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SOME REMARKS ON OCKHAM CONGRUENCES

LEONARDO CABRER AND SERGIO CELANI

ABSTRACT. In this work we shall describe the lattice of congruences of an Ockham alge-
bra whose quotient algebras are in the Urquhart clRsgs This description is obtained
using the Duality for Ockham algebras given by Urquhart (see [3]). This work is a natural
generalization for some of the results obtained by Rodriguez and Silva in [5].

1. PRELIMINARIES

In [5] Rodriguez and Silva describe the lattice of congruences of an Ockham algebra
whose quotient algebras are Boolean. Given an Ockham algebra, they characterize them
in two different ways, one by means of pro-boolean ideals and the other using the set of
fixed points of the dual space. Here we will give a generalization of this results describing
the lattice of congruences whose quotient algebras belong to the subvarieties of Ockham
algebras defined by Urquhart (see [3]). We will see that this congruences do not admit a
description by means of ideals, but they can be described by means of some subsets of the
dual space.

In this section we will recall the definitions, results and notations that will be needed in
the rest of the paper.

In section 2 we will introduce the s€bny, (O) for every Ockham algebra and develop
the main results of this paper.

Given (X, <) a poset, we will say that a subsétC X is increasingif for everyy € Y
and for everyx € X such thaly < x, thenxe Y. A map

g: X—X

is anorder reversingmap if for everyx,y € X such thak <y, g(y) < g(x).

If X is a set and¥ C X, when there is no risk of misunderstanding, we will ngfe=
X\Y.

Given a latticel we will note the set of atoms af by At (L ), and withCoAt(L ) the set
of co-atoms ot.

Definition 1. An algebraO = (O, A, V, f,0,1) of type(2,2,1,0,0) is an Ockham algebra
if it verifies the following conditions:

01 (O,A,V,0,1) is a bounded distributive lattice.
02 f(0)=1, f(1)=0.

03 f(anb)~ f(a)V f (b).

04 f(avb)~ f(a)Af(b).

For the rest of the pap® = (O, A, V, f,0,1) will be an arbitrary Ockham algebra.
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26 LEONARDO CABRER AND SERGIO CELANI

Let 0# F C O. We will say thatF is a filter (prime filter) ofO if and only if F is a filter
(prime filter) of the lattice reduct dd. We will note byX (O) the set of all prime filters of
O.

Let us denot€on(O) the congruence lattice @. As usual, we denote by the least
element ofCon(O), and by the greatest element Gfon(O).

In [3] Urquhart develops a Priestley style duality for the algebraic category of Ockham
algebras. Here we will recall some of these results. For the proof of the results in this
section see [3] or see [2, Chapter 4].

Let us recall that a totally order-disconnected topological space is a {{pte, t) such
that(X, <) is a poset({X, 7) is a topological space and givery € X such thak £ y there
is a clopen increasing sk such thatx € U andy ¢ U. A Priestley spacés a compact
totally order-disconnected topological space.

Definition 2. A structureX = (X, <, 7,g) is an Ockham space if the following conditions
hold:

1. (X, <, 1) is a Priestley space,

2. g: X — X is a continuous order-reversing map.

We denotep (a) = {P € X(0) : a€ P}. Then the structuréX (O),C,10,90), Where
To is the topology generated by the base

B={¢(a).X(0)\¢(a):ac O}
andgo is defined by:
go (P)={acO:f(a)¢P},

for eachP € X (0), is an Ockham space called tteal spaceof O.

Conversely ifX is an Ockham space, thé® (X),N,U, f,0,X), where

O(X)={U C X :U is a clopen increasing subsetXf
and
f(U)=X\g (),

for eachU € O(X), is an Ockham algebra. Moreover, these constructions give a dual
equivalence. The arrow part of the duality will not be developed because it plays no rele-
vance for the aim of this work.

A subsetyY of an Ockham spac¥ is called ag-setif for everyx €Y, g(x) € Y. We will
say thatly is ag-closedset when it is closed (in the topology) and-aet For everyx € X,
we will noteg® (x) = {g" (X) : n € N}. Itis easy to see that C X is a g-set if and only if
for everyx €Y, g® (x) C Y. We will note byG (X) the set of alg-closed subsets of.

Theorem 3. Let consider the following map
®:G(X(0)) — Con(O)
defined by
d(Y)={(a,b)cOx0O:9p(a)nNY =0¢(b)NY},
for each Ye G(X(0)). Theng¢ is a dual isomorphism from the lattice(®& (O)) to the
lattice Con(O). The inverse map @b is the map

% :Con(0) — G(X(0))
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defined by
% (6)=1{ps"(Q):QeX(0/6)},

wheref € Con(O), andpg : O — O/ 0 is the the canonical projection.

Form,n e N andm > n, Urquhart introduces the claBs,, of Ockham algebras formed
by those algebras whose dual space satigffes g".

Remark 4. Itis easy to see thatif m, p,q € N such that m>nand p> g, thenPp 4 C Pmn
if and only if p—q|m—n, g<nand p<aq.

For a proof of the next results see [3].

Theorem 5. For every mn € N and m> n, Py has only finitely many subdirectly irre-
ducible algebras, all of which are themselves finite.

Theorem 6. Let mn € N with m> n, and letO € Pm,. If O is simple, ther© € Py_np.
The following Theorem characterizes the clad3gs.

Theorem 7. Let mn € N such that m> n. ThenO € P, if and only if it satisfies the
following properties:

1. f m—niseven, forevery a O
(@ fM(a) = f"(a).

2. Ifm—nis odd, for every & O
(@ fMa)vf(a)=1.
(b) fM(@) A f"(a) =0.

The previous Theorem proves that the clad3gg are subvarieties of the variety of
Ockham algebras. ClearB g is the variety of Boolean algebras.

For everyp,q € N, Berman (see [1] or [2, Chapter 1]) introduces the Berman classes
Kp,q of Ockham algebras. An Ockham algebra belongs to the BermanKlagd and
only if it satisfies the equation

f2PHd(q) = f9(a).

It follows thatK p g = P2pyqq. Moreover an Urquhart clas,, is a Berman class if and
only if m—nis even.

The following result generalizes the Corollary of Theorem 2.7 of [2, Chapter 2] and will
be useful in the next section.

Theorem 8. Let mn € N such that m> n. If O € P, then the following propositions are
equivalent:

1. f isinjective.
2. O € Pm7n70.
Proof. If m—nis even, the result follows from the Corollary above mentioned, because
in this caseO belongs to the Berman cla&§y, )2 n-
Consider tham—nis odd.
If we suppose that is injective, then by Theorem 7, we have that for every O
fMavf'(a) =1,
fM"(@) A f"(a)=0.

Actas del VIII Congreso Dr. Antonio A. R. Monteiro, 2005



28 LEONARDO CABRER AND SERGIO CELANI

Suppose that is even. Then
fP(f™""(@va)=f"(a)Vv{"(a) =1
Sincef is injective, we have that
f""(@ava=1

for everya € O. In the same way we obtain th&f" " (a) Aa= 0 for everya € O. Then
O € Pyno. If nis odd the proof is similar.

To prove the converse suppose ti@at Pn_no. By Theorem 7 we have that every
ae Ois a complemented element and its complemehtif” (a). If a,b € O are such that
f(a) = f(b), thenf™"(a) = f™"(b). SinceO is a distributive lattice and andb have
the same complemerd,= b. Thereforef is injective. [ |

2. THE LATTICE Conm (O)

Givenm,n € N such tham > n we will consider the following subset @fon(O)
Conmn(0) = {6 €Con(0): 0/6 € Pyn}

In [5] Rodriguez and Silva study the lattice of congruences of an Ockham algebra whose
quotient algebras are Boolean algebras, this is clearly the |@tingg (O).

For completeness we will prove the following Lemma that generalizes item 2 of Theo-
rem 2 of [5].

Lemma 9. Let ¥ be variety of algebras of typ& andA an algebra of typeZ. Consider
Cony (A)={6cCon(A):A/6c¥}.
Then Con (A) is a complete filter of CofA).

Proof. Since? is a non empty variety, every trivial algebra of typé belongs to?’.
ThenA/t € ¥, i.e.,1 € Cony (A).

If 6 € Cony (A) and6 C ¢ € Con(A), then by the Correspondence Theorem (see [4]
Theorem 6.20) there existsc Con(A/6) such tha#\/¢ is isomorphic tdA/0) /c. Since
¥ is a variety we conclude thét/¢ € 7, i.e.,¢ € Cony (A).

Let {6}, be an arbitrary set of elements©@bn, (A) and letZ be a set of equations
such that/ is axiomatized by. Considerd = ﬂei. If p(x1,...,%) ~q(Xg,...,X%) is an

icl

equation inx, then for every € | and evenya,, 6 ,an € Awe have that

(p(ag,---,an),q(as,-.-,an)) € 6.

Thus(p(as,...,an),q(as,...,an)) € 0. It follows thatA /6 satisfiesp ~ q for every equa-
tion p~ qin Z. ThereforeA /0 € 7, i.e.,0 € Cony (A). ]

Theorem 10. The following propositions hold:
1. For every mn € N such that m> n, Cony, (O) is a complete filter.
2. For every mn, p,g € N such that m> n and p> g, Cony, (O) C Conyq(O) if and
onlyif p—qg|m—n,g<nand p<q.
3. If 6 € Conyy (O) is aco-atom of Cofp (O), thenO/ 6 is finite andd € Cony_n o (O).
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Proof. 1. It follows directly from Theorem 7 and Lemma 9.

2. It follows directly from Remark 4.

3. If 6 is a co-atom oCony, (O), thenO/6 is simple and belongs . By Theo-
rem 50/0 is finite. By Corollary 6 we have th&@/6 € Pm_np. [ |

Remark 11. By item 1 of the previous Theorem we have that the latBog,, (O) is a
bounded lattice. We will calbyp its first element. It is an easy consequence of the Corre-
spondence Theorem that the latt€en,, (O) is isomorphic to the lattic€on(O/omn).

Consider the map
& :Con(O) —1d (O)
as defined by
7 (0) =1[0]g
for each® € Con(O), whereld (O) is the set of lattice ideals dD and ifa € O, [a],
is the congruence class af In [5] Rodriguez and Silva prove tha¥ restricted to the
congruences whose guotient algebras are Boolean, is an order isomorphism and its image
are the pro-boolean ideals &. In the next example we will see that there are Ockham
algebras where this property does not hold if we restricto Conyn (O) when(m,n) #
(1,0).

Example 12. Consider the following Ockham algeb@a
1

Fig. 1
wheref (a) =bandf (b) =a. By Theorem 70 € P, . SinceP,is a varietyCorp o (O) =
Con(O). Consider
6 =1{(0,0),(aa),(b,b),(1,1),(ab),(b,a)}

and letw be the least element @on(O). Clearly [0], = {0} = [O]
injective.

Moreover, note thafl], = {1} = [1],,. Thus a congruence i@orp(O) is not deter-
mined neither by0], nor [1],.

Thus .# is not

"

Given an Ockham space= (X, <,7,g) andm,n € N with m > n, we will consider the
following set
Fixmn (X) = {xe X:g"(x) =g"(x)}.
It is easy to see that for evem,n € N, Fixmn (X) is a closedy-subset ofX. Consider
Qmn (X) the set of closed-subsets oFixmn (X). Clearly
Qmn (X) = (Fixmn (X)]NG(X).

Theorem 13. Let mn € N such that m> n. Then the lattice Capn (O) is dually isomor-
phic toQmn (X (0)).

Actas del VIII Congreso Dr. Antonio A. R. Monteiro, 2005



30 LEONARDO CABRER AND SERGIO CELANI

Proof. Let % : Con(O) — Fix(X(0O)) defined in Theorem 3. We only have to prove
that the image o€onmn (O) is Qmn (X (0)).

Let 6 € Comnn (O). If P € €(8), then there existQ € X (0/6) such thap, * (Q) =P.
SinceO/6 € Py,

(90)"™(P) = (90)"™ (P * (Q))
=Py ((90/6)™(Q))
=Py ((90/6)"(Q) = (90)" (P).
Thus% (0) € Qmn (X (0)).
IfY € Qmn(X(0)), thenO/ (6 (Y)) = O(Y, C, v, 0y) Wherety is the restriction ofro

to the subseY, andgy = g|y. SinceY € Qmn (X (0)), O(Y, <, Ty, 0y) € Pnn, and the result
follows. [

SinceFixmn (X (O)) is the last element ®mp (X (0)), from the previous theorem we
have that
% (Gm’n) = FiXmm (X (O)) .

Theorem 14. Let X be an Ockham space and me N such that m> n. Then the set of
atoms ofQmp (X) is the set

Proof. It follows directly from Theorems 3, 10 and 13. [ |

Note that ifx € Qmn (X) \Qm-no (X), then
“x=C# |J F

FeAt(Qmn(X))
FCC

We conclude the following Corollary.
Corollary 15. Let mn € N such that m> n. Then the following propositions are equiva-
lent:

1. For every6 € Conyn (O),

6 =(){¢ : ¢ € CoAt(Conn,(0)) and6 C ¢}.
2. Conmn(0) =Conn_no(O).
3. Q_m,n (X <O>) = Qr'r_1—n,0 (X (O))
Proof. By the previous observation and Theorem 14, 1 and 2 are equivalent.

Clearly by Theorem 13 and the definitionsfétmn (X (O)) andQmn (X (0)), items 2,
3 and 4 are equivalent. |

Theorem 16.Let mn € N such that m> n. Then the following propositions are equivalent:

1. Conmn(O) is a Boolean lattice.
2. Fixmn (X (0)) is finite and Fixyn (X (O)) = FiXm-no (X (O)).
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3. Qmn (X (0)) is finite andQmn (X (O)) = Qm-no (X (0)).
4. Conyn (O) is finite and Copyn (O) = Conm_no (O).

Proof. In this proof we will omit the subscrigD, and noteg instead ofgo.

Clearly 2, 3 and 4 are equivalent.

Suppose that 1 holds. First we will prove tf@tmn (X (O)) = Fixm_no (X (O)).

If n=0the resultis obvious. Suppose that 0 and that there existsc Fixmn (X (0))\
FiXm-no (X (O)). Thenx ¢ g® (9" (x)). By Theorem 13Qmn (X (O)) is a Boolean lattice.
So

(9”(9"(x))° € Qmn (X (0)),
but (g® (g"(x))) is not ag-set sincex € (g® (g"(x)))® andg® (x) Z (g (g"(x)))¢, which
is a contradiction. Thu§iXmn (X (O)) C FiXm-no (X (0)). By Theorems 10 and 13 we
have thaFiXm_no (X (0)) C Fixmn (X (0)). ThusFiXmn (X (O)) = Fm-no (X (O)).

Now we will prove thatQmp (X (0)) is finite. We already proved th&ixmns (X (0)) =
FiXm-no (X (0)). SinceQmn(X(0)) is a Boolean latticeFixmn (X (0))\(g® (x)) is a
closed subset ofixmn (X (0)), for everyx € Fixmn (X (0)). Theng®(x) is relatively
open inFixmn (X (0)). Clearly

FiXmn (X (O)) = U 9” (%),
XeFiXmn(X(0))

and sincd=ixmn (X (0)) is closed, itis compact and there exXigt, ..., X} C Fixmn (X (O))
such that

FiXmn (X (0)) = [ Jg” (%)
i—1

Sinceg® (x) is finite for everyx;, Fixmn (X (O)) is finite.

For the converse, suppose tit, (X (0)) is finite andQmn (X (O)) = Qm-no (X (O)).
Clearly Fixm—no (X (0)) is finite. We only have to prove th&y_no (X (O)) is a boolean
lattice.

LetC € Qm_no(X(0)). If we suppose that there exists C° N FiXm_no (X (O)) such
thatg® (x) NC # 0, then there existe < m— n such thatg* (x) € C. Thus

x=g""(x) =gm "k (g" (X)) o

becaus€ is ag-set, which is a contradiction. Th&¥ N Fixm_no (X (O)) is ag-set.
SinceC® N FiXm_no (X (0)) is finite, it is closed. Thus

C®N FiXm-no (X (0)) € Qm-no(X(0)). ®

The following Corollary gives a generalization of Theorem 4.2 of [2, Chapter 4].
Corollary 17. Let mn e N such that m> n. LetO € By, ». Then the following propositions
are equivalent:

1. Con(O) is a Boolean lattice.
2. Con(O) is finite andO € Py_n.
3. Con(O) is finite and f is injective
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32 LEONARDO CABRER AND SERGIO CELANI

Proof. SinceO € Pypn, Con(O) = Conmn (O). Thus the result follows directly from the
previous Theorem and Theorem 8. |
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