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QUANTUM DYNAMICS ON THE SU(2) GROUP

GUILLERMO CAPOBIANCO AND WALTER REARTES

ABSTRACT. In this paper we study the quantum evolution of a wave function defined on
the SU(2) group using path integrals. We use an intrinsic approach based on integration
over tangent spaces of the group which represents the infinitesimal contribution to the
integral. We obtain finally an expression for the Feynman propagator.

1. INTRODUCTION

In 1942 Feynman presented for the first time the method of path integrals ([5], [6],
[7]D. This method has been a generator of new ideas in physics and in mathematics, see
for example the books by Schulman [19] and Kleinert [13] for a full treatment of the
subject. Nevertheless the advance on this topic has been slow, mainly because of the great
difficulties in the calculation process.

The method of temporary slices, founded on the results of Lie-Trotter ([10], [18]), is the
method par excellence from a practical point of view in non-relativistic quantum mechan-
ics. These iterated integrals may be performed in phase space or in configuration space.

Until recently only quadratic Lagrangians could be solved exactly. An important ad-
vance took place when Duru and Kleinert [4] solved the hydrogen atom, extending the
class of Lagrangians that can be calculated exactly.

Path integrals on Lie groups have been previously studied, especially on the compact
groupsSQ(3), SU(2) and also non-compact groups suchShf1,1), for example in the
papers by Junker and Béhm [1] and Duru [3].

Finding the correct path integral for a particle in a space with curvature is a non-trivial
and ambiguous problem. Several authors have obtained corrections to the Schrédinger
equation which differ by multiples of the scalar curvature, see for example [17], [16], [15],
[14], [12], [11], [9], [2].

In this paper we develop the path integral on 8ig(2) group using hyperspherical
coordinates coming from the 3-sphere. In section 2 we give the general settings for any
compact Lie group and in section 3 the cas&0f2) is solved.

2. THE GENERAL SETTING

Let us consider a compact Lie gro@of dimensiond, equipped with its natural biin-
variant Riemannian metric. To begin with, we define the one-step propagator correspond-
ing to a small time slicee. Instead of integrating over the group itself we perform the
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integration over the tangent space as follows

0= (5m) [ oo(") viemmemam.
VO =\ o g G Pl 5 ) VIEXRN Ry aun).
In this scheme the wave function is lifted by the exponential map to the tangent plane at
the pointg and then integrated to calculate its contribution to the value atgiriée note

that using the invariance of the metric the last expression can be evaluated as an integral
over the Lie algebra of the group, that is

0= () [oe(15) voermieraumn. @

2mei

By successive application of the one-step propagator we obtain what we chltgtep
propagator, which is given by

Sw(g) =

(27;) NZd/T.gé- /T GeXp<2ig illm H2> W (expy, (1n))
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With these definitions the evolution operator can be represented by a limit of discrete op-
erators as follows

U = ,\IlianS{\}N. (4)

Some words could be added about the one-step propagator. First we noB ihat
continuous to the right @& = 0 by definingSy(g) = y(g). Furthermore, it can be proved
that the expansion & y(g) to first order ine is given by

Sv(9) = v(9) +i§ (Aw(g) - ;R(gW(g)) +0(¢). (5)

In other words the Schrédinger equation obtained from this propagator contains a curva-
ture-dependent potential added to the Laplace-Beltrami operator.

3. THE PROPAGATOR FORSU(2)

Our goal is to calculate the propagator (1) or (2) in the gr8ul2) for a sufficiently
large class of functions. First we observe tBal(2) has a natural Riemannian structure
with constant curvatur® = 6. Furthermore we use the fact that the group manifily2)
is diffeomorphic to the three sphes8. Spherical coordinates iR* are used. They are
given by

x! = sinp sinf; cosh,
x? = sinp sin; sinb,
x3 = sinp cosfy

x* = cosp

(6)
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With these coordinates the tangent spac® tver the point with coordinates= (0,0,0,1)
can be parametrized as follows

n' = psinB;cosh,

n? = psin@;siné, (7)
n® = p coshy
The Haar measure, written in these coordinates is
du = sir?p sin@,dp d6, d6s. (8)

Finally, the one-step propagator for an arbitrary functjois given by

SCE <2n8|>3/2///2”exp<' > w(p,61,65) ., 9

where we have slightly simplified the notation.
Before going to more general functions we consider the case of constéotexample
v = 1. In this case the integral in (9) gives

sine

Sl= —exp( i€). (10)

Of course it does not depend on the point were it is calculated.
It is easy to construct the propagator for finite timé is given by

U= lim §fy1=e" — g5t (11)

Now we turn our attention to the eigenfunctions of the Laplace operator in the group.
This operator is given by

A= i +2co +csc <82 +cot6 J +csc o o > (12)
ap2 t”a P98 150, 1962
The Laplace operator has eingenfunctiopg, with eigenvalues
—(n=1), n=12.... (13)
That is
Aupim = _(n2 —1)Unim (14)

These functions, conveniently normalized, are given by

Unim(p, 61, 62) =

. | — 1)1\ Y2
1121+ <;7r(n+l))> Cit1 . (cogp))sin (p)Yim(61,62). (15)
WhereC'n:{1 are Gegenbauer polynomials arjgl are the usual three-dimensional spher-
ical harmonics. For a thorough treatment of harmonic analysis on groups see the books by
Helgason [8] or Vilenkin and Klimyk [20].

The value of the one-step propagator (9) at the pedn be evaluated giving the neat
expression

umm(e). (16)

Setiim(€) = exp(_i(n2+ 1)8) sinine)

2 ne
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We must stress that both members of this equation vanish simultaneouslylual®ssnd
m=0.

After some calculations it is possible to prove that, is an eigenfunction o%: with
eigenvaluel,(¢), that is

SeUnim = An(€)Unim (17)
is valid for anyunm.
For these functions it is easy to evaluate the limit in (4), it is given by

: (n? — 1)t Rt
UtUnim = ,\Illinwg\}Nunlm = eXp(|(2)> eXp<|6) Unim- (18)

Finally, using the closure relation

o n-1 |

6(COSp - COSp,)6(9 - 9/)5(¢ - ¢)/) = Z Z Z U_nlm(p,, Gla (P/)unlm(pa 97 (P)v (19)

n=11=0m=—I

we can write down an expression for the Feynman propagator, which is given by

K(p,0,9,p',6",¢";t) =

o n-1 | 2
Z Z Z exp(—i(nzl)t> exp<—iFét> Unim(P’, 0,0 Yunim(p, 6, 9). (20)
n=11=0

m=—I
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