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AN INVERSE PROBLEM FOR INTEGRABLE SYSTEMS
LINEARIZING ON ELLIPTIC CURVES

LUIS A. PIOVAN

ABSTRACT. We obtain algebraic completely integrable systems related to the geo-
metric data given by elliptic curves, configuration divisors on the curves, and the
action of a group on the theta sections of the line bundles associated to these
divisors . A description of all meaningful systems and Poisson raanifolds for the
above data with divisors consisting of three points and group of symmetries Sj is
given.

1. INTRODUCTION

Since Euler, interesting connections between finite dimensioral integrable systems
and algebraic geometry were found.

Most of the known examples of integrable systems are a particular class of com-
pletely integrable systems, whose solutions, expressible in terms of theta functions,
are associated with abelian varieties and divisors on them, so that the complex
hamiltonian flows are linear on these abelian varieties. Roughly speaking, such
systems are called algebraic completely integrable (a.c.i.)[1].

Starting from an a.c.i. system we can produce explicit geometric data like a divisor
on an abelian variety (the divisor at infinity), its polarization , the linear system
associated with this divisor, and a finite group of translations leaving invariant the
divisor and the holomorphic vector fields.

In this paper we present an inverse problem and show how to obtain “mathemat-
ical” algebraic completely integrable systems from geometric data.

We start with a family of elliptic curves E,; their configuration divisors at infinity
D,, which in these examples will be the sum of three points; a group G = Z3 x
Z, = S3 of symmetries leaving invariant each D, ( essentially they are translates by
third periods and reflection about the origin in the elliptic curve); and line bundles
Lo — E,, whose sections are projective coordinates of the arabient space IP3. We
provide a construction of the systems by finding a convenient basis {U,V,W} of
theta functions for the above data, with the property that the same theta functions
(up to permissible change of basis) become sections of the line bundles L, — Ei.
On these sections, G ( a subgroup of the Theta group associated with D, ) acts via
the usual Schrodinger representation induced by the Theta group, which is the same
for all elliptic curves. We deduce a linear and a cubic equation for the image of the
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curves in P((H°(E,,Ly) @ €)*) = IP?, in terms of parameters. Also, we find the
quadratic equations for the holomorphic vector fields in terms of the above basis.
The equations that describe the image of E, in IP® contain parameters o which
serve as a kind of moduli data. Now, one of the theta sections, say Z, will cut out
on each E, a divisor at infinity of the form D = ey + ¢; + ez, and in the affine
variables 7, 7, % of €° we obtain a smooth affine elliptic curve for each generic a
. The question is whether such a family of affine curves put together in € has a
Poisson structure so that they are the complex invariant manifolds for a hamiltonian
structure. We take affine Poisson structures of the form {f, g} =< gradf, J. gradg >,
where J is a Skew-symmetric matrix with polynomial entries in the affine variables.
This leads us to the following theorem that will be shown along the paper.

Theorem 1. Consider the family {E,} of elliptic curves and divisors {Dy = ey +
e1 + ex} on them, such that D, is invariant under a translate by a %-pem’od, and
3eg ~¢ 3e1 ~yg 3ea ~y Dy ((~y is linear equivalence of divisors). This family posses
a group G = Z3 X Zy = S3 leaving invariant each Dy and E,\D,. Let H Y(Ea, Do)
be the space of sections linearly equivalent to D,. There is a basis {Liu = %, v =
%, (S %} for the augmented space H*(E,, L) @ €, with Z the section vanishing
on Dy, such that G acts as in the following table, for all generic curves Ey:
u v ow
oclv w u
tlu w v
The image of Eq in P* = P((H°(Ey, Do) ® €)*) is the complete intersection of
a hinear and o cubic invariants under the group G. The G-invariant polynomial
Poisson structures J in the affine variables u,v,w’s are quadratic for a system to
linearize on the elliptic curves. Then, there is a five-parameter family of nonequiv-
alent integrable systems with nontrivial hamiltonians given by the linear invariant,
quadratic matrices J, and cubic Casimir. Also, there is a case of constant matriz J
with linear invariant as Casimir and cubic hamiltonian. This gives a four-parameter
family of integrable systems with nonequivalent systems characterized by three effec-
tive parameters. Here, equivalence means a map from € x {space of parameters}
into utself, such that the Poisson structure is preserved, as well as the action of the
group G, the curves, divisors and holomorphic vector fields. Allogether, we get a
three-parameter family of Poisson manifolds.

The method of the proof is quite similar ( with modifications adapted to 1-
dimensional cases) to that in [7] and uses results of [6]. I want to thank Pol Van-
haecke for suggesting this problem.

2. FAMILY OF ELLIPTIC CURVES WITH A SYMMETRIC DIVISOR D = ey + €1 + €4
AT INFINITY

Let us start with an elliptic curve E= €/ < 1,7 > in which an origin e; is
fixed and two é-period points e;,es = ey + e; are given. We consider the divisor
D = ey + e, + ey, which is invariant under the permutations’ group S; =< 0,1 >
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AN INVERSE PROBLEM FOR INTEGRABLE SYSTEMS 59

with relations 0% = 10, 12 = 1, 0 = 1. Here o corresponds to a translation by a %-
period and ¢ to the (—1) involution. D can be obtained from & single point (chosen
as origin), by applying the group Z/3 generated by a translation by a %~period.
However, we put the condition that 3eq, 3e;, 3e; are linearly equivalent D, and that
imposes restrictions on the possibilities for our divisor D. Namely, not any triple of
points {eq, €1, €2}, subgroup of %—periods can be considered as D. Let us find now a
basis for H*(E, O(D)). Since the divisors 3ey, 3e;, 3es, are also linearly equivalent
to D, we take a basis of sections of O(D) that vanish three times at ey, three times
at er, and three times at ep. Call its elements, respectively U, V, and W. Let also
Z be a section that vanishes only once at D. By rescaling, we can pick Z such that
oZ=17 and 1Z=7. Also, by conveniently rescaling U, V, and W, we obtain a basis in
which the action of S; is given by the following table:

ZIU|V|W
(1) c|lZ|VIW|U
VAR AR

To show this, we consider theta functions with characterist.cs (m,m*). Let 7 be
a complex number with positive imaginary part. The pair of real numbers (m, m*)
is associated univocally with the point m* + m7 of C.

We define the classical elliptic theta functions with characteristics (m,m*) [2,
§8.5] [5] as (1) below, where e(z) = exp(2miz), z € €. They have the properties

[5
(2),(3),(37),(4). .
Omm+(7,¢) = 2,z e(5(n + m)*r + (n+ m)(¢ +m*))
1911“ ,m* ( C) ,L()'-Tn,—-m* (Ty C)
19m+n mein (T, C) = e(mn™)0p, por (7,¢), form,n*e€Z
mm (T, ¢ FuT + u*) = e(—3u*7 — u(¢ + u*))e(—um* )0 pume4ur (7, ).
Let (m,m*) € §Z2g /Z* be a third period, then we have the formula .

(4) Fmm= (1, —() = e(=m)81-m1-m=(7, ().

S~

);
1)
2)
3)

(3) ¢

So, we fix ¢g = 0, e; = m* + m7, and e; = 2m* + 2m7 as representing our group
of third periods and we want to see how o = ¢, and ¢ = (—1) act on the functions
O, Donm»> Vam,2m», With the action defined by ¢, f(y) = f(y + 1) and 1 f(y) = f(—v).
This is drawn in the following table:

51 =1 8g = ﬁm,m* 83 = ’19:zm,2m*
(2) | F(OPmme | F(Qel=mm?)d | F(Q)e(—=2mm* )0 me
L s e(m(l — 6m*))Pomoms | e(—m(1 + 6m*)) 0y

Actas del VII Congreso Dr. A. A. R. Monteiro, 2003



60 LUIS PIOVAN

Let u; = s}, i=1...3, and © = s15253. With the assumption 3ey ~; 3e; ~ 3eq,
we deduce that e(—mm*) has to be a cubic root of unity ( this will be our restriction
to D since e(—mm*) is a ninth root of 1). We obtain:

U1 U Us C]
(3) o | fPuy  fPus  fPuy | 2O
L Uy Us Ug ©

Now, the functions U=, V=%, W= ¥, and Z=1, thought of as sections in

HO(E,O( )) give precisely Sable (1)

Using Riemann-Roch’s Theorem for curves [3], we deduce that dimH*(E, O(D)) =
3. S0, Z is a linear combination of {U,V,W}= basis for H*(E, O(D)). To check
that thls set of sections is linearly independent, one uses the expressions of s3, s3,
s5 evaluated at the points e, e1, e3 above, to obtain the nonsingular matrix (s3(e;)).
The relation among U,V,W, and Z must be one of the equations defining the elliptic
curve in IP? = P(< Z > @ < U, V,W >). Thus, we get the linear relation

(4) U+V4+W=daZ
since it has to be invariant under the action of the group (1).

We consider the four dimensional space H =< Z > ®H(E, O(D)). There is an
exact sequence of sheaves:

y 0

0 — I(1) —— Ops(l) — OE

Op(D)

that induces an exact coh()mology sequence:
0 — HYZ(1)) — H(Ops(1)) —— H*(Op(1)) —— 0
H
dim =1 dim =4 dim = 3

since we have only one linear equation defining the elliptic curve E in IP? (a generator
of HY(Z(1)) ). Namely, the embedding E — P(H(E, O(D))*) = IP? is projectively
normal in view of Sekiguchi’s results [9] and the above cohomology sequence becomes
exact .

Analogously,
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0 — I(2) — Ops(2) —— Op(2) — 0

Os(2D)

yields the exact sequence

0 — HY(Z(2)) —— H(Ops(2)) —— H°(Op(2)) — 0
dim =14 dim = 10 dim =: 6

(5)

also by projective normality. This 1ndlcates there are four quadratic equations;
namely, the space

H®(U+V+W-—aZ).

To compute the dimension of HO(OIPs(Q)) we have used that it is the space of

degree 2 homogeneous polynomials in the variables {Z, U, V, W}, i.e. S?(H).
Considering

0 — I(3) —— Ops(3) — Op(3) — 0,

Ox(3D)

we get

0 —— HZ(3)) —— H°(Ops(3)) —— H(Ox(3)) — 0.
dim = 11 dim = 20 dim =9

This shows that there are 11 cubic equations for E. Ten of them are given by
S*(H) ® (U+ V + W — aZ), and there is a néw one.

Now, since the degree of Og(D) is 3, we will show that E is the complete intersec-
tion of the linear and cubic equations. Indeed, dimH%(Og(nD)) = 3n, dimH*(Ops(n)) =
dim{homogeneous polynomials of degree n in IP*} = ("+3) On the other hand, the
number of relations of order n generated by the linear and the cubic is ("¥?) + (%) —

3
("31), which precisely coincides with ("$®) — 3n, and shows oar statement.

3. HOLOMORPHIC VECTOR FIELDS ON THE ELLIPTIC CURVES

Let us write u = §,v = %,w = %, for the affine coordinates.

The action of Sz on these affine coordinates is given by the table
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(6) glv w u

Since the group Sj is a subgroup of the Theta group associated with the polar-
ization of D, we have the invariance property of wronskians of sections of the line
bundle Og(D) derivated with respect to the holomorphic vector field X on E. Namely

Wx(of,og9) = oWx(f,9) = o(f. X(9) - 9.X(f)), Wx(7f,79) = =7Wx(f,g) [6] (to-

Uy _ Wx(U2)

gether with the relation G = (3;) = =272~ and similar ones for the other variables).
We conclude that the vector field is quadratic in the affine variables. This follows
because Wx (f, g) belongs to H*(Og(2D)) for f, g € HY(Og(D)), and as we have seen
in (5), an element in H*(Og(2D)) comes from quadratic polynomials. Thus, we get
the expression for the G-invariant generic vector field on E as follows:

o = fulv—w)+§v?—w?)+ ANv-—w)
(7) b= fu(w—u)+ 8(w? —u?) + AMw —u)

w = Pwlu-—uv)+du?—v?2)+ Au—v)

The affine invariants up to third degree are
wd 4+ v + wd w2 (v + w) + vHw +u) + w(u+v); uvw;
W+ v+ whuvtvw+wu ut v+ w.

It is easy to check that the ring of invariants Clu, v, w]* is generated by u+v+w,
uv+vw+wu, and wvw. So a cubic equation independent of the linear one, must
have the expression:

(8) p=uvw+b(uv+vw+wu) =c

This we deduce by writing a general cubic invariant under Sz and. using the obvious
relations among the invariants. (Notice that since (7) is tangent to ¢ we get § = 0
).

In this way we get a family of elliptic curves in IP*® parametrized by parameters
(a,b,¢). Two such curves will be equivalent if there is an isomorphism preserving
the divisors at infinity. This implies that there must be a linear map sending the
affine piece of one curve into the affine piece of the other [6]. Moreover, if we require

that the action of the group be preserved, we are calling for a nonsingular linear
map f: Clu,v,w] — C[X,Y, Z] as follows:
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X = qqutav+aw
(9) Y = ot + a1 U+ asw
Z = Aot + as v+ aq w

This linear map has to transform the curve defined by the ideal Z(,4 =<
o1(u,v,w) =u+v+w—a, ps(u,v,w) =uvw+b(uv+vw-+wu)—c>, into the
curve defined by the ideal Ziy/ py oy =< ¢1(X, Y, Z) = X +Y + 7 —d', ¢3(X,Y, Z) =
XYZ+V (XY+YZ+ZX)—-c >.

Let us write ¢13(u, v, w) =u+v+w, P =uwv+vw+wu psu,v,w) =uvw,
( respectively @; if they depend on the variables X,Y,Z ).

We have:

[*(@1n) = (a1+2a2)pn
fH(@a2) = (a1~ a2)® a2 +az(az +2a2) 91,

[ (@s3) = (a1 — a2)® a3 +as (ay — az)? a2 11 + a3 as o3,

therefore, f*(@1) = (a1 +2az) p11 — a’ = (a1 + 2ag) 1 implies @’ = (a1 +2ay) a.

Also f*(@3) = (a1 — a2)* 33 +az (a1 — a2)® w2z 11 +a§ a1 3+ (a1 — a2)® o2 +
a9 (ag + 2(11) QO%]) - = ((11 — G2)3 Y3 — b(ﬂ,l - a2)3 Yoz -+ C(G,l - a2)3 + o ((11 —
az)? (p1 + a) @z + ad as (p1 + a)® + ¥ (a1 — a2) o2 + a2 (a2 + 2a1) (1 + 0)?) = ¢
= Something in the ideal Zap. + (—b(a1 — a2)* + aay(ar — a2)? + U (a1 —
a2)?) @aa +{(c(ay —az)® +a% a; a® 4+ as (a2 +2 a;) a® — ¢'); yields the relations among
the parameters of the transformed curve and the original one:

(11)
ad = (a1+2a)a
¥ = (a;—as)b—aza
d = (a1 —ag)’c+ax(ar —az) (@ + 2a1)ba® — af (a; + az) a®.

By eliminating a; and a; from (11) we get the following surface in the variables

(a’,b',c') whose points correspond to curves equivalent to the curve of parameters
(a,b,c):
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(ab®+b%+c) (@’ +9a” V)~ (a>+9 0 b—27 ¢) (' V24— (a®+9 a2 b+27 a b*+275%) ¢ = 0.

4. THE POISSON STRUCTURES

We will look for a Poisson structure of the form {f,g} =< Vf,J.Vg >, where
J=(J;;) is a skew symmetric matrix with polynomial entries that must satisfy the
Jacobi identity, amounting to:

0J;; aJ; oJy .
(12) Zk " Ji + o ki Do Ji =0 Vi, j,

where the y,’s take place of the variables u, v, w .
We will assume that the matrix

0 a« -—-p
(13) J=| -« 0 4
g - 0

has polynomial entries and is invariant under the action of G. That is: J(oU) =
A(o) J(U) Ao)t, J(U) = —=A(e) J(U) A(e)t, where U = (u,v,w), and A(o), A(¢) are
the 3 x 3 matrices of ¢ and ¢.

This implies @ = o8 == 0%, 8 = 1a, v = 17, and if @ € 3)_,5"(V) = LV,
V = linear span of (u,v,w), then 8, v € L.

The algebra of hamiltonian functions will be €1, ¢2]. So, after factoring out by
the equations 1 = 0, @3 = 0, any expression {yx, H} (H a hamiltonian function)
will be a linear combination of {yx,p1} and {yi, s} with coefficients in Cla, b, d].
However, we have the conditions that all hamiltonian vector fields must be quadratic
in the variables (u,v,w). Namely {u,¢1} = @ — 8 € L?, and {u,p3} = aluw +
b(u+w))—B (uv+b(u+v)) € L2 Moreover, we have the commutativity condition:

(14) {es, 1} =(1+0+0%) (a(w+b)(v-u) =0,

and condition (12), that can be written

O Ou
7)oz
Lemma 2. The only G-invariant Poisson structures are quadratic and have the
form (13) with

(15) (1+0+02) (o (6% =0.

ofu,v,w) =r(uv+b(u+v))+s,
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r and s parameters, a = o =02y, f=1ra, y=17.

Proof: Assume (3 = ¢; u”* v*?> w"® + lower ordering terms with v + 15 +1v3 > 3.
Then, in order to have o — 3 with quadratic terms, 8 (and «) has to contain the
expression ¢; (Zyes,u’™ v72 w3). Let us pick ¢; u** v*2 w"? the highest order term
of 3 and « according to lexicographic monomial ordering. In the expression

(16) aluw+bu+w)) —Fuv+b(u+v)),

this term yields ¢y vt 1! v2 w3+l — ¢ u”lJr1 v2+1 s, The monomial u2 1 21 s
has the highest order and cannot be cancelled by a term coming from «. Thus,
¢; = 0 and we can eliminate all terms that are not quadratic. Therefore,

(17)
ﬁ = (111U2+012UU'+G13UW+a22v2+(123’0w+(133w2+b1u+b2'v+b3‘w+C4
a = a11u2+a12uw+a13uv—%—a22w2+a23vw—|—a33v2+b1u+b2w+bgv+c4.

Since the degree four polynomlal in (16) has to vanish and degree four pmce of
(16) = anu w + agg u® w? +a22uw + a3 UV W +azz uv?w — ap ud v —appulv? —
Ao U V° — Aoz u W V% — agzuvw?, we obtain ags = asz, G11 = 12 = @2 = 0. Thus:

,8 = a13‘uw+a23vw+ag3w2+b1u—|—b2v+b;;w+c4

(18) o = Quv+agvw+agv®+bu+bwt+bivtc.

Now, we obtain the degree three picce of (16) = (by —bayz) u? w+(by—bags) uw?+
(bays — by) u? v + (bags — by) v? u, yielding by = bays, by = bag, B=aizu(w+b)+
ags (v +w)w+bv) + bsw + 4.

Using that a = ¢ = ¢ 8 and comparing the last two polynomials gives the final
expression

a=ay3@wv+blutv))+ca
The relations (14) and (15) are immediately satisfied. O

Lemma 3. The algebra of Casimir functions is generated by o1 if a3 = C and by

3+ 2 if a1z # 0. In the first case a nontrivial hamiltonian is w3 and in the

second case a nontrivial hamiltonian s 1.

Proof: Let p(i1, ¢s) be a Casimir where p is a polynomial of two variables. Then,
p has to be a solution of the equation
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Op Ops Ops, Op p Op
_ - b) (v — It
(a 6) 5901+(a v ﬂ 8w)a(10 ('U,+ )(U w)(a3 ,01 648@3)

If a;3 =0, ;—(53 =0andpisa polynonnal in ;.

If a3 # 0, then p satisfies ﬁ’; = ;fs Beq” Let p, be the m®* degree homogeneous
polynomial of p = &Y_p,.. Then, each p,, satisfies ‘Z,p—’;‘ = A -‘;”7’: and Euler’s
identity ¢y 51’—— + @3 g’;'; = Mpm. Thus, pm = cm (3 + 24 ¢1)™, which shows our
statement. O

So far we get the following systems:

(19)
Casimirs generated by (v +v+w)
Hamiltonian w3 = uvw+bluv+vw+ wu)
Vector Field @ = cu(v—w)+cb(v—w), cycle {u—v—w-—u}
and
(20)
Casimirs generated by (wvw+b(uv+vw+wu)+ A (u+v+w)
Hamiltonian w1 = (u+v+uw)
Vector Field % = aizu(v—w)+azb(v—w), cycle {u—v—w-—u}

Now, we look for possible equivalences of the form (9) but preserving the algebra of
Casimirs and the Poisson structure given by the matrix J. Namely {f*(F), f*(H)} =
fHF H}, f(u,v,w) = (X,Y,Z). Let &(X,Y,Z) =7 (XY +b(X +7Y))+ 3, and
a(u,v,w) = r (uv + b(u+ v)) + s. At the level of the J matrices, preservation of
the Poisson structure means

0 a -—-p a ay Qo 0 o -—p4 a1 as Qs
—a 0 0% = a ay ag || —a O 0% Y as a1 as
B -5 0 az az a g -y 0 az az ax
0 (a1 +az)a—a(B+7) —((a1+a2)B—az({a+7))
(e —a2). | —((ar+a2)a—as (B+7) 0 (a1 +a2)y —az (a + B)
(a1 +a2)B—ax(a+v) —((a1 +a2)y—az(a+p)) 0
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Thus, &{u,v,w) = 7 (a? uv+a; ay (V:+vw+u?+uw)+ad (v+w) (u+w)+b (a; (u+
v) + a2z (u+ w) + ag (v+w))) + § has to equal (a1 — az) ((ay + a2) (r (uv + b (u +
v)+8)—ay(r{uw+b{u+w))+s+rvw+blv+w))+s)).

Ifr =0, then 7 = 0 and § = (a1 — a2)~2 s. But X = a; 4+ ay (v + w) implies
§X+0)Y-2)=§(au+tas(v+w)+b) (a1 —ag) (v—w)=(a; —as)*s(ayu+
as (v+w)+ (a1 —az) b—asa) (v—w) = (a1 —az) s (u+b) (v—w). That is (a1 —as)® =
1. Namely, equivalent systems depend on one parameter. After factoring out the
parameters space (a,b,c,s) we obtain three effective parameters that characterize
these systems.

If 7 % 0, also 7 # 0. Then a, = 0 and 7ay (ayuv +b(u+1v)) +35 = a?(r(uv +
b{u+v))+ s) implies 7 = r, § = als.

The vector field is written as X = 7 (X 4+ b) (Y — Z) = 7a¥ (u + b) (v — w) and
X =a; 4 = a;r (u+b) (v—w). Therefore a; = 1 and the parameters (a,b,c,r,s) are
effective and describe all nonequivalent systems with quadratic Poigson matrix and
linear hamiltonian.

Any polynomial Poisson bracket in €3 can be written as the sum of a quadratic
Poisson bracket as above and a Poisson bracket with values in the ideal Z(,p,) (At
least in terms of Hochschild cohomology of €[u,v,w]). However a bracket with
values in Z(,4.) is meaningless in terms of dynamics because it yields only trivial
vector fields on the affine ring Clu, v, w]/Z(4 ) of the elliptic curve.

The parameters (r, b, s) parametrize the different Poisson structures we put in €°.
Here, for two Poisson manifolds to be equivalent we do not require the vector fields
to map into one another. The J-matrices are preserved though. This leads to a two
parameter space of nonequivalent Poisson manifolds for we take s = 1.
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