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INJECTIVES IN QUASIVARIETIES OF POCRIMS
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ABSTRACT. Injectives and absolute subretracts in several classes of partially or-
dered commutative residuated integral monoids (pocrims) are characterized. Among
the classes considered are residuated lattices, Girard monoids, bounded hoops,
BL-algebras and Heyting algebras.

INTRODUCTION

Residuated structures, rooted in the work of Dedekind on the ideal theory of rings,
arise in many fields of mathematics, and are particularly coramon among algebras
associated with logical systems. They are structures (A4, ®, -+, <) such that A is a
non empty set, < is a partial order on A and ® and — are binary operations such
that the following relation holds for each a, b, ¢ in A:

a®b<c iff a<b—ec

Important examples of residuated structures related to logic are Boolean algebras
(corresponding to classical logic), Heyting algebras (corresponding to intuition-
ism), residuated lattices (corresponding to logics without contraction rule [13]),
BL-algebras (corresponding to Héjek’s basic fuzzy logic [10]), MV-algebras (corre-
sponding to Lukasiewicz many-valued logic [5]). A common substructure of all these
examples is the class of partially ordered commutative residuated integral monoids, or
pocrims for short [4]. The aim of this paper is to investigate injectives and absolute
subretracts in classes of pocrims.

After recalling in §1 some basic definitions and properties, we show in §2 that
classes of pocrims satisfying some mild condition have only srivial absolute subre-
tracts. In §3 we turn our attention to bounded pocrims, i. e., pocrims with a bottom
element considered as zero-ary operation. We show that injectives in the categories
of bounded pocrims and residuated lattices are trivial. Moreover, it is also shown
that absolute subretracts are trivial in the categories of residuated lattices and Gi-
rard monoids. In §4 we consider injectives in subquasivarieties of bounded pocrims
and in §5 we characterize the injectives in varieties of bounded hoops.

Key words and phrases. Injectives, absolute subretracts, residuated structures, hoops, BL-
algebras.
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1. Basic Notions

For all objects A, B in a category A, [A, B]4 will denote the set of all morphism
g : A — B. Recall that an object A of a category A is injective iff for every
monomorphism f € [B,Cl, and every g € [B, A]4 there exists h € [C, A]4 such
that hf = g. An object B is a retract of an object A iff there exist g € [B, Aj4 and
[ € [A, B]4 such that g is a monomorphism, f is an epimorphism, and fg = 15.
An object B is called absolute subretract in A iff it is a retract of each of its
extensions in A. It is well known that, a retract of an injective object is injective,
and injectives are absolute subretracts. For each algebra A we denote by Con(A),
the congruence lattice of A. An algebra I is simple iff Con(I) = {A, V}.

A pocrim [4] is an algebra (4, ®, —,1) of type (2,2,0) satisfying the following
axioms:

1. (4,0,1) is an abelian monoid,
z—1=1
1l—>2z=uza,
-y - ((z—2)—>(z—y)=1,
z—(y—2)=(z0y) — 2,
If z—-y=1 and y—z=1 then z=uy.

o O W

We denote by M the class of all pocrims. M is a quasivariety and does not conform
a variety [9]. For all A € M, the relation < on A defined by z <y iff z —» y = 1,
makes (A, ®,—,1, <) into a conmutative partial ordered monoid in which 1 is the
upper bound. An element z € A is called idempotent iff x ©® z = z, and the set
of all idempotent elements in A is denoted by Idp(A). We also define for all a € A,
a' = a and a™! = a” © a. 1t is easy to verify the following proposition:

Proposition 1.1. The following assertions hold in every pocrim A, where x,y, 2
denote arbitrary elements of A:
(H)z—z=1.
2 z—=y—2)=y—(z—2).
B)Ifz<ythen z—z2>y—2z and z—y<z—z.
@) zoy<zifr<y— 2
(5)z0y<y.
6)z0(z—vy)<y.
O

We recall now some well known facts about filters and congruences. Let A be a
pocrim. A set F' C A is an implicative filter iff F' satisfies the following conditions:

1.1eF,

2. fzeFandax —ye€ Fthenye F.

It is easy to verify that F' C A is an implicative filter iff 1 € F'and for all a,b € A:

-lfae Fanda<bthenbe F,

-ifa,be Fthena®be F.

For every filter F of A, 6p = {(z,y) € A> 12 —» yand y — z € F} is
a congruence in A and A/fr is a pocrim. We denote by (X the implicative
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INJECTIVES IN QUASIVARIETIES OF POCRIMS 41

filter generated by X C A, ie. the intersection of all iraplicative filter of A
containing X. We abbreviate (a) when X = {a} and it is easy to verify that
(a) ={z € A:3n > 1 such that x > a"}. The set Filt(A) of all implicative filtes
of A, ordered by inclusion, is a bounded lattice.

A hoop [4] is a pocrim satisfying z < y iff z = (z — y) ® 2. Every hoop is a
meet semilattice, where the meet operation is given by Ay = 2 ® (z — y). Hoops
form a variety HO defined by the following equations:

1. {A,®,1) is an abelian monoid,

2. x — =1,

3 (z—y)Oz=(y—=z) 0y,

4 z—(y—z)=(x0y) — 2
Let k be a natural number. A k-potent hoop [4] is a hoop satisfying z* = zF+1.
We denote the class of k-potent hoop by HO(k). It is clear that HO(2) is the variety
of Brouwerian semilattices [14].

A basic hoop (1] is an algebra (A, AV, ®, =, 1) of type (2,2,2,2,0) such that:

1. (A,®,—,1) is a hoop, |

2. (A, A, V, 1) is lattice with greatest element 1,

3 (z—-yV(y—oz)=1
Basic hoops are also known as generalized BL-algebras [6]. We denote by BH
the category whose elements are basic hoops.

2. Absolute subretracts in pocrims
The proof of the next proposition is immediate and will be omitted.
Proposition 2.1. Let A be a pocrim and 1. be a new symbol not belonging to A.

We can consider L @A = AU {L} with the following operation:

@y, ifr,yeA

ley:{_L, ifx=Lory=1

z—y, ifx,y€A

Ty y=<1, ifreAand y=1
1, if z=1
Then (L @A, ©L,—1,1) is a pocrim with smallest element 1, and A is a subalgebra
of L & A. O

Definition 2.2. Let A be a subquasivariety of M. We say that A is (L @®)-closed
iff forallAec A, LOA € A

Theorem 2.3. If A is a (L ®)-closed subquasivariety of M, then absolute subre-
tracts in A are trivial algebras.
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Proof:  Suppose that there exists a non trivial absolute subretract A in A. Let
¢: A —L ®A be the monomorphism such that i(z) = z. Thsn there exists an
epimorphism f :1 @A — A such that the composition fi = 14. Let 0 = f(L).
Since for all z € A, 0= f(L) < f(i(z)) = z, we have that 0 is the smallest element
of A. In L ®A we have that 0 —L1=1. Therefore f(0 —1) = f(L) = 0. On
the other hand, since i(0) = 0, f(0) — f(1) =0 — 0 = 1. Hence 0 = f(0 —.1)
but f(0) — f(L) = 1, which is a contradiction. Consequently A has only trivial
absolute subretracts. O

Corollary 2.4. If A is a (L ®)-closed subquasivariety of M, ther. A has only trivial
injectives. L

Corollary 2.5. M, HO, HO(k), BH have only triviel absolute subretracts and
trivial injectives. i O

3. Bounded pocrims and residuated lattices

A bounded pocrim is an algebra (4, ®, —,0, 1) of type (2,2,0, 0) such that:

1. (A,,—,1) is a pocrim

20—-z=1

In every bounded pocrim we can define a unary operation = by —z 1= z — 0.
‘The quasivariety whose elements are bounded pocrims, is noted by M,. Observe
that since 0 is in the clone of operation, then we require that for each morphism f,

f(0) =0. An element a < 1 in a bounded pocrim is called nilpotent iff there exist
a natural number n such that a™ = 0.

Proposition 3.1. Let A be a bounded pocrim and § € Con(A). Then, 8 # V iff
(0,1) ¢ 6.

Proof:  For the non trivial part, suppose that (0,1) € 6. Let (a,b) € A% Since
(a,a) € 6 and (b,b) € 6 then (1 — a,0 — a) = (a,1) € § and (0 — b,1 — b) =
(1,6) € 6. Thus (a ®1,1®b) = (a,b) € 6 and then @ is not proper. O

An important subclass of My is the variety of residuated lattices [13]. A
residuated lattice is an algebra (A, A, V,®, —,0, 1) of type (2,2,2,2,0,0) satisfying
the following axioms:

1. (A, ®,1) is an abelian monoid,

2. L(A) = (A,V, A,0,1) is a bounded lattice,

3. (z0y)—mz=2—(y - 2),

4 ((e—-y)o2)Ay=(z—>y) O,

5. (zAy)—y=1
The variety of residuated lattices is noted by RL. A Girard-monoid [11] is a
residuated lattice: characterized by the equation ~—z = z. The variety of Girard-
monoids is noted by GM. If A is a residuated lattice and 8 € Con(A), it is easy
to verify that Fy = {z € A : (z,1) € 0} is an implicative filter. Moreover, the map
8 — Fj establishes an order anti-isomorphism between Con(A) and Filt(A). It is
easy to verify the following propositions:
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Proposition 3.2. Let A be a residuated lattice, then the following assertions are
equivalent

1. A is simple,

2. Fora € A, if a <1 then a is nilpotent. O

Proposition 3.3. Let A be a totally ordered set with smallest element 0, greatest
element 1 and coatom u. If we consider the following operations in A:

0, ifzr,y<l1
rOQy=1z ify=1

y, ifz=1

L, ifz<y

rT—oy=4qy, ifz=1
u, ify<z<li

then we have

1. {(A,0,—,0,1) is a simple bounded pocrim,

2. (A N, V,0,—,0,1) is a simple residuated lattice.
Proof: 1) Let 0 be a non trivial congruence and (a,b) € 6 such that a < b. Since
(b,b) € 8 we have that (b — a,b — b) = (u,1) € 6 and then (uDu,101) = (0,1) € 6.
By Proposition 3.1, € is a proper congruence, which is a contradiction. Consequently
A is simple in M,. 2) It is easy to verify that A satisfies the residuated lattice
equations and by Proposition 3.2 A is simple in RL. O

Definition 3.4. An ordinal pocrim (residuated lattice) is an ordinal v = Suc(Suc(a)),
for some ordinal a, with the structure given by Proposition 3.3. In this case « is the
coatom in vy.

Theorem 3.5. Let A be a subquasivariety of My (RL) such that A contain the
ordinal pocrims (residuated lattices). Then A have only trivial injectives.

Proof:  Suppose that there exists a non trivial injective A in 4. Let « be a cardinal
such that o > Card(A). We consider the ordinal pocrims (residuated lattices)
v = Suc(Suc(c)) and 2 = Suc(Suc(B)) = 0,1. Let i4:2 — A and is: 2 — v be
a trivial embedding. Since A is injective and <y is a simple algebra, there exists a
monomorphism ¢ : v — A such that i, = is. Thus v < Card(A) < a < v which
is a contradiction. Consequently A have only trivial injectives. O
Corollary 3.6. My and RL have only trivial injectives. O

For residuated lattices we can give a more general result in terms of the absolute
subretracts.

Proposition 3.7. Let A be a residuated lattice. Then the set A° = {(a,b) € Ax A:
a < b} equipped with the operations:

(a1,b1) A (ag,b2) := (a1 A ag, by A by),
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(a1,b1) V (ag, ba) := (a1 V a9, by V ba),
(al, bl) ® ((1,2, bz) = (a1 @ ag, (a1 O] bz) \ (ag @ bl)),
(a1,b1) = (az,b2) := ((a1 — a2) A (by — by), a5 — by).

18 a residuatedd lattice, and the following properties hold:
1. i: A— A° defined by i(a) = (a,a) is a monomorphism.
2. =(a,b) = (=b, ~a) and =(0,1) = (0,1).
3. A s a Girard-monoid iff A° is a Girard-Monoid.

Proof:  See [11, IV Lemma, 3.2.1] O

Definition 3.8. We say that a subvariety A of RL is o-closed iff for all A € A,
A’ e A

Theorem 3.9. If a subvarietiy A of RL is o-closed then A has only trivial absolute
subretracts.

Proof:  Suppose that there exist a non trivial absolute subretract A in A. Then
by Proposition 3.7 there exists an epimorphism f : A° — A such that the following

diagram is conmutative 1
A - A
il T
w7
Thus there exists a € A such that f(0,1) = a = f(a,a). Since (0,1) is a fixpoint
of the negation in A° it follows that 0 < @ < 1. We have that f : (a,1) = 1.
Indeed, (0,1) — (a,a) = ((0 - a) A (1 — a),0 — a) = (a,1). Thus f(a,1) =
f((0,1) — (a,a)) = f(0,1) = f(a,a) = a — a = 1. In view of this we have that
1= f(a,1)0 f(a,1) = f((a,1)©(a,1)) = fa®a,(a®1)V(a®1)) = f((e®a,a)) <
f((a,a)) = a, which is a contradiction since a < 1. Hence A has orly trivial absolute
subretracts. - O

Corollary 3.10. RL and GM has only trivial absolute subretracts. O

4. Injectives in quasivarieties of bounded pocrims

An element a of a bounded pocrim A is said to be dense iff ~a@ = 0. The set of
all dense element of A is denoted by Ds(A). It is easy to verify that Ds(A) is an
implicative filter. We are going to use the following notation: for each z € A, [z]
will denote the Ds(A)-conguence class of . An algebra A in A is said dense free
iff Ds(A) = {1}. We denote by DF(A) the subclass of A whose elements are the
dense free algebras of A. It is easy to verify the following proposition:

Proposition 4.1. Let A be a subquasivariety of M.
1. DF(A) = {A/Ds(A): Ae A}
2. DF(A) is the subquasivariety of A characterized by the quasiequation ——x =
Il=z=1.
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0

Proposition 4.2. Let A be a subgquasivariety of My. Then DF(A) is a reflective
subcategory, and the reflector preserves monomorphisms.

Proof:  For all A € A, define DF(A) = A/Ds(A), and fcr each f € [A, Bly,
define DF(f) such that DF(f)([z]) = [f(z)] for each z € A. Since homomorphisms
preserve dense elements, we obtain a well defined function DF(f) : A/Ds(A) —
B/Ds(B). 1t is easy to check that DF is indeed a functor from A to DF(A). To
show that DF is a reflector, note first that if ps : A — A/.Ds(A) is the natural
morphism, then the following diagram is commutative:

A — A
Pa l = l bar
A/Ds(A) D—_;(fsq/DS(AI)

Suppose now that B € DF(A) and f € [A, B]4. Since Ds{B) = {1}, the mapping
[z] = f(z) defines a homomorphism ¢ : A/Ds(A) — B that makes the following
diagram commutative:

f
A — B
pAl 54
A/Ds(A)

and it is obvious that g is the only morphism in [A/Ds(A), Blpr(4) making the
triangle commutative. Therefore we have proved that DF is a reflector. We pro-
ceed to prove that DF preserves monomorphisms: let f € [A, B] 4 be a monomor-
phism and suppose that (DF(f))(z) = (DF(f)(y), ie., [flz)] = [f(y)]. Then
0 =~(f(z) — f(v)) = f(=(z — y)). Since f is a monomorphism, ~(z — y) =0
and z — y € Ds(A). Interchanges z and y, we obtain [z] = [y] and DF(f) is
monomorphism. O

Proposition 4.3. Let A be a (L @)-closed subgquasivariety of My . If B is injective
in A then Ds(B) N Idp(B) = {1}.

Proof:  Let B be an injective in A. If there is an element a € Ds(B)NIdp(B) with
a < 1, then {0, a, 1} would be a subalgebra of B such that Ds(B) = B\{0}. Extend
it to a maximal totally ordered subalgebra C of B such that Ds(C) = C\{0}, and
let i¢ : C — B be defined by ig(z) = z. In the algebra | éC' we have L< 0. To
avoid confusion, we define o := 0. Now we define f : C — L &C such that f(0) =L
and for each z > 0, f(z) = z. It is easy to verify that f is a monomorphism. Since
B is injective there exists a morphism g : I @&C — B such that gf = i¢ since B is
an injective object. We derive from this the following assertions:

1. g(a) € C (since C is a maximal subchain of B with the property Ds(C) =
o)), |
2. g(a) # 0 (since ~g(a) = g(-a) = g(L) =0),
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3. g(a) <1 (since & < @ and then g(a) < gla) =a < 1).

Now we have that for all z € C - {0}, z — ¢(a) = g(z) — g(a) = g(z — o) =
g(a) < 1 by item (3). Thus g(e) < z. Hence by item (1) we obtain g(a) < g(a)
which is an obvious contradiction. Therefore we conclude that Ds(B) N Idp(B) =

{1}. O

Proposition 4.4. Let A be a (L ®)-closed subquasivariety of My. If B is injective
in A then Ds(B) = {1}.

Proof:  Let B be an injective in .A. We assume that there is an element a € Ds(B)
with ¢ < 1. For all natural number n > 1, =(a®) = 0 since ~(a®) = a® — 0 =
A"t = (@—=0)=a"1>0=--=a—0=0 Thusa" >0 for all n > 1, and
then the principal implicative filter (a) is proper. Let A = (a) U {0}. A is closed
by — since if z = 0 then —z = 1 and for = € (a) there is exist n > 1 sucht that
z > a™ and then -z < —(a™) = 0. Since (a) is an implicative filter, this proves that
A€ My Let A, =1 @A andlet g: A — A, be the monomorphism such that
9(0) =1 and g(z) = z if z € (a). Since B is injective, there is exist a morphism
f AL — B such that:

L
A — B
9| E/
At

f(0) € Ds(B) since =f(0) = f(=0) = f(0 —1) = f(1) = 0, and f(0) < 1
since f(0) < f(a) = 14(a) = a < 1. Moreover f(0) € Idp(B) since f(0) ® f(0) =
f(0®0) = f(0). Thus f(0) € Ds(B)NIdp(B) which is a contadition by Proposition
4.3. Therefore Ds(B) = {1}. O

Theorem 4.5. Let A be (L @)-closed subquasivariety of My. Then A is injective
in A iff A is injective in DF(A). _

Proof:  If Ais injective in A then by proposition 4.5 Ds(A) = {1}, thus A € DF(A)
and A is injective in A/Ds. Conversaly by Propositions 4.2 since DF(A) is a
reflective subcategory of A and the reflector preserves monomorphism. It is well
known that if B is a reflective subcategory of A such that the reflector preserves

monomorphisms then an injective object in B is also injective in A [2, 1.18]. Thus
A is injective in DF(A) then A is injective in A. O

5. Injectives in varieties of bounded hoops

A bounded hoop is a bounded pocrim (4,®, —,0,1) such that (A, ®,—,1) is
a hoop. It is clear that the class HOy of bounded hoops is a variety contained in
M.

Lemma 5.1. Let A be a bounded hoop, then the following assertions are valid:
LzoO~-2z=0,
2. 2(~z —z)=0 e -~z — € Ds(A),
3. r=-20(—~z—a).
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Proof: 1) 20~z =z0O(z — 0) =zA0=0. 2) It is the same argument used in {7,
Lemma 1.3]. 3) z < ——a since @ -z =0, then z = gA-—z =20 (-~z — z). O

A BL-algebra [10] (or bounded basic hoop [1]) is a residuated lattice which
satisfies the following equations:
(i) zAy=20(x—y) and (i) (z—y)V(y—-z)=1

The variety of BL-algebras is noted by BL. A pseudocomplemented BL-algebra
is a BL-algebra characterized by the equation zA—x = 0. The variety of pseudocom-
plemented BL-algebra is noted by PBL. A MV-algebra [5, 10] is a BL-algebra
characterized by the equation ——z = z. The variety of MV-algebras is noted by
MYV .This variety is generated by the MV-algebra Ry = ([0,1],®,—,A,V,0,1)
sucht that [0,1] is the real unit segment, A, V are the natural meet and join on
0,1} and ® and — are defined as follows: = ®y = maz(0,z +y — 1),z — y:=
min(l,1 —z +vy). Heyting algebras [2] are residuated lattices characterized by
the equation z ® y = = Ay. The variety of Heyting-algebras is noted by H. linear
Heyting algebras, (also known as Godel algebras [10}) are Heyting algebras satis-
fying the equation (z — y) V (y — #) = 1. The variety of Linear Heyting algebras
is noted by HL. We denote by B the variety of boolean algebras.
Lemma 5.2. Let A be a residuated lattice, then the following assertions are equiv-
alent

1. A is an MV-algebra.

9. A is Qirard-monoid which satisfies the equations T Ay =& © (z = y)-

Proof:  See [11, IV Lemma 2.14] and [12, VI Lemma 2.3] O

Proposition 5.3. If A€ HOy then DF(A) is a Girard-monoid.

Proof: Let A€ Aand [z] € A/Ds(A). By lemma 5.1 we have that [z] = [—z] ©
[~—z — z] and -~z — z € Ds(A), thus [~z — z} = (1] shen {z] = [-—z] ie.
A/Ds(A) is a Girard-monoid. O

Corollary 5.4. 1. DF(HOy) =DF(BL) = MV.
2. DF(PBL) = DF(H) = DF(HL) = B.

Proof: DF(HO,) and DF(BL) is MV since their elemets are Girard-monoid
satisfying the equation z Ay =z ® (z — y) (Lemma 5.2). The other equalities are
immediate. U

Proposition 5.5. 1. A is injective in HOy or BL iff A is ¢ retract of a power of
the MV-algebra Rjp 1.
2. A is injective in PBL, H or HL iff A is a complete boolean algebra.

Proof:  Since all these classes are (L @)-closed, the results follow from Theorem
4.5, Corolary 5.4 and the well known characterization of injective MV-algebras (see
8, Corollary 2.11]) and injective boolean algebras [15]. O
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Notice that the above caracterization of injective Heyting algebras was already given
in [3].
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