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QUANTUM DYNAMICS ON THE SU(2) GROUP

GUILLERMO CAPOBIANCO AND WALTER REARTES

ABSTRACT. In this paper we study the quantum evolution of a wave function defined on
theSU(2) group using path integrals. We use an intrinsic approach based on integration
over tangent spaces of the group which represents the infinitesimal contribution to the
integral. We obtain finally an expression for the Feynman propagator.

1. INTRODUCTION

In 1942 Feynman presented for the first time the method of path integrals ([5], [6],
[7]). This method has been a generator of new ideas in physics and in mathematics, see
for example the books by Schulman [19] and Kleinert [13] for a full treatment of the
subject. Nevertheless the advance on this topic has been slow, mainly because of the great
difficulties in the calculation process.

The method of temporary slices, founded on the results of Lie-Trotter ([10], [18]), is the
method par excellence from a practical point of view in non-relativistic quantum mechan-
ics. These iterated integrals may be performed in phase space or in configuration space.

Until recently only quadratic Lagrangians could be solved exactly. An important ad-
vance took place when Duru and Kleinert [4] solved the hydrogen atom, extending the
class of Lagrangians that can be calculated exactly.

Path integrals on Lie groups have been previously studied, especially on the compact
groupsSO(3), SU(2) and also non-compact groups such asSU(1,1), for example in the
papers by Junker and Böhm [1] and Duru [3].

Finding the correct path integral for a particle in a space with curvature is a non-trivial
and ambiguous problem. Several authors have obtained corrections to the Schrödinger
equation which differ by multiples of the scalar curvature, see for example [17], [16], [15],
[14], [12], [11], [9], [2].

In this paper we develop the path integral on theSU(2) group using hyperspherical
coordinates coming from the 3-sphere. In section 2 we give the general settings for any
compact Lie group and in section 3 the case ofSU(2) is solved.

2. THE GENERAL SETTING

Let us consider a compact Lie groupG of dimensiond, equipped with its natural biin-
variant Riemannian metric. To begin with, we define the one-step propagator correspond-
ing to a small time sliceε. Instead of integrating over the group itself we perform the
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integration over the tangent space as follows

Sεψ(g) =
(

1
2πε i

)d/2∫
TgG

exp

(
i‖η‖2

2ε

)
ψ(expg(η))exp∗g dµ(η). (1)

In this scheme the wave function is lifted by the exponential map to the tangent plane at
the pointg and then integrated to calculate its contribution to the value at timeε. We note
that using the invariance of the metric the last expression can be evaluated as an integral
over the Lie algebra of the group, that is

Sεψ(g) =
(

1
2πε i

)d/2∫
g
exp

(
i‖η‖2

2ε

)
ψ(gexp(η))exp∗dµ(η). (2)

By successive application of the one-step propagator we obtain what we call theN-step
propagator, which is given by

SN
ε ψ(g) =(

1
2πε i

)Nd
2
∫

TgG
· · ·
∫

TgN−1G
exp

(
i

2ε

N

∑
j=1

‖η j‖2

)
ψ(expgN

(ηN))
N−1

∏
j=1

exp∗g j−1
dµ(η j). (3)

With these definitions the evolution operator can be represented by a limit of discrete op-
erators as follows

Ut = lim
N→∞

SN
t/N. (4)

Some words could be added about the one-step propagator. First we note thatSε is
continuous to the right atε = 0 by definingS0ψ(g) = ψ(g). Furthermore, it can be proved
that the expansion ofSεψ(g) to first order inε is given by

Sεψ(g) = ψ(g)+ i
ε

2

(
∆ψ(g)− 1

3
R(g)ψ(g)

)
+o(ε). (5)

In other words the Schrödinger equation obtained from this propagator contains a curva-
ture-dependent potential added to the Laplace-Beltrami operator.

3. THE PROPAGATOR FORSU(2)

Our goal is to calculate the propagator (1) or (2) in the groupSU(2) for a sufficiently
large class of functions. First we observe thatSU(2) has a natural Riemannian structure
with constant curvatureR= 6. Furthermore we use the fact that the group manifoldSU(2)
is diffeomorphic to the three sphereS3. Spherical coordinates inR4 are used. They are
given by

x1 = sinρ sinθ1cosθ2

x2 = sinρ sinθ1sinθ2

x3 = sinρ cosθ1

x4 = cosρ

(6)
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With these coordinates the tangent space toS3 over the point with coordinatese=(0,0,0,1)
can be parametrized as follows

η1 = ρ sinθ1cosθ2

η2 = ρ sinθ1sinθ2

η3 = ρ cosθ1

(7)

The Haar measure, written in these coordinates is

dµ = sin2
ρ sinθ1dρ dθ1dθ2. (8)

Finally, the one-step propagator for an arbitrary functionψ is given by

Sεψ(e) =
(

1
2πε i

)3/2∫ ∞

0

∫
π

0

∫ 2π

0
exp

(
iρ2

2ε

)
ψ(ρ,θ1,θ2)dµ, (9)

where we have slightly simplified the notation.
Before going to more general functions we consider the case of constantψ, for example

ψ = 1. In this case the integral in (9) gives

Sε1 =
sinε

ε
exp(−iε). (10)

Of course it does not depend on the point were it is calculated.
It is easy to construct the propagator for finite timet, it is given by

Ut1 = lim
N→∞

SN
t/N1 = e−it = e−i R

6 t . (11)

Now we turn our attention to the eigenfunctions of the Laplace operator in the group.
This operator is given by

∆ =
∂ 2

∂ρ2 +2cotρ
∂

∂ρ
+csc2 ρ

(
∂ 2

∂θ1
+cotθ1

∂

∂θ1
+csc2 θ1

∂ 2

∂θ 2
2

)
. (12)

The Laplace operator has eingenfunctionsunlm with eigenvalues

−(n2−1), n = 1,2, . . . . (13)

That is
∆unlm =−(n2−1)unlm (14)

These functions, conveniently normalized, are given by

unlm(ρ,θ1,θ2) =

in−1−l 2l+1l !

(
n(n− l −1)!
2π(n+ l)!

)1/2

Cl+1
n−l−1(cos(ρ))sinl (ρ)Ylm(θ1,θ2). (15)

whereCl+1
n−l−1 are Gegenbauer polynomials andYlm are the usual three-dimensional spher-

ical harmonics. For a thorough treatment of harmonic analysis on groups see the books by
Helgason [8] or Vilenkin and Klimyk [20].

The value of the one-step propagator (9) at the pointe can be evaluated giving the neat
expression

Sεunlm(e) = exp

(
−i(n2 +1)ε

2

)
sin(nε)

nε
unlm(e). (16)
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We must stress that both members of this equation vanish simultaneously unlessl = 0 and
m= 0.

After some calculations it is possible to prove thatunlm is an eigenfunction ofSε with
eigenvalueλn(ε), that is

Sεunlm = λn(ε)unlm (17)

is valid for anyunlm.
For these functions it is easy to evaluate the limit in (4), it is given by

Utunlm = lim
N→∞

SN
t/Nunlm = exp

(
−i

(n2−1)t
2

)
exp

(
−i

Rt
6

)
unlm. (18)

Finally, using the closure relation

δ (cosρ −cosρ
′)δ (θ −θ

′)δ (φ −φ
′) =

∞

∑
n=1

n−1

∑
l=0

l

∑
m=−l

ūnlm(ρ ′,θ ′,φ ′)unlm(ρ,θ ,φ), (19)

we can write down an expression for the Feynman propagator, which is given by

K(ρ,θ ,φ ,ρ ′,θ ′,φ ′; t) =
∞

∑
n=1

n−1

∑
l=0

l

∑
m=−l

exp

(
−i

(n2−1)t
2

)
exp

(
−i

Rt
6

)
ūnlm(ρ ′,θ ′,φ ′)unlm(ρ,θ ,φ). (20)
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