts of natural cylinders and subdivision, the other main ingredient in
the theory ofA-cofibration categories is the notion adfibration

The classical notion of cofibration of topological spaces corresponds to maps with the
homotopy extension property. In the combinatorial case, since we have a family of cylin-
ders instead of just one, the right notion of cofibration uses the concept of subdivision, i.e.
the replacement of a given homotoply: 1,C — D by a homotopyH' : 13C — D defined
in a bigger cylindetg with 8 > a.

Let % be a category with A-cylinder.
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3.1. Definition. A mapi : A — B has thehomotopy extension properifygiven o € A and
a commutative diagram

A—s 1A

il lH
f
B——X
there exisi3 > o andt € (B > a), such that the commutative diagram

iP

ii | lm

B——X
satisfies the following extension property: there exists a @ajgB — X, with Gifg3 = f
andGlg (i) = Ht.
We shall frequently setl’ = Ht.

In [MO, M1] we defined the notion opecial arrowin any category with @-cylinder.
A special arrowf : A— B is a map induced by a morphism of diagramsdi as in
example 2.18, and these special arrows can be naturally subdivided, as it is shown also in
that example. A subdivision of a mdp A — Bis denotedf’ : A' — B'.

Another simple example of special arrow is the following. Bet A denote the coprod-
uct of two copies oA and consider the map= (i, i) : A+A— IoAwhichgeometrically
corresponds to the inclusion of each copyAdh the top and bottom of the cylinder.

This map is an example of a special arrow and for Any «, the mapf’ = (ig,i’f) :
A+A — lIgAis a subdivision off.

3.2. Definition. We say that a map: A — B has thewveak homotopy extension propeitty
after a suitable subdivision: A’ — B/, it satisfies the homotopy extension property.

In a A-cofibration category, cofibrations must satisfy the weak homotopy extension
property. In fact, in most important examples (topological spaces, categories, simplicial
complexes, global actions, etc), cofibrations are precisely the maps with this property.

In a similar way one can define tt@®motopy lifting property This notion is not nec-
essary for the development of the homotopy theonjicategories. However, it is a very
useful complement to the theory (cf. [M4]).

3.3. Definition. A map p: E — B has thehomotopy lifting propertyf given a € A and a
commutative diagram

A——E

T

IcA——B
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there exisif} > o andt € (8 > a), such that the commutative diagram

f

A——E

g

satisfies the following: there exists a m@p IgA — E, with Gié3 = f andpG = Ht.

3.4. Remark.In %at, functors with the weak homotopy lifting property are calfédxra-
tions They are the analogues of Hurewicz fibrationsZiop. We showed in [M1] that any
functor f admits a factorization of the form

f=ri

with i a cofibration ana a homotopy equivalence. In a similar way, it can be proved that

f has a factorizatiorf = pr with p a fibration and a homotopy equivalence. To prove

this, one proceeds as in the case of the cofibration, but replaces cylinder categories by path
categories.

We are now in condition to define the notion/fcofibration category.
Fix A\ a directed set with relatioh.
3.5. Definition. A A-cofibration categorys a category¢’ with structure
(¢,cof,0,(la)acn, (B = a))

where 0 is an initial object i’ andcof is a class of maps i” calledcofibrations such
that the following axiomgAl),..., (A6) hold.

(A1) {l4 | o« € A} is aA-cylinder on%” with natural transformationg3 > o) for each pair
B>acA.

(A2) If i : A— Bis a cofibration and : A — X is any map, the pushout

exists andj is also a cofibration. Moreover, for all € A, the functorl, carries pushouts
into pushouts ant,0 = 0.

(A3) Isomorphisms are cofibrations. For all objeXtshe map 0— X is a cofibration.

(A4) Cofibrations satisfy the weak homotopy extension property (3.2). We call a cofibra-
tion strongif it satisfies the homotopy extension property (3.1). The composition of strong

cofibrations is a strong cofibration. In general, compositions of cofibrations are cofibra-
tions.
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(A5) If i : A— B is a cofibration, then for eacts, the mapj, defined below is also a
cofibration.

(A\6) For allo,, B € A\, there exists a natural transformation
Tup :lalp — lpla
such that, for alX:
TapiZ (16X) =15 (i1%(X)) 1 15X — IglgX
and
Taﬁla(ilg(x)) = ig(la ) X — |ﬁ|ax-

Note that the categoryopis a/-cofibration category withh = x (only one cylinder),
that is, Zopis anl-category in the sense of Baues [B].

As we pointed out above, the categoriat and.’C admit aA-cylinder with A = N.
These are examples dfFcofibration categories. In these cases, the natural cylinders are
induced by taking products with the models of the interval, cofibrations are the maps with
the weak homotopy extension property and the natural transformatiohg,, — Imln of
(A\6) are induced by the interchange maps

defined byT (a,r,s) = (a,s,r). With these definitions, axion{é\1)—(A4) and(/A\6) are eas-
ily verified. As we showed in [M1], the proof ¢#\5) can be deduced from the following
lemma (3.6).

Givenm,n € N, the product categorly, x I, will be sketched as a rectangle, where for
example the upper side corresponds to the obj&®),...,(0,m) € I, x Iy, the left side
to the objectg0,0),...,(n,0), etc. A functorF : Iy x Iy — In x Iy will be sketched as an
((n"+1) x (m +1))-matrix (aj), whereaj; = F((i, j)). There will be no confusion about
the values of on maps since between two objectd,jrx I, there exists at most one map.

3.6. Lemma. Given nm e N, there are rhn’, with f > n and mi > m, and a functor
O ly x Iy — Iy x I, with the following sketches on the boundaries

a/
I d
a
o € ¢ _ bl e
f/ ¢
f
c
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where 4 — a, b’ — b, etc are subdivision functors. Moreover, there existml > n',m

and a functor¢’ : Iy x Iy — Iy X |y with the opposite sketches on the boundaries, such
that the compositiom ¢’ : Iy x Iy — 1 x Iy has the formp¢’ =t; x t, where §{ and &

are subdivision functorgt Iy — lhand b : Iy — I

Proof. Let n,m € N. Supposen andm are even (the other cases are similar). Take
2m-+nandm = mand defing : I,y x Iy — Iy X I, as follows.

(0,0) ... (0,0)
(0,00 (0,1) ... (0,1)
(0,0) (0,1) (0,2 (0,2)
(0: 0) (0: 1) (0,: 2) (Ov:m)
=10 (11 (1,2 (1,m)
(n,:O) (n,:m)
(n,0) (n,1) ... (nm—1) (nm-1)
(n,:O) (n,:O) (n,:O)

Now taken” = 4m+nandm’ = mand defing’ : I,y x Iy — |y X |y as follows.

(0,m) (1,m) . e (m, m)
(0,m—1) (1,m-1) cee. (M=1m-1) (mm)
(0,m—2) (1,m-2) cee. (M=1m-1) (mm)

(O,zl) (1,:1) (m—l,:m—l) (m,:m)

(1,0) (1,1) (2,2) e (m,m)

(2,0 (2,1) (2,2) (m,m)

/ mo) m1) N N (m,m)
= (m+1,0) (m+1,1) (m+1,m)
(m+:n,0) (m+:n, 1) (m+:n, m)
(m+n+1,0) (m+n+1,1) ... (m+n,m)
(2m4:rn,0) (2m+r:1—1,1) (m+:n,m)
(2m+n,1) (2m+n-21,1) ... (m-+n,m)
(2m+:n,m) (2m+n:—1,m) (m+:n,m)

It is easy to check that the compositig’ is indeed¢ ¢’ = t; x t, for some subdivision
functorst; andts. O
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4. HOMOTOPY THEORY FORA-COFIBRATION CATEGORIES

Let € = (¢,cof,0,(ly)qen, (B > a)) be aA-cofibration category. By definition, one
can easily verify the following properties.
(&) 0— Ais a cofibration for any objec.
(b) The natural “inclusionstig,if) : A+ A— l,A are cofibrations.
(c) Strong cofibrations are stable under pushouts.
(d) Ifi : A— Bis a cofibration thety (i) : |oA — 4B is a cofibration for each.

In the previous section we defined the notion of homotopy for any category with a
cylinder. ForA-cofibration categories, homotopy is an equivalence relation (this is not
necessarily true for general categories witltylinders).

4.1. Proposition. In a A-cofibration category, homotopy of maps defines an equivalence
relation.

Proof. Takeoa big enough such th#t : 1,A— BandG: |,A— Bare homotopiehll : f ~g
andG: f ~ h. Consider the commutative diagram

io

J{(ioh) l("LG)
Wy P B

Since(io,i1) is a cofibration, there exisfs> « and a homotopy extensida: IglgA — B.
The mapEi; : 1A — Bis a homotopy frong to h.
This proves that the relation is transitive and symmetric (takef). O

In a pointed\-cofibration category (i.e. A-cofibration category where the initial object
is also a terminal object, which is denoted by the groupsti(U) for n > 1 are defined
using thea-suspensiongx € N).

To exemplify this construction, letat. be the category of pairss’, x) with € € %at
andx € Obj %. This category is a pointefl-cofibration category and for any € N, the
m-suspension of an obje€¥, x) is the pushout

(€, X) + (€, X) ——

(i8‘7i2‘)l Push

€
wherel;, is the reduced cylinder
I}, = (€,X) =€ X Im/{X} x Im.
The groupsyrrﬁcg’x)(@,y) (or simplyz¢ (2)) are defined by
1l (2) = colim(=,%’, 7].
Note that this colimit is constructed using all (reduced) cylinders and all transformations

from the structure of\-cylinder in%at. In [MQO] we proved that these groups are Abelian
forn> 2.
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Denote byS” the category with two objects and with no maps other than the identities.
Let 1n(2) = 15 (2).

SinceS is finite, one can check that(2) = m,(£2). This important result gives a
method to compute higher homotopy groups of some topological spaces using combinato-
rial tools.

In [E] M. Evrard defines the groups,(2) of a pointed small category introducing
a loop functorQ : ¥at, — %at. which is very similar to the loop functor defined by Hoff.
Evrard constructs that functor using interval categories and he reproves Quillen’s theorems
A and B. The homotopy groups,(2) defined above are isomorphic to the ones defined
by Evrard and by Hoff.

We have similar definitions and results in the categat@ of simplicial complexes. For
instance:

4.2. Proposition. The homotopy groups,(K) of a simplicial complex K coincide with
the homotopy groups,(|K|) of its geometric realization.

4.3. Example. Consider the border of the two simplexwith vertices{a,b,c}. Using
the above result we give an elementary proof thdS') = m1($) = Z. Let a be the base
point of s. The elements of1($) are, by definition, homotopy classes of finite sequences
[a1,...,an) for ne N with & € {a,b,c} anday = a, = a.

Since the transformations ‘repeat points’, it is easy to see that

[A1...8&+1...an] = [a1...&@42...80] fa=an
and by the simplicial structure af we have also:

[Q1...8-12811...80] = [a1... &1 +1.. . ] if §_1=a1.
Thus the elements of1(5) are of the following three typesial, [abcabc..a] or
[acbach..a).
Note also that
[abcd + [acbd = [abcacba= [a].
Thereforem; ($) = Z generated byabcd.

In A-cofibration categories one can obtain the best known results of classical homotopy
theory. For example, if: A — B is a strong cofibration (i.e. a cofibration which satisfies
the homotopy extension property) then for any ob{ethere is a long exact sequence of
the cofibre

.=l (C) - mAC) - 7B(C) > T(C) > ...

Recall that the cofibre of the mapA — B is the pushout

A *
P
B— B/A

We finish this section of the paper with a brief discussion about homotopy equivalences.
In aA-cofibration category, there are different notions of homotopy equivalences.
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A map f : A— Bis ahomotopy equivalence in the strong seifiskere exists a homo-
topy inverseg: B — A such thatfg ~ 1g andgf ~ 1a.

A map f : A— B is ahomotopy equivalence in the weak serigbere exists a sub-
division f': A' — B', transformation maps$s : A’ — AandTg : B' — B (see 2.18) and a
homotopy inversg : B — A such thagTgf’ ~ Tp and f Tag ~ Tg.

Note that the tranformation mapg: A’ — A are not necessarily homotopy equivalences
(even in the weak sense) since one cannot find in general homotopy inkersés as we
can see in the following example.

4.4. Example. Consider the following categoris
* 4k — %
(io,il)l Push i
I3 ——T3
This category can be sketched as follows:

Y

0=%-1<""2

with ay # B. Replacingls by 14 we construct in the same walyy whose sketch is as
follows:

The subdivision functar: 14 — I3 defined byt(r) =r forr =0,1,2,3 andt(4) = 3 induces
a transformation map : T, — T3 which is not a strong homotopy equivalence, since there
isnoF : T3 — Ty with TF ~ 1.

5. COMPLEXES AND FREUDENTHAL THEOREM

In this section we work specifically in the categasiat, of pointed categories. Note,
however, that many constructions and results that we obtain here can be obtained in other
settings like simplicial complexes.

Let Mor. (A, B) denote the set of pointed functors frékto B. This is a pointed set; its
base point is the functdy, : A — B which takes all maps oA to the identity ofbop.

Let #at.(A, B) be the following pointed category. The set of objects is the pointed set
Mor..(A,B) and the morphisms are the natural transformatipnd — g between such
functors such thag(ag) = 1y, : f(ag) =bo — g(ag) = bo.

Given two pointed categori€3 andD, we denote byC Vv D the following subcategory
of C x D. The objects ofC Vv D are all the objects of the forrc,dy) and (co,d). The
set of maps oC v D is generated by the maps of the fofh 1) : (c,do) — (c/,dp) and
(1,9) : (cp,d) — (co,d’) with f :c— c’inCandg:d — d' in D. We denote then b§ AD
the following pushout irgat

CvD s

[ o]

CxD——CAD
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The set of objects of this category can be described as the set of dl@sdglswith (c,d) €
CxDsuchthaf(c,d)] =[(c/,d")]if c=c andd =d’ or (c,d),(c/,d") e CvD. We consider
CAD as a pointed category with base pdifty, do)].

Using these definitions it is easy to prove the pointed exponential law for categories.

5.1. Proposition. Given pointed categories A, B and C, there is an isomorphism of pointed
sets

Mor,.(AAB,C) ~ Mor, (A, %at.(B,C))
which is natural in A, B and C.

Givena € N, we denotes, = 3, and define thex-loop functor
Qq = €at. (S, —) : Fat, — Fat,.

It is clear thatQ,, is right adjoint forZ, for any @ € N in J70(%at,.) = %at./ ~, the
strong homotopy category @fat.. Explicitly,

[Z4A B ~ [A Q8.

Given a pointed categor and a € N, we can describe the-loop categonQ,B as
follows (casex even). The objects dR,B are the sequences of the form

fo fl f2 foc—l

bo by Dy —= ceeee D1 bo .

The maps of2,B are commutative diagrams

fo f1 fa fa-1

bo by by —=-----. bo—1 bo

\L n l Y2 \L Yo—1
f/ f/ f/ f/

by — b L b, 2 . b, , a-t bo

5.2 Remark.For 8 > a, any subdivision functar € (8 > «) induces a map*: Q,B —
QgB. If we consider alle € N and all the subdivision functors, we can interpret the
homotopy groups in terms of the-loop functors

mh(B) = colim(A, Q7 B].
5.3. Definition. Define abig loop functor
Q= co(!éimQa . ¢at, — Fat,.
The map€,B — QB induce a map
g:mh(B) — mh 1(QB).
Note that this map is not in general an isomorphism.

A categoryA is calledfinite if its set of morphisms is finite. IA is a finite category then
the natural mapy : co(!cim[A, Q.B] — [A,QB] is a bijection.
The following result is an immediate consequence of this remark.
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5.4. Proposition. If A is finite, the maye : 74(B) — =~ ;(QB) is an isomorphism. In
particular for A= S we obtain the isomorphisms

7tn(B) = mn_1(QB) = m(Q"B)
whereQ"B = Q(Q"1B) = colimQ}B.
o

Note that our big loop catego@B is similar to the loop category introduced by Hoff
[H2] which we denote by B. In fact there is a quotient mapy B — QB which induces
an isomorphism

ﬂQ(QH B) = ﬂo(QB) .

Given a topological spack, the adjunction maX — QXX induces a magm; (X) —
m+1(ZX). The classical Freudenthal suspension theorem says that this map is an isomor-
phism forr < 2n and an epimorphism far= 2n+ 1 if X is ann-connected CW-complex.

If Ais a pointed small category amd= N, for everya € N the adjunction map\ —
Qy2Z,Ainduces a map

We know thatr; (A) = m(#(A)) and in particular ifA is ann-connected category then
ZA(A) is ann-connected CW-complex. We will prove that under a certain cofibration con-
dition on A, the spaces’#(Z,A) and Z%(A) are homotopy equivalent and therefore in
that case we obtain the analogue of the Freudenthal theorexy, far, (A) — m11(Z4A).

This cofibration condition is satisfied by any complex-category. Complex-categories are
analogous to CW-complexes and were introduced in [M2].

If AandC are pointed categories it is not in general true tBgA A C) andZ(A) AB(C)
are homotopy equivalent, evenAfor C are finite. This is because the natural map from
the pushout of the nerve to the nerve of the pushout is not in general a weak equivalence
of simplicial sets.

Under a certain cofibration condition @nandC the map™ : N(A) AN(C) — N(AAC),
which is defined via the identificatidd(A x C) = N(A) x N(C), is a weak equivalence of
simplicial sets and therefore in this case we obtain a homotopy equivadéAge B(C) —
PB(ANC).

5.5. Remark.Given a functor- : K — %at, recall the Grothendieck construction &n
K JF (cf. [TO]). A pushout

X1 X2
XO — XO le X2

in %at can be seen as the colimit of a funcfr. I;° — %at , wherel3” is the oposite
category ofl,. If i : Xy — X is a cofibration, theré’pfF andXp Uy, X are weak equivalent.

This result is analogous to the well-known result about homotopy pushouts and pushouts
of simplicial sets. In our case, the Grothendieck construdigi plays the role of the
homotopy colimit (see [TO]). To prove this, note that the cofibratisatisfies the extension
property with respect to map§ x |§P — Y up to subdivision.
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5.6. Proposition. Given a pushout
X ——=X
|
Xo — XoUx, X2
if i is a cofibration then the natural map
NXo Unx, NXo — N(Xo Uy, X2)
is a weak equivalence of simplicial sets.

Proof. By [T0] and sinceNi is a cofibration of simplicial sets one has a weak equivalence
NXoUnx, NX2 — N(15P[F), and by the last remark the maf1o° [F) — N(XoUx, Xo) is
also a weak equivalence. O

5.7. Corollary. If the inclusion AyC — A x C is a cofibration and either A or C is a finite
category, thenZ(AAC) ~ BZAN HC.

5.8. Definition. We say that a categork satisfies theS},-cofibration condition if the
inclusionAV S}, — Ax S}, is a cofibration. In this case, by the last corollai(Z,A) ~
SHAA).

The most important example of categories which satisfySheofibration condition
are the complex-categories. We recall the definition of complex@&imgiven in [M2].

Let S be the discrete category with two points. Foe N, we define ther-dimensional
a-sphereas the pointed categoff, = 1 S°.
Given a pointed catego anda € N, thereduceda-cone G,A of A is the pushout

(L)

A+A A
(io7il)l Push l
[A —— CoA

Herel A denotes the reducext-cylinder of A.
5.9. Remark.Note that the natural inclusiojy : S}, — C3S], is a cofibration.

5.10. Definition. A categoryX is obtained fronX by attaching am-cell of length(c, B)
(or simply ann— (e, B)-cell) if there exists a pushout

X
X
for someattaching map £ St — X.
Attaching a 0-cell will mean to add a disjoint point.

f
3(1{1 5
Push

is

CﬁS',}‘l E——
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5.11. Definition. A pair of categoriegX,A) is a relative complex category if there exists
asequencA = X1 — X% - X! — ... with X = colimX" andX" is obtained fromx"—!
by attachingh— («, B)-cells.

For A= x we denote the paiiX, ) simply asX and call it a complex category.
We say thatim(X,A) = nif X = X" andX # X", A relative complexX,A) is finite
if X is obtained by attaching a finite number of cells.

5.12. Example. S}, is a finite complex with the base point as 0-cell &jdasn-cell.
The following result follows from the basic properties of cofibrations.

5.13. Proposition. Let (X,A) be a relative complex. Then the inclusion-AX is a
cofibration.

As in the case of CW-complexes, we have proved in [M2] the following resukK. #
colim(x — X% — X! — ...) is a complex, then for any, the pair(X,X") is n-connected.

5.14 Remark.If X andY are complexes, the categoXyx Y is also a complex and the
inclusionX VY — X x Y is a cofibration. In particular iK is a complex, then it satisfies
the S, -cofibration condition.

5.15. Theorem.Given a category A which satisfies thi-&fibration condition, there is
a commutative diagram of groups

7 (A) 2o e 1(ZaA)
m(B(A) T 1(B(ZaA))
\ /
7 1(ZB(A))
Proof. Follows from 5.7 and 5.14. O

5.16. Corollary. (Freudenthal Theorem f&fat). If A is ann-connected complex i@at,
the map=, : m (A) — m1(ZqA) are isomorphisms for afl < 2n and epimorphisms for
r=2n+1.

Proof. Since A is an n-connected complex ifgat then #(A) is an n-connected CW-
complex. By the classical Freudenthal theorem for CW-complexes, the map

Z:m(BA) — m i1 (ZB(A))

is an isomorphism for < 2n and an epimorphism far= 2n+ 1. Now the result follows
from 5.15. O

The maps, : 7 (A) — m11(ZoA) can be used to define the stable homotopy groups as
follows.

5.17. Definition. Given a categonA andr € N, we define the stable homotopy groups
T(A) = colimm n(X;A)  (foranya).
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5.18 Remark.Note that in general the stable homotopy groups do not coincide with the
stable homotopy groups of the classifying spaces. BAitsfa complex, themrs{(2(A)) ~
TY(A) ~ 1 m(ZWA) for m big enough.

It is well known that CW-complexes are paracompact spaces. We have a similar result
for complex categories. In order to understand the meaning of paracompact in this setting,
we need to find the analog of an open covering for categories. To this end, we introduced
in [M4] the concept ofamily of strong generators.

5.19. Definition. Let A and B be categories and IgtA; }ic; be a family of categories
together with monomorphismg : A; — A for everyi € J. A family of functors {f; :
A — B} is calledcompatiblewith the family {¢i} if given any categonH and any pair
of functorsg, : H — A andg; : H — Aj such that, j € J and¢ig = ¢;09;, it follows that
figi = fjg;.

5.20. Definition. Let A be a category. A family of categorid#\ }icy strongly generates
Aif there exists a family of monomorphisngs: A; — A such that for any categoiy and
any family f; : A; — B of compatible functors, there exists a uniqueA — B such that
fgi = fi. The family{¢; : Al — A} is called afamily of strong generatorsf A.

5.21. Example.Let A be the category with three objects213 and with one morphism
1% 2 and two morphisms 2. 3 and 25 3 such thatba # ca. The inclusions of the
subcategories; : 1 22b3 andA;: 253 strongly generat@. If B is the quotient oA
by the relatiorba= ca, thenA; andA; do not strongly generatg.

5.22 Remark.Let {¢; : Ai — A}icy be a family of monomorphisms. For any paij € J
we denote by N A; the pullback

ANA —A .

=

The family {¢; : Al — A}icy strongly generateé if A is the colimit of the diagram of
categories induced by ths and all inclusion#\ NA; — A;.

5.23. Definition. A categoryA is contractibly generatedf there exists a family of con-
tractible categorie$A; } which strongly generates.

5.24. Example.ltis clear that a contractible category is contractibly generated (by itself).
Note also that sphere-categories are contractibly generated but not contractible.

Now we can translate the concepts of compact and paracompact space into our context.
First, we need the notion of refinement of a family of strong generators.

5.25. Definition. Let A be a category and It : Ay — A}icy be a family of strong gen-
erators ofA. A refinemenof {¢; : A — A} is a family {By}kek together with inclusions
vk : By — A, for someiy € J (Vk € K) such that{¢; yi : Bx — A} strongly generateA.
The refinement is callefinite if K is finite and it is calledstar-finiteif and only if for ev-
ery ko € K the intersection oBy, with B (i.e. the pullback of the inclusior, — A and
Bx — A) is not empty for only a finite number &fec K.
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5.26. Definition. A categoryA is calledcompactif every family of strong generators of
A admits a finite refinement is calledparacompactf every family of strong generators
admits a star-finite refinement.

5.27. Remark.It is clear that finite categories are compact. In particular the sphere cate-
goriesS) ! and the cones of the Sphel@,§52fl are compact; in the same way, any finite
complex category is compact. Note also that compact categories are paracompact.

5.28. Lemma. Consider the pushout

§t—=X

jﬁi Push l

CB$T1444>X
in %at. If X is contractibly generated, théfiis contractibly generated.

Proof. Let (Cg S} ) denote the full subcategory 6§ S, ~* on the set of objects @3 S} —

(o)

Sy L. Note that(Cs S 1) is contractible.

If {A }ies is a contractible family strongly generatiXg then{A}ic;U(CzS} ') strong-
ly generatex. O

5.29. Theorem.If X is a complex category, then it is contractibly generated.

Proof. SinceX = colim(x — X% — X! — ..), it suffices to prove the theorem fo¢™.
Now this follows by induction and the previous lemma. O

5.30. Theorem.Any complex category is paracompact.

Proof. It is clear that a complex category can be strongly generated by a family of finite
subcomplexes, each of which intersects only a finite number of members of the family.

Since every finite complex is compact, it follows that any complex category is paracom-
pact (compare with [FP, Appendix A.2)). O
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