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GEOMETRY OF THE EUCLIDEAN HAMILTONIAN SUBOPTIMAL AND
OPTIMAL PATHS IN THE .4 (Kn(V1),(dij)nxn)’S NETWORKS

BLANCA I. NIEL

ABSTRACT. The results concern the study of hamiltonian cycles and paths in the network
built by the complete graph K, with vertices on the n-th roots of the unity and with the
euclidean distances between nodes. The first aim is to single out and enumerate the reflec-
tive euclidean hamiltonian cycles whereas the second one is to find the optimum cycles
and paths. A postulate of the geometric optics allows us to identify the shortest euclidean
hamiltonian cycles while the longest cycles only at odd cases. In even instances, the net-
works with 4p vertices have the stargons of maximum density, however the longest cycles
do not belong to the reflective cycles. We solve, by a geometric proposal, the 5 longest
euclidean hamiltonian path problems and we find a representative of the longest cycles.

1. INTRODUCTION

Let us consider the network .4 (K,(v/1),D), where Kn(¥/1) is the complete graph with
vertices on the n-th roots of the unity, and D = (d;;) is the n x n matrix of the euclidean dis-
tances between nodes [12, 13]. We deal with the optimum euclidean hamiltonian cyclic and
non-cyclic paths [6]. The search for the euclidean hamiltonian optimum involves tougher

computational tasks since the network with its K, graph architecture has (”;21)' hamiltonian
cycles [3, 8]. Even for a moderate number of nodes n, checking all such cycles would be
ludicrous as we had experienced in simulations performed in 1998 [12] and 2005*. Thus
other approaches are called for, known as approximation techniques [1, 5]. Barnivok in
[1] yields a polynomial time approximation algorithm for a special version of the longest
hamiltonian circuit in a euclidean space, which is applicable to our context. Fekete also
provides an algorithm in polynomial time for computing the length of the longest tour of
a set of points in the plane with rectilinear distances. Moreover, this author proved that
the Max TSP under euclidean norm in RY is .#22-hard for any fixed d > 3 and herein [5]
in p. 345, leaves an open conjecture about the complexity status of the longest cycles for
euclidean distances in the plane. We apply a simple approximation method which uses
local greedy and anti-greedy algorithmic strategies —which are known as the nearest and
farthest neighbor method [2]. Greedy and anti-greedy techniques attain the shortest cycles

in .4 (Knh(V'1),D)’s networks and the longest cycles in A (Kn=zp+1( V1), (dij)nxn)’s

Key words and phrases. Euclidean hamiltonian cycle and path problems, Geometric optics at the spherical
mirror.

1Simulations performed with a Pentium 4, CPU speed 2.4 GHz, 256 MB of RAM, Windows XP and
DevC, 4 ver. 4.9.9.2 software. The processing time was in the networks with 14 nodes less than one second in
a brute force checking, meanwhile with some clever programming behind the exploration ran two seconds over
16 nodes and 6 days and four hours on 26 nodes. Last data forecast for 42 nodes the laughable requirement of
13 millions of years. Acknowledgment to Agustin Claverie, Mathematics laboratory, U.N.S.
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68 BLANCA I. NIEL

networks. These optimal hamiltonian pathways are baited by the lure of the perfect or

regular form, therefore, we select an adequate theoretical context from the geometric op-

tics scope at the spherical mirror circumstances [7] in order to search for a mathematical

comprehension. On the contrary, the cycle rendered up by the anti-greedy exploration, in

A (Kn=2p2( 2p+\Z/I),(dij)nxn)’s networks, is far from the longest cycle (e.g. refer to first
and last pictures in Figure 3, p. 83). The non regular shape of the anti-greedy sub-optimal

cycle inspired us with the construction of the configurations that resolve the § different
longest euclidean non-cyclic path problems and finally confirmed a representative of the
longest cycles in these networks. Concretely, we confirm the shortest and longest euclidean
hamiltonian cycles in .4 (Kn(+v/1), (dij)mn)’s networks. We solve the J different longest
euclidean hamiltonian path problems in the A" (Kn—2pt2( 2p+\Z/I),(dij)nxn)’s networks as
by-products.

This work contains two essential sections, Section 2 and 3, the Conclusion and the Ap-
pendices A, B and C. Appendices A and B have the demonstrations of Theorem 2.1.1 and
Theorem 3.1.2, postponed in order to put together the aim of this contribution. In Sec-
tion 2, the shortest cycles in the .4 (Kn(¥/1), (dij)nxn)’s networks and the longest cycles
in the A (Kn=2p+1( /1), (dij)nxn)’s networks are confirmed, resting on the assumption
of the geometric optics theory. Therein, the reflective cycles in .4 (K n(v/1), (dij)nxn)’s
networks are enumerated. Meanwhile, Section 3 is devoted to find the longest euclidean
hamiltonian cycles in the A (Kn=zpt2( */1), (dij)nxn)’s networks. Herein, in a chain
lengths from the anti-greedy suboptimal to the longest euclidean hamiltonian cycles, if
they exist —Appendix C— the reflective cycles that look like the stargons of maximum
density, are located.

2. FIRST MAIN RESULT

We select a theoretical context from Hamilton’s ideas on geometric optics circumstances
at the spherical mirror. Precisely, underneath the nowadays postulate of ““A light ray, in
going between two points, must traverse the optical path which has stationary length with
respect to variations of the path™ [19, 10, 14], we built a mathematical model that confirms
at the spherical mirror [7], (equiv. for us, to the unitary circle) that reflective pathways
may have maxima, minima and no optima their travelled lengths [18]. This particular
phenomenon sires certain knowledge about the reflective suboptimal and optimal euclidean
hamiltonian paths in 4" (Kn(v/1), (dij)nxn)’s networks [15].

We choose the geometric paths that start up at C = (—1,0) of the
spherical mirror of unitary radius, touch n times —including the
last touching— anywhere on the hollowed mirror, and end up at
B = (cosB,sin ), with —m< B < 0.

FIGURE 1. Measure of a;’s parameter.

2.1. Stationary length paths on the unitary circle (unconstrained geometric paths).

In this geometry each n array of angles (ai,...,0n—1,8), denoted (o, [3), determines a
path with n+ 1 vertices —including the initial and arrival points— and n linear branches.
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GEOMETRY OF EUCLIDEAN HAMILTONIAN SUBOPTIMAL AND OPTIMAL PATHS 69

This path may have two or more coincident vertices and linear branches shrunk to a point.
For each B € [—m,0] the n—1 angles a; € R are selected (see Figure 1) as independent
variables of the overall travelled length function of the paths Fn(ai, 3).

The length of the geometric path determined by (a;, 3) is then

Fo(ai,B) = {\/1+cosa1+%\/l—cos ai_l)-l-\/l—cos(B—an_l)}.(1)

Fn(ai,B) is a continuous function everywhere. Furthermore Fy(ai,8) = Fa(ai + 2ki1t, B)
forany ki € Z, hence over the compact set .#" = [0,2m"1 x [~ 1,0], Fy(a, B) attains all
the values of its image.

Observation 2.1.1. The case 3 = 0 deals with non-cyclic paths, but its peculiar charac-
teristics are outside the interests of our present research [17]. When 3 = —m, (B =C),
for any polygonal cyclic trajectory, there is an n-array (a1,---,0n_1,—1) Which char-
acterizes them, meanwhile Fy(a1,---,an_1,—1) is the length of those cyclic paths. In
particular, amongst these pathways are those that have as vertices the e {/1’s points,
withm <n.

We recognize as a reflective —cyclic or non cyclic— trajectory, that which in each vertex
verifies the “reflection law™, under the approximation region of the geometric optics.

Theorem 2.1.1. Foreach 3, —1t< 3 <0, Fy(a1;, B) has n stationary critic points a (k):

()= MZDTHIB 2K 010 ne1 i=12,..0-1 ()
! n n

i) If —rr< B <0, each stationary critic point evolves one reflective trajectory of n-
linear branches whose length is Fn(ag (k), ) = v/2ny/1—cosAag (k), where
Aag (k) = ag_, (k) — ag (k).

ii) If B=—misC =B and Fy(a;,—m) has n— 1 stationary critic points ag, (k) given by
(2) but withk =0,2,--- ,n—1.

iii) All the stationary critic points of F,(ai, 3) are relative maxima.
iv) The singular critic points, wherever Fn(a;i, B) is a non-differentiable function, evolve
trajectories with less than n — 1 linear branches.

v) The minimum of F,(a;, B8) is the distance between C and B.

vi) The maximum of Fy(ai, B) is the longest of the relative maxima.

If nis odd, max(Fn(ai, B)) = nv/24/1+cos(8) = Fu(ag (42), B).

I nis even, max(Fn(ai, B)) = nv/24/1+cos(BE) = Fy(ag (24 1), B).

vii) When —mm< B < 0 and n is even, the lengths of the n reflective trajectories (all
different) are ordered in a strictly increasing chain of inequalities:

0 < Fn(ag(1); B) < Fa(ag (0); B) < Fn(ac (2); B) < Fa(ag(n—1);B) < Fa(ag(3);B) <
3

< Fo(ac (0= 1); ) < Fn(a (i-+2):) < Fn(ac (5 +1):B) < 2n.

2<j<8-2
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70 BLANCA I. NIEL

When 8 = —mand n is even:

0=Fn(dg (1);—m) < Fa(0g (0); —1m) = Fn(0g (2); —1m) < Fn(ag(n—1); —11) = Fn(ag(3); —11) <

@
< Fan(0t(n— ); =) = Fn( @t (j+2); =11) < Fu(a (5 +1); =70 = 2n.
2<j<y-2
When 3 =0 and n is even:
0 < Fn(ac(1);0) = Fn(ag (0);0) < Fa(ag (2);0) = Fa(ac (n—1);0) <
©)

< Fn(ag(j);0) = Fn(ag(n4+1—j);0) < 2n.

v

-~

3<i<

NIS

viii) On the other hand, if n is odd and —m < B < 0 the increasing lengths of the n
reflective trajectories are:

0 < Fn(ac(1);B) < Fn(ag (0);B) < Fn(ac(2); B) < Fn(ag (n — j); B) < Fn(ac (j+2); B) <2n. (6)

If 3 = —mand n is odd:

0 = Fn(ac (1); —11) < Fa(ag (0);—1) = Fn(ag (2); — 1) < Fa(ag (n—j); —1m) = Fa(ag (j+2);—m) < 2n.  (7)

If 3=0and nis odd:

0 < Fn(ag (1);0) = Fn(ag (0);0) < Fn(ac(j);0) = Fa(ag (n+1-j);0) < Fn(aci(%)?o) =2n.  (8)

~~

{d
i n=1
2<j< ot

iX) The reflective pathways travel in ccw. or cw. circulation, according to the following
scheme,
- when —t< <0

neven. Aif 1<k<™;and ~if J+1<k<n (k=0=k=n) ©
nodd: ~if1<k<™liand ~if B14+1<k<n (k=0=k=n)

—whenB=-m

neven. Nif l<k<S4+Liand ~if §+2<k<n (k=0=k=n)

nodd ~if1<k<®liand A if Bli1<k<n (k=0=k=n) (19
—when3=0

. ; n. if N — 0=k —
neven. M if 1<k<3; and ~if 5+1<k<n (k=0=k=n) (11)

nodd: ~Aif1<k<™;and ~if Br+1<k<n (k=0=k=n)

Proof. Refer to Appendix A, from page 78 to 80. m
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GEOMETRY OF EUCLIDEAN HAMILTONIAN SUBOPTIMAL AND OPTIMAL PATHS 71

2.1.1. The reflective pathways become cycles on the e”+/1’s points when 8 = —Tt.
In this particular case the length of the geometric paths is given by

Fn(ai,—m) = \/E_i\/l—cos(ai_l— aj) (ap=rmand a, =B =—n).

The stationary critic points of Fy(a;,—1) build n— 1 reflective pathways with n linear
branches and vertices on the set of points e V/1 : {Vo,---,Vn_1}.

After agreements of terms in the ™ v/1’s set of points we deal with the peculiar char-
acteristics of this case.

Let n be any natural number and let us consider the n-regular polygon with vertices in the
set of n points of the form e™ /1, clockwise numbered, Vo, - - - ,Vn_1, from Vo = (—1,0).

Let Ima be the diameter, it joins the vertex Vj with its opposite Vj, n, only if n is even.

If1<k<|[5]—1,let L represent the segment that links the vertices V; with Vj, and

L, the segment that connects Vj with V4. j_, although lqmax @nd I;fmax designate the quasi-
diameter segments L[ﬂjfl and Lfgjfl respectively. The subindices are added module n.
2 2

The arrival vertex Vjx when L, is traced from the vertex V; begets a clockwise angular

21 . . .
advance of k?. On the other hand, if L] is traced from the same vertex the corresponding

. o k\ 2m - .
clockwise angular variation is { 1 — ﬁ) - For example, in Figure 2 (right), the case

j = 0 for n even is illustrated.

n—k
FIGURE 2. Expressions of lq max and Imin (left). Diagram of the Li’s from Vo

Notation: Let T, denote a reflective cycle built by n sides L . and with vertices in {Vo,
-++, Vn_1}, while T is formed by n sides L, and Ty is the length £(T,”) = £(T,"). In

this circumstance, T = 2ncos [(5 — k) Z].

Lemma 2.1.1. The stationary critic points of F,(aj, —1) correspond to reflective cycles
built by n sides Ly. Some of them are hamiltonian cycles of order n over the set e’ v/1.
Their lengths are ordered in the chain of inequalities (4) if n is even and (7) if n is odd, in
Theorem 2.1.1.
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72 BLANCA I. NIEL

Proof. Each one of the trajectories T, and T, " corresponds to a stationary critic point, in
accordance with the following details:
n even:

To e ag(n+1—-k), 1<k< LgJ—l

T ag (k+1), 1§k§LgJ—1

The angular coordinates ac (5 4 1) are associated to the 3-digons —built by n sides I,—
denoted as TL*% |- Ithas been used that ag, (0) and ag,(n) characterize the same path T,.
Finally, T denotes the path which rebounds at Vo = C, which corresponds to the singular
critic points ag (1) = (m,--- , ).

n odd:

T« ag(n+1-k), 1<k < ng

Tr+—agk+1), 1<k< ng

To «— ag(1).

Therefore, the inequalities (4) and (7) (Theorem 2.1.1, p. 69) are respectively equivalent
to:

0:T0*<Tf:Tf<T2*:T2+<Tj;1=Tjjl<TL*gJ:2n (12)
N —
2<j<|3]-2
N —
1<j<3

2

Obviously, both chains of inequalities are true, once they are rewritten in the form (12) and
(13). m

2.1.2. Hamiltonian cyclic reflective paths in the .4 (Kn(e"™v/1), (dij)nxn)’s networks (con-
strained geometric paths).

Theorem 2.1.2. The unique —except orienteering— reflective hamiltonian cycles of order
nin A (Kn(v/1), (di})nxn)’s networks, are n-stargons constructed with n sides L, , for the
following values of k:

a1) 1 <k < |[5] and k is relatively prime to n, if n is odd (the n-stargon of maximum
density does exist, i.e. built by n sides Iqmx =L 1)).

n
2

ap) 1<k <|[8]—1andkis relatively prime to n, if n = 4p (the n-stargon of maximum
density does exist, i.e. built by n sides lgma);

1<k < |2]—2andkis relatively prime to n, if n = 2(2p+ 1) (the n-stargon of max-
k <|5]—2andKkis relatively pri if 2(2 (th f

imum density does not exist, i.e. n- lqmax does not traverse throughout the e7y/1’s
points ).
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GEOMETRY OF EUCLIDEAN HAMILTONIAN SUBOPTIMAL AND OPTIMAL PATHS 73

Proof.

3.1)

If1<k< ng and the line L, is drawn from the initial vertex Vo to the arrival vertex Vi,
the reflection at V  requires the incorporation of another L, . Since the drawing of the side
L, from any vertex generates a cw. angular advance of k%" , it is clear that the sequential
addition of n sides L, from Vg ends up at Vo.

Since k and n have no common divisor, then m does not exist, 0 < m < n, such that
m% = 2rm, r € Z. Therefore, the vertex Vg is reached only after the location of the n
sides L, .

However, if 1 <k < [gJ but k and n have common divisor d, the cycle, constructed as
was indicated above, arrives at Vg after touching only g vertices. In this case, the location
of nsides L, implies that the first cycle formed over the § vertices is d times repeated, then
this cycle does not belong to the hamiltonian cycles of order n. Consequently, a reflective
hamiltonian cycle of order n over {Vo,---,Vn_1} must be an n-stargon built by n sides L,
(or L) for 1 <k < | 3] and k relatively prime to n.

This result is independent from the evenness of n.

The stargon of n sides L[gJ is a hamiltonian cycle of order n, since m < n does not exist
such thatm|§]2% = (m— M) m=2rm, r € Z.

a2)

If n is even, ng divides n, therefore the reflective cycle built by n sides L 18] = lg.mex
does not belong to the hamiltonian cycles.

If n=4p, m < n does not exist such that m (5 — 1) 2 is a multiple of 271, therefore it is
a hamiltonian cycle of order n.

If n=2(2p+1), for m=2p+1 results m(5 — 1)%’T = 2pr, therefore the cycle of n
sides Ligj—1= lomax does not belong to the hamiltonian cycles of order n. m

Observation 2.1.2. Euler’s function ¢(n), is the cardinality of the set {m/gcd(m,n) =
1,0 < m < n}, enumerates the reflective hamiltonian cycles in A4 (Kn(e™V/1), (dij)nxn)’s
networks [9]. ¢(n) reckoning both ccw. and cw. shapes.

Example 2.1.1. There are 22 reflective paths on .4 (Kn=o3( /1), (dij)23x23)’s networks,
since @(23) = 22. From ¢(24) = 8, the reflective paths in the A4 (Kn=24( 2\‘VI), (dij)2ax24)’s
networks look like the stargons {{2*},{2},{%*},{23}} cw. and ccw. travelled?.

Corollary 2.1.1. The shortest euclidean hamiltonian cycle in .4 (Kn(v/1), (dij)nxn)’s net-

works and the longest euclidean hamiltonian cycle in A" (Kzpy1( ®V/1), (dij)axn)’s net-
works correspond to reflective paths.

Proof. Obviously the shortest euclidean hamiltonian cycle in the 4" (Kn(¥/1), (dij)nxn)’s
networks is the regular n-gon, whichever be the evenness of n.

On the other hand, if n is odd, we have shown that the longest euclidean hamiltonian
cycle, with vertices in {Vo,---,Vn_1} is the reflective trajectory constructed by n sides
lomax. Since the vertices Vo, --- ,Vn—1 are simply a rotation of the n points V/1, the longest

2p-gon {p/d} symbolizes some regular p-stargon of {p/d} density. We adopt the notation first used by
the Swiss mathematician L. Schal&fli (1814-1895) [4].
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74 BLANCA I. NIEL

euclidean hamiltonian cycles in A" (Kopy1( 2”\1/1), (dij)nxn)’s networks are the reflective
paths built by n sides lyma, With nodes in the V/1’s points, i.e. the stargon of maximum
density. m

Observation 2.1.3. Theorem 2.1.1 shows that the maximum of Fy(ag (5 +1),—m) = 2n
does not correspond to a hamiltonian cycle of order n, if n is even. Moreover Theo-
rem 2.1.2 clarifies that if n # 4p the stargon of maximum density does not exist. Con-
sequently, both statements leave the door open to the searching for the longest cycles in
N (Kaps2( ®¥/1), (dij)nxn)’s networks amongst the non reflective paths. In the next sec-
tion we struggle in this commitment, i.e. to solve the longest euclidean hamiltonian cycle
problems in A (Kapi2( /1), (dij)nxn)’S networks.

3. SECOND MAIN RESULT

The section is devoted to confirm the configurations that accomplish the longest eu-
clidean hamiltonian cycles in 4" (Kn_zp+2( *¥/1),D)’s networks with n > 6. This achieve-
ment is carried out from Theorem 3.1.1to 3.1.5.

The proof of Theorem 3.1.2 is postponed to Appendix B. In this way, the backbone of
the reasonings is not disrupted. Appendix C deals with the configurations that look like the
star-polygons of max. density in .4 (Kn=sp( ¥/'1),D)’s networks.

3.1. The backbone of the logical and geometrical thoughts.

Theorem 3.1.1. Let A = {Kn—2p42( 2p+\Z/I),D} be the networks with their n = 2p + 2
nodes, Vo, ---,Vn_1, corresponding to the n-th roots of the unity, cw. ordered from Vg =
(—1,0). Therein exists a closed trajectory with n sides and vertices in the set {Vo, ... Vn_1},
it starts and ends up at V. For each k between 1 and 5 — 1, this path is built by a single

. n : n -
side L, 5t 1 —k diameters I, and 5t k — 2 quasi-diameters I3,.

Proof. From the vertex Vo, any reordering in sequence of the n segments L, L, lmax,
| gmax OF I;max determines a trajectory with its vertices in the set {Vo,---,Vn_1}. Although,

any of the mentioned reorderings could not build a closed path or neither could it pass
through each vertex in the set {Vo,---,Vn_1}. In general, both properties are false. The

required trajectory should have exactly: one side L, 5 +1—ksides Ina, t sides I and

n . .
— 4+ k—2—t1 sides |§Tmax- On account of the cw. angular advance as the result of passing
from a vertex V; to V; after being added one of the sides previously mentioned, the existence
of such closed paths required, for some m € N, the existence of an integer solution for the
following equation:

n

2
The single integer solution for (14) ist=k—1. m

(k—1)+(g+k—2—t)(1+§)+t(1—§)+k§:2m, 0<t< g+k—2. (14)
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ConsequntIy, the existence of pathways built with in%tial and final vertex at \p, a single
side L, (§ +1—k) sides I, (k—1) sides 17, and (5 —1) sides I, is already estab-

g.max g-max

lished. Furthermore, Theorem 3.1.2 warrants the existence of the euclidean hamiltonian
cyclic paths of order n built in that manner in A" = {Kn—2p2( ?*47/1),D}’s networks.

Theorem 3.1.2. Let A = {Knzps2( *¥/1),D} be the networks with their n = 2p+2
nodes, Vo,---,Vh_1, corresponding to the n-th roots of the unity clockwise ordered from
Vo= (-1,0).

Each trajectory 'y, 1 <k < 3 — 1, determined by the sequence of segments

. - |- - + + + +
Mk Lk ) Iq.maxa T Iq.maxa Imaxa Iq.maxa ) Iq.maxa Imaxa Iq.maxa Imaxa T Iq.max’ limex (15)
N , N ~ AN ~ y
k—1 k n n
2k+1 2 2

is a euclidean hamiltonian cycle, of order n, which passes through the n vertices of the
networks.

Proof. Refer to Appendix B, from page 80t0 82. m

Theorem 3.1.3. The overall lengths, £(T'x), of the cyclic paths 'y, 1 <k < § —1, defined
in Theorem 3.1.2, line up in a chain of strictly increasing inequalities with respect to k, i.e.,

LM) <L) < --< z(rg,l). (16)
Proof. It is necessary to demonstrate that
n n . T
(5 —k+ 1) Imax + (5 +k— 2) Iy masc + Imax SIN (kﬁ)
n n . T
< (E—k) loy + (§+k—1> lqmex - mae SIN [(k+1)ﬁ] .

This inequality is true for 1 <k < 5~ 2. Equivalently written as the inequalities of the
series:

__++Zoo(_ )i+t L(E)Zi+;(E)21+1[(k+1)21+1_k21+1] <0. (17)
& 2j)'n 2j+1)!"n | '
3
i +3 i+t k+1 5 K., k+1 K.,
DT AN2 41 BN2)+1 2T EN243 1 Py2)+3
From (2j+3)! < (2j+1)! and | ( n ) (n) ] > |( n ) (n) ’

for n > 6; is checked the positive sign of a; —aj,1, for j € N, consequently (17) is an
alternated series with its first term - which validates the sign of (17). m

Notation 3.1.1. 'y symbolizes the euclidean hamiltonian cyclic path determined by the
sequence of segments (15), and let F]( represent the non-cyclic euclidean hamiltonian path-
ways that come from the rooting up of the initial side L,  of ', 1 <k < 5 —1.

Clearly, for each k, the open path F;( is a euclidean hamiltonian non-cyclic path of order
n— 1, with initial and final ending points at Vi and Vp respectively.
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Lemma3.1.1. For n € Nthe lengths I(Ly) of the sides L7, 1 <k < | 3], verify the following
relationships:

(a0 = Wb —G+n) <WLpg—g+n) —HLpg)—i+2), 0<i<|5]—-2.  (18)

N[ S

Proof. Since L|g)_x = 2cos (%) 0 <k < [3] —1, the inequality (18) is equivalent to

the following one:
|:(I 1)] .[(i+1 3)]
sin|{—+—|m <sin{| —+—|m|,
n 2n n 2n

whichistruefor0<i<|[5] 3. m

Notation 3.1.2. € symbolizes the family of all the non-cyclic hamiltonian trajectories
of order n — 1 with vertices in the set {Vo,--+,Vn_1} of the A" = {Kn=zp+2( **¥/1),D}’s
networks.

Theorem 3.1.4. In the A" = {Kn=zps2( **"/1),D}’s networks, the traversed length of the
trajectory I, £(I"), 1 <k < 1, is the maximum of the euclidean hamiltonian non-cyclic
path problem of order n — 1, with initial and final ends at Vi and Vo.

Proof. The lengths of the non-cyclic, or opened, trajectories F](, verify a reversed relation-
ship to (16) validated by their corresponding cyclic trajectories Iy, i.e.,

e(ry) >y > > £(r’g,1) > £(r’g). (19)

The core of the present statement relies on the demonstration of the above inequalities.
The maximum numbers of admissible diameters, |, for any feasible euclidean hamil-
tonian non-cyclic path of order n — 1 which touches n = 2p + 2 nodes of these networks is

7 Therefore, the possible maximum length of a non-cyclic hamiltonian configuration of

order n— 1 should have g diameters |, and g — 1 quasi-diameters lqma. Precisely, F'l is
a path with such features. That is, £(I'}) = max{£(’) : I € ¥ }.

Is there a trajectory ' € ¥ such as: £() > £(F') and A € T : &) >
(1) > £()? From lemma 3.1.1, the lesser difference between sides Ly is Iy — lgmax-
Therefore the minor feasible decreasing of the length F'l is attained if one diameter |4 is
replaced by one quasi-diameter lma. Then, if such trajectory exists, it should have g— 1

. n . ' . .
sides I, and 2 sides lqmax- Exactly, I', is that kind of trajectory.

By the same argument, if in F'z one side I is replaced by Iy max, the resultant trajectory
. n . -
if it exists should have = — 2 side I and 5 + 1 lgma, asin .

The reiteration of this procedure confirms the chain of inequalities (19), with the follow-
ing additional conclusion: any trajectory ' € ¥, which its n— 1 sides are not a reordering
of the sides of some trajectory I', 1 < k < 3, has the property that S(F'g) > £(). Par-
ticularly, any euclidean hamiltonian trajectory, non-cyclic, of order n — 1, with initial and
final ends at \k and Vo, has length less than or equals £(I",). m
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Theorem 3.1.5. In 4 = {Kn=zps+2( */1),D}’s networks the maxima of the euclidean
hamiltonian cyclic problems of order n = 2p -+ 2, corresponds to £(I" g,l).

Proof. Foreach k, 1 <k < 3, let % represent the set of all the trajectories I' € ¥, such that
[ has at least one side Ly (L} or L;).

LetMF €%, 1<k< g —1and I denote the non-cyclic trajectory obtained if one side
Ly is rooted up from I". Since Theorem 3.1.4 it is known that £(I"') < £(I"}).

From £(I) = £(I") 4+ 1(Lx) and £(T) = £(I,) + 1(Ly), it results that £(7) < £(T),
for k, 1 <k < 5 —1. This inequality shows that, for 1 <k < 5 —1, £(I') is the maximum
length of any trajectory ¥ which has, at least, one side L.

The only detail that remains to be seen is to verify if ' € Ty, the inequality £ <
£(Fy_1) is true. For this sake, let us consider a trajectory I' € Tn —Tn_;. Hence, I" does
not have quasi-diameters lqma and can not have more than g diameters | . In other words,
[ must have 3 sides Li (L, or L, ) but k only can take values which do not surpass 52,

. n .
ie, £(MN) < = lmax + 5 I(Ly ). Since

2
2 o+ 51(L3-2) = 2l + (5 —2) (e (Lg_1)) + (5 —2) (L)
+ (g —2) (L ) +21(Lg o)

and from lemma 3.1.1,

n n
di Imax + EI(LE—Z) < 2Imax + (n - 4)'('—2—1) + 2'('—2—2) < E(rg—l)'

Therefore £(I') < £(T'y ;). m

4. CONCLUSION

This contribution confirms the optimum configurations of the euclidean hamiltonian
cyclic paths of order nin A& = {Kn(v/1),D}’s networks. The resolution of the longest eu-
clidean hamiltonian paths of order n — 1 in .4 = {Knzp12( **/1),D}’s networks, paves
the way to dealing with other non-cyclic optimum path problems, e.g., the minimum of the
euclidean hamiltonian non-cyclic paths of order n— 1 in the 4" = {K,(v/1),D}’s networks
—results just published in [16]— as well as the maximum of the euclidean hamiltonian
non-cyclic paths of order n—1 in the .4 = {Kn—2pt1( ?*/1),D}’s networks —these re-
sults have just been proved by us but remain yet unpublished.

Ancillary results of this outcome are the enumeration of the reflective euclidean hamil-
tonian paths in .4 = {K,(v/1),D}’s networks and the locations of the traversed length of
the euclidean hamiltonian cyclic paths that look like the 4p-stargons of maximum density
in A (Kn=ap( ¥1),D)’s networks, in the sequence of overall lengths of the remarkable
suboptimal and optimal cycles.
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pointing out the papers Barnivok (1996) and Fekete (1999).
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APPENDICES

Appendix A: Demonstration of theorem 2.1.1. The stationary critic points a (K) ¢ 1 <j<n_1>
0 <k < n-—1, must satisfy the trigonometric identities: T

B sinag _ sin(ai — o) L sin(aj_1— ;) L sin(an-1—B) (20)
Vvitcosar 4/1-cos(a;—az) 1—cos(ai_1 — ai) /1—cos(an_1—B)’
equivalent to the angular differences: m—a;=o—a,=a,—az3=---=qi_1—Qj=--- =

an_1— B. Herein, it is understood that = is =, where d = y if they dn"fer by a multlple of
211, then a recursive computation brought up equation (2).

Proof. i) Why did each stationary critic point build one reflective trajectory of n-linear
branches? Because Aag (k) is independent of i. From the fact that the stationary critic
points make zero none of the denominators in (20), there are n linear branches which form
the paths.

Proof. ii) The critic point a¢ (1) = (11,-- -, 1) became a singular point which corresponds
to the minimum of the function, Fy(ag (1), —m) =0.

Proof. iii) For brevity’s sake, let a1 = /I+cosay, aj = 4/1—cos(aj_1— a;j) for 2 <
j<n—1, a,=+/1—cos(an_1—B) and let aij ’s stand for a‘j = a; if j # i meanwhile

a‘j =1if j =i. The evaluations of Fg,q, = ﬁR{aﬁ— ay} and the determinants of the

i+1i+1
Hessian matrices, 7%, i.e., || = ‘/—R Zl I_L i, if2<i<n-2 and | 1] =

n n
(—@‘)”f1 Zl |_| aj confirm their alternate sign [11], therefore the function (1) has rela-
raga)

tive maxima at whichever set of stationary critic points.

Proof. iv) Why did each singular critic point build reflective paths with less than n linear

branches? This outcome comes from the very definition of the singular critic points. It
means that at least one of the denominators in (20) must be zero, consequently at least one
of the square roots in (1) wiII have null contribution

Proof. v) The mm(Fn ai,B \/_\/1+cos 1, 3), is attained at the sin-
gular point (,--- , 11, B).

Proof. vi) FoIIows from lemmas 4.0.2 and 4.0.3.

Lemma 4.0.2. For n > 5 and each B € [—m,0] the longest of the relative maxima of
Fn(ai, B)) is longer than any path attained at the singular critical points.

Proof. aj is a singular point if and only if at least one of the n addend of F(a;, B) is null.
Hence F(ai, B) < 2(n—1), therefore the statement is validated if the following inequalities
are true: B

i) If n odd; 2(n—1) <nv24/1+cos( ntl

ﬁ) = Fn(aCi(T),B) (21)

i)If n even; 2(n—1)<n\/§\/l+cos(ﬁ::n):Fn(aci(ngl),B) (22)

Firstly, we prove i): 2(n—1) < nv/2 1+cos(%) < 2(1- %)2 < 1-|—cos(%) & —4+
BZk BZ

z | = . The series in the right hand term converges to S, with S > — —. The
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? 2 @ 5

2
last in li mes true if —— <4— —. Hence (21) is vali ince — < —< -
ast inequality becomes true o S - ence (21) is validated, since 2n—2n<n<

2 T . . .
4— o ¥ n > 2. Secondly, we verify ii): Analogous arguments confirm the inequality (22)

2
from L-HT) §f<4—g, Yn>2. 0O
2n 2n n

Lemma 4.0.3. For each 3 € [—m,0] the maximum of F,(ai, B) is a relative maximum.
Proof. For each B € [—m,0] the n—1 angles a; € R (see Figure 1) are selected as inde-
pendent variables of F,(ai, B). Fa(ai, B) is a continuous function everywhere. Furthermore
Fn(ai, B) = Fa(ai + 2ki T, B) for any k; integer, hence F,(ai,3) attains all the values of its
image, over the compact set # = [0,2m]"1 x [, 0].

If B, is a particular selection from [—71,0], the function F,(ai, B;) attains its maximum
at (a7, B,) in the compact set 7, = [0,2m" 1 x {B,}.
By lemma 4.0.2, Fy(ai, B.) is a differentiable function at (a;*, B,), therefore such maximum
is a relative maximum, the longest of the relative maxima of Fn(ai, B:). O
Proof. vii) and viii) For —m< 8 <0,

Aag(K) = ";B —k%". 23)

The following chains of inequalities come from (23) and prove (3) and (6), respectively.

0 < —Aag (1) < Aag (0) < —Aag (2) < Adg (n—1)+2m < —Aag (3) <

(24)
. . n
<Aag(n—j)+2m< —Adg(j+2) <Aac‘(5+1)+2n< .
2<j<g-2
0 < —Aag (1) < Adg (0) < —Adg (2) <Aag(n—j)+2m< —Aog(j+2) < . (25)

1<j<ns
. 2 i .
For B = —m, since —Aag;(k) = (k— 2)?”, (26) and (27) are obtained, which prove (4) and
(7), respectively.

0=—-Adag (1) <Aag(0) = —Aag (2) < Adg (n—1)+2m=—Aag (3) <

(26)
: . n
<Aog(n—j)+2m=—-Nog(j+2) < Aac‘(ﬁ +1)+2n=m
2<j<i—2
0= —Ad¢ (1) < Aag(0) = —Aag(2) < Adg (n—j)+2m=—-Aag(j+2) < T 27

i< n=3
1<j< 53

For B =0, since —Ad¢(k) = (2k — 1)2?71, (28) and (29) are obtained, which prove (5) and
(8), respectively.
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0 < —Aag (1) =Aag (0) < —Adg (2) =Aag(n—1)+ 2 <

(28)
< —=Dog(j)=Dag(n+1— j)+273< .
3<j<}
0 < —Aag (1) =80 (0) < —Adg (J) = Aag (n+1— ) + 271 < —Aag, (%) =TI (29)
2512"*1

Observation 4.0.1. If k and k label two distinct reflective paths, with respective angu-

lar values Aag (k) and Aag (k), both reflective paths have the same length if and only if
Aag (k) = +Aag (k). However this equality is possible if and only if 8 =0 or 8 = —1,
with k =n+1—k and k = n+2 —k, respectively. In conclusion, V8 € (—m,0) all the
reflective paths have distinct lengths. On the other hand, if B8 =0 is Fn(ag(k),0) =
Fn(ag(n+1—k),0) and if B = —mis Fy(ag (k), — 1) = Fa(ag (n+ 2 — k), —m), these cy-
cles were object of special attention in §2.1.1 and 82.1.2. The case 8 = 0 is explained in
[17].
Proof. ix) The reflective paths when —mr < 3 < 0 travels in ccw. or cw. circulation, accord-
ing with 1T < ag, (k) < 2mor 21 < o, (k) < 3, respectively.

Direct calculations show that the scheme in (9) is true. In 8 = —rmand 8 = 0 the paths
determined by k =5 +1andk = %1 render, respectively o, (k) = 21t. Therein we assigned
the ccw. circulation. Then, simple computations drive to (10) and (11). m

Appendix B: Demonstration of theorem 3.1.2. Sequence (15) determines the ordering of
the sides, it starts up with L, that links Vo to Vi and ends up with the latest I, which joins
ce;rtain vertex to Vg. The verticles Vo, -+ ,Vnh_1 are renumbered in the following manner:
Vo=Voand if 1 < j <n-—1,V; designates the vertex that determines the j-th side of the
sequence (15) when it is located after V;_,. That is, Vi = Vo, V3 = Vi, Vy =Vig 1, =+ .
Let <1(Vj') symbolize the angle of c.w. advance, corresponding to the vertex Vj', the angular
sequence in correspondence to the vertices V(',, - ,V,;_l starts with the following values:

' : 21 / 21 ' 21
Vo) =1, <(Vy) = —k—, A(Vo) = (=k+1)—, <(V3) = (~k+2)— —T1,---

There is a natural partition of the sequence (15) in three sections S1, S, and Sz. The first,
S1, made up of asingle L, in first place and of k — 1 sides .. The second, S, made up
of one initial diameter | and of k quasi-diameters I/, Finally, the third Sz, made up of

(5 —k) diameters Inq and § —k — 1 quasi-diameters I, . They appear alternated and the

first and the last are diameters |x.
Each section can be characterized by its associated vertices, that is:

Sl = {VO,7 e 7VI:}7 SZ = {V|i+17 e 7V2’k+1}’ and 83 = {Vék+2: e =V2’k+(n—2k) = VI'I1}
The sequences of vertices and angles determined by the sequence of segments (15), split
by sections, is schematized below:
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: L lq.max 2 2 lq.max
S m — [rr—kz—n] ey [n—k—n—(j—l)<rr——n)] IR [—(k—z)rr—z—n}
n n n n
A A Vi A
. Imax | max I mex
= . [—(k—l)n—%"] BN [—(k+i_2)n_i2ﬂ SR [—(2k—1)n—(k+1)2?n
Vit Vicsi Vaks1
ifj=2s
— . 2n
e [t i-2m (k927
o Imax o1 e N
' — —2kn—(k+1)? — e — — e
V2k+2 —— n
ifj=2s+1
V2k+j
(2<j<n-24

max— [—~(n+1)7g
%

'

2k4(n—2K)=Vh =V =V

The demonstration is attained in two stages, in the first one —ay,a,az— it is checked
that each section S; is made up of different vertices, and in the second one —b1,bo, bz— it
is confirmed that §NS; =0 if i # j.

a;) On account of the way in which the subsequent vertices are obtained from V(;, in Sy,
any two vertices ;' #V;, 1 <i < j <k, if the angular difference <t(V;) — <(V;) =
- - - - 2 _ . 2 jfi 6
(j=0)m+(i— )< #2mm m € Z~. This comesfr(?m 0< ,¥ <1l-2.
ap) Similar to the case (az), in Sy, any two vertices Vieri 7évk+j, 1<i< j<k+1,
requires that <((Vy;) — <(Viy;) = (I =)+ (j— )& £ 2mm, m € Z . It comes
since Z(J—n_') ¢ L.
az) In Sz, the expressions of the angles of the vertices differ from even or odd order of

the vertex. Therefore, the differences <t(Vy,;) — <z(V2'k+j) for2<i<j<n-2k,
should be evaluated for i even with j even, i even with j odd, i odd with j even and i
odd with j odd:

- i<, (ieven, jeven): <(Vy;) — <(Vay ) = (i—i) T+ (J—;'> 1. Since 1! ¢ 7,
the vertices do not coincide.
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- i<, (ieven, jodd): <(Vye) =<V ) = (i— )7T—|—(J = ') 7. Since - ¢
7, the vertices do not coincide.
- i<, (iodd, jeven): <(Va;) — (Vg ) = (J— )+ (j—i—1)Z. From =2 ¢
Z, the vertices do not coincide. o
- i< j, (iodd, jodd): <t(Vakti) — <(Vakgj) = (j— i)+ (j—i)E. Since J—;' ¢ 7,
the vertices do not coincide.
The empty intersection between the three sections requires the same kind of procedure:

b1) S1NSz=0. Itis sufficient to prove that <(V)) — <(Vii,;) = (K+i— )+ (i+j—
k—1)2£2mmme Z~ if 1<i<k+1;1<j<k<j-—2 Since —-1+2<
Al <12 eveniif (i+ j—k—1) =0 = <(V]) — <(Vy;) = (2i—1)T# 27T

ba) SoMNS3=0. It is necessary to prove that <1(V|;+i) — <1(Vék+j) #2mmme Z-, if
1<i<k+1,2<j<n-2k 1<k<3—2when jtakes even or odd values.

Ifjiseven,<1(V|;+i)—<1(vz'k+j):(k i+j)m+ (k-|—2 )2" But 2&Hi/2) ¢
Z, if and only if it is zero. Then <(V,;) —<1(V2k+j) =m#2mm,me Z~.

If jisodd, j only can vary between 3 and n— 2k — 1, because the latest j =n— 2k
is even. In such a situation we will see <I(Vk'+i) - <I(V2'k+j) =(k+j—im+ (k+
j2—i+1)&E£Lo2mrme Z . If1<k<§-21<i<k+land j=2s+1is
suchthat 3< j<n—2k—1,then j=2and j=n—2k are even. Here 1 <s <
5 — (k+1). Therefore <(Vi,;) — <(Vaey ) = (K+ j — )+ (k+5—i+1) 27, Since
1<s< 0—k—1itresults that 82 < 2SI 9 then A onjy can be

n
zero or a non integer fraction. If it were zero, s =i—k — 1 should be less than or

equals zero, it contradicts s > 1.
bg) Finally, to demonstrate that S; NSz = @ it is needed to prove, that <(V,) — <t(Vy )7

2mi,me Z~,if1 <k < 2—2, 1<i<kand2 < j<n-2k, dealing with the cases
jeven and j odd separately.

If jiseven, j=2swith1<s<2—kand <(V) - <I(V£k+j) = (2k+ j—i)m+
(i+s—1)Z#2mmme Z since 0 < =82 .

If jis odd, it should be 3 < j=2s+1 <n-—2k—1, since 2 and n— 2k are even.
Hence 1 <s < 5 —k—1and then <(V, ') _<I(V2’k+j) = (2k+ j— i)+ (i+5) 2, with
'+S ¢Zbecaus 4 < ( Ast) <12 g

Appendix C: Hamiltonian paths that look like the stargons of maximum density in
A (Kap( ¥/1),D)’s networks.

Theorem 4.0.6. In A" = {Kap( “\‘VI), D}’s networks with p > 2, the length of the euclidean
hamiltonian cyclic paths Ty, that look like the 4p-stargons of maximum density, is located

between the terms corresponding to k = g —3and k= g — 2inthe sequence (16) of lengths
of paths 'y, i.e.,

L(F1) <£(M2) <--- < LMy 3) <L(Tx) <L(Mg2) <L(My 1). (30)
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Proof. It is necessary to validate the inequalities below:

3
Almax + (N —5) lg max + lmax cos(F) < Nlgmax, (31)
21
Blax + (N —4) lg max + Imax cos(F) > Nlgmax- (32)
. 2 (=K /3m\E] 5
Inequality (31) turns into k; aor ~ 3 +1| <0.
Let ax = L(3—n)2k _2 + 1| and since ax — a1 > 0, the series is alternated, its
. 9 m 5 . . A
firstterm, g =S = _E(ﬁ)z[_§ +1] < 0, is negative, therefore the sum of the series is
negative. Finally, (31) is true.
. . . . YA 2
The inequality (32) is true, it stands for 2sin (—) ———1]>0, Vn. m
1+ cos(ﬁ)

The following sketch represents the suboptimal and optimal hamiltonian cycles in the
N = {Kn=12( ¥/1),D}’s networks.

Y

i

L

FIGURE 3. From the anti-greedy suboptimal (" 1) to the longest (I"'5) hamiltonian
cycles in the A4 (Ki2( ¥/1), (dij)12x12) s network
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