ACTAS DEL VII CONGRESO DR. ANTONIO A. R. MONTEIRO (2003), Páginas 23–25

EXAMPLES OF BOUNDED DERIVATIONS ON SOME NON C* ALGEBRAS

A. BARRENECHEA AND C. C. PEÑA

ABSTRACT. We exhibit two examples: (1st) of a class of abelian - (in general non semi - simple) Banach algebras without non trivial bounded derivations; (2nd) of a Banach algebra with unbounded and non trivial bounded inner and outer derivations. These algebras do not admit a von Neumann nor a C^* algebra structure, frames where known results about automatic innerness, boundedness or triviality of derivations hold (cf. [3], [4])

1. Introduction

Let $\mathfrak U$ be a Banach algebra, δ a linear mapping in $\mathfrak U$. Then δ is said to be a derivation in $\mathfrak U$ if its domain is a dense subalgebra of $\mathfrak U$ within the usual Leibnitz rule holds. If δ is defined anywhere then it is simply called a derivation on \mathfrak{U} . If δ is bounded, it can uniquely be extended to a bounded derivation on \mathfrak{U} , i.e. it may be considered to be anywhere defined. Given $a \in \mathfrak{U}$ so that $\delta^2(a) = 0$ then $\delta(a)$ has null spectral radius (Kleinecke [2], Sirokov [9]). Therefore, if $\mathfrak U$ is an abelian Banach algebra and δ is a bounded derivation on $\mathfrak U$ its range is contained in the radical of $\mathfrak U$ (Singer & Wermer [8]). In particular, if $\mathfrak U$ is semi - simple every bounded derivation on U is zero. In Section 2 we show a first example of abelian Banach algebras, that in general are not semi - simple, with no non zero bounded derivations. If $\mathfrak U$ is a C^* algebra every derivation on \mathfrak{U} is bounded (cf. Sakai [5]), the same result being also true on any semi - simple Banach algebra (Johnson & Sinclair [1]). In case that $\mathfrak U$ be a von Neumann algebra every derivation δ on $\mathfrak U$ is inner, i.e. there is an element $a \in \mathfrak{U}$ such that $\delta(x) = [a, x]$ for all $x \in \mathfrak{U}$, where $[\cdot, \cdot]$ is the usual Lie bracket (Sakai [6], [7]). In Section 3 we give a second example of a non von Neumann Banach algebra plenty of either inner or outer bounded derivations. In this last case, a full description of the general structure of bounded derivations is given.

2. 1st example

Let α be a sequence of positive numbers so that $\alpha_{n+m} \leq \alpha_n \ \alpha_m$ if $n, m \in \mathbb{N}_0$. The weighted space $l^1(\alpha)$ becomes an abelian unitary Banach algebra if we define $a * b = \sum_{n=0}^{\infty} (\sum_{m=0}^{n} a_{n-m} \ b_m) \ \mathbf{x}^n$, $a, b \in l^1(\alpha)$. A linear map Δ on $l^1(\alpha)$ will be

Key words and phrases. Derivations. Leibnitz rule. Spectral radius. Radical of a normed algebra. Inner and outer derivations. Lie bracket.

a bounded derivation if and only if the extended number

$$\mathfrak{h}_{\alpha}(\Delta \mathbf{x}) = \sup_{n \in \mathbb{N}} (n/\alpha_n) \sum_{k=0}^{\infty} |\Delta \mathbf{x}(k)| \ \alpha_{k+n-1}$$

is finite. But, if Δ were a non zero bounded derivation the sequence $\{n/\alpha_n\}_{n\in\mathbb{N}_0}$ should be bounded. Then, let κ_1 , κ_2 be positive constants such that $n/\kappa_1 \leq \alpha_n$ for all $n\in\mathbb{N}_0$ and n $|\Delta\mathbf{x}(k)|$ $\alpha_{k+n-1}\leq \alpha_n$ κ_2 if n, $k\in\mathbb{N}$. Let k be an integer greater than 2 such that $\Delta\mathbf{x}(k)\neq 0$. Since $\{\alpha_n\}_{n\in\mathbb{N}_0}$ becomes unbounded, there is a positive integer n_k so that $\kappa_1 |\Delta\mathbf{x}(k)|$ $\alpha_{k+n-1}/\kappa_2 \geq 1$ if $n\geq n_k$. Then

$$\alpha_n \ge n \ \alpha_{k-1+n} \ \frac{|\Delta \mathbf{x}(k)|}{\kappa_2}$$

and therefore we obtain

$$\alpha_{n_k} \ge n_k \ \alpha_{k-1+n_k} \ \frac{|\Delta \mathbf{x}(k)|}{\kappa_2}, \ \alpha_{k+n_k-1} \ge (k+n_k-1) \ \alpha_{2(k-1)+n_k} \ \frac{|\Delta \mathbf{x}(k)|}{\kappa_2},$$

$$\alpha_{2k+n_k-2} \ge (2k+n_k-2) \ \alpha_{3(k-1)+n_k} \ \frac{|\Delta \mathbf{x}(k)|}{\kappa_2}, \dots$$

So, if $j \in \mathbb{N}$ we have $\alpha_{n_k} \geq (j-1)!/\kappa_1 (|\Delta \mathbf{x}(k)| (k-1)/\kappa_2)^{j-1}$, which is impossible because j is any natural number. Thus $\Delta \mathbf{x}(k)$ must be zero for all k in contradiction with our initial assumption.

3. 2ND EXAMPLE

Let $l^2\left(\mathbb{N}^2,\mathbb{C}\right)$ be the Hilbert space of infinite complex matrices $a=(a_{i,j})_{i,j\in\mathbb{N}}$ such that its Frobenius norm $\|a\|_2^2=\sum_{i,j\in\mathbb{N}}|a_{i,j}|^2$ is finite. Moreover, it is a non abelian complex Banach algebra without unit if we define the product $a\cdot b$ of elements $a,\ b\in l^2\left(\mathbb{N}^2,\mathbb{C}\right)$ as $a\cdot b=\left\{\sum_{k=1}^\infty a_{i,k}\ b_{k,j}\right\}_{i,j\in\mathbb{N}}$. Now, an element $\Delta\in\mathcal{B}\left[l^2\left(\mathbb{N}^2,\mathbb{C}\right)\right]$ is a derivation if and only if there is a unique matrix $\alpha\in\mathbb{C}^{\mathbb{N}\times\mathbb{N}}$ so that the extended number $\kappa=\sup_{i,j\in\mathbb{N}}\sum_{h=1}^\infty(|\alpha_{h,i}|^2+|\alpha_{j,h}|^2)$ is finite and

$$\Delta(z) = \sum_{k,l \in \mathbb{N}} e_{k,l} \sum_{j=1}^{\infty} (z_{j,l} \ \alpha_{k,j} - \alpha_{j,l} \ z_{k,j}), \ z \in l^2(\mathbb{N}^2, \mathbb{C}).$$

Indeed, if $\alpha \in l^2(\mathbb{N}^2, \mathbb{C})$ then Δ is inner and $\Delta = \Delta_{\alpha}$. It is readily seen the existence of unbounded derivations on $l^2(\mathbb{N}^2, \mathbb{C})$. For instance, let $\{e_{k,l}\}_{k,l\in\mathbb{N}}$ be the family of matrices $e_{k,l} = (\delta_{n,m}^{k,l})_{n,m\in\mathbb{N}}$, where $\delta_{n,m}^{k,l}$ denotes the usual Kronecker' symbol. The operator $\Delta(z) = \sum_{k,l\in\mathbb{N}} (k-l) z_{k,l} e_{k,l}$ defined on the dense subalgebra

$$\mathcal{D}\left(\Delta\right) = \left\{z \in l^2\left(\mathbb{N}^2\right) : \sum_{k,l \in \mathbb{N}} \left(k - l\right)^2 \ \left|z_{k,l}\right|^2 < \infty\right\}$$

is an unbounded derivation on $l^2(\mathbb{N}^2,\mathbb{C})$. An example of a bounded outer derivation on $l^2(\mathbb{N}^2,\mathbb{C})$ is

$$\Delta(z) = \sum_{i \in \mathbb{N} - \{1\}, \ j \in \mathbb{N}} (z_{i-1,j} - z_{i,j+1}) \ e_{i,j} - \sum_{j=1}^{\infty} z_{1,j+1} \ e_{1,j}, \ z \in l^2(\mathbb{N}^2, \mathbb{C}).$$

REFERENCES

- [1] B. E. Johnson & A. M. Sinclair: Continuity of derivations and a problem of Kaplansky. Amer. J. Math., 90, 1067 1073 (1968).
- [2] C. D. Kleinecke: On operator commutators. Proc. Amer. Math. Soc., 8, 535 536, (1957).
- [3] C. C. Peña: Some observations concerning to non existence of bounded differentials on weighted l^1 algebras. Acta Math. Acad. Paedagogicae Níregyháziensis, (to appear, 2003).
- [4] C. C. Peña: Some remarks about bounded derivations on the Hilbert algebra of square summable matrices (submitted).
- [5] S. Sakai: On a conjecture of Kaplansky. Tôhoku Math. J., 12, 31 33, (1960).
- [6] S. Sakai: Derivations of simple C* algebras. J. Funct. Anal., 2, 202 206, (1968).
- [7] S. Sakai: Derivations of simple C* algebras, II. Bull. Soc. Math. France, 99, 259 263, (1971).
- [8] I. Singer & J. Wermer: Derivations on commutative Banach algebras. Math. Ann., 129, 260 -264, (1955).
- [9] F. V. Sirokov: Proof of a conjecture of Kaplansky. Usephi. Math. Neuk., 11, 167 168, (1956).

UNCPBA. DEPARTAMENTO DE MATEMÁTICAS - NUCOMPA. CAMPUS UNIVERSITARIO, TANDIL, ARGENTINA.

E-mail address: analucia@exa.unicen.edu.ar

E-mail address: ccpenia@exa.unicen.edu.ar