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RESONANT PROBLEMS FOR
ORDINARY DIFFERENTIAL EQUATIONS

P. AMSTER, P. DE NAPOLI AND M.C. MARIANT

ABSTRACT. We review some aspects of the thecry of resonant ordinary differential
equations, and present some recent results about higher order resonant differential
equations.

1. INTRODUCTION

In the last years, there has been an increasing interest in resonant problems,
both for ordinary and partial differential equations. In particular, the existence of
periodic solutions for resonant ordinary equations has been widely studied. In this
work, we review some aspects of the theory of second order resonant equations, and
present some recent results about higher order resonant equations.

Many problems in nonlinear analysis can be written in the form,

Lz = Nz

where L is a linear differential operator, defined in a suitable functional space, and
N is a Nonlinear operator (involving lower some order terms). The problem is called
non resonant when the operator L is invertible. In that cass the problem can be
reduced to a fixed point problem,

z=L"1Nz

and one can use Leray-Schauder degree theory, or fixed point theorems. When L
is not invertible, the problem is called resonant. In that case, Mawhin coincidence
degree theory can be used (see section 3).

For second order scalar equations, the following result is well known (see [21],[14])

Theorem 1.1. Assume that ¢ >0, p € C(R) is 2w-periodic cnd that g € C(R) has
limits at infinity

g(¥) = g}l_r}; 9(z) (1)
Then the resonant second order equation |
Z+cz + g(z) = p(t)

has a 2m-periodic solution if

g(-0) <Pp=— [ p(t) <g(4+c0) (2)
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Moreover, if g satisfies )
g(—00) < g(z) < g(+o0)Vz € R (3)
then (2) is also necessary for the existence of 2w -periodic solutions.

The following closely related result was obtained by D.E. Leach and A. Lazer in
[15]

Theorem 1.2. Consider the second order ordinary differential equation
& +m?z + g(z) = p(t)

where m > 0 is an integer and g satisfies the same conditions as before. If we
consider the m-th Fourier coefficients

am(p) = /0 " p(t) cos(mt) dt

2n
bo(p) = [ p(8) sn(me) ds

then the inequality

Vam(D)? + b (p)? < 2(g(+00) ~ g(—00)) (4)

is both necessary and sufficient for the existence of 2m-periodic solutions.

Conditions like (2) and (4) are typical in many results on the existence of solutions
for resonant problems. In the literature, they are known as Landesman-Lazer type
conditions, after the pioneering work of these authors on the resonant Dirichlet
problem for elliptic second order equations ([12]).

Finally, we remark that there are many interesting results for resonant systems
of second order ordinary differential equations. In [21] some Landesman-Lazer con-
ditions for systems are discussed. In [3], the case of a resonant second order system
with a multidimensional kernel and periodic nonlinearities is studied.

2. REsuLTs FOR HIGHER ORDER EQUATIONS

Higher order equations are interesting both because of their applications (for
example to multi-ion electrodiffussion problems [16] ; or in beam theory (8], {10]), and
because of their intrinsic mathematical interest, since many tools that are usually
applied to the study of second order equations are not available. For example, it
is not possible, in general, to use the method of upper and lower solutions, since it
depends on the maximum principle (see however [9]).

In 1], the authors have proved the following result for the case of a third order
equation:

Theorem 2.1. Consider the equation

" +az’ + §(z') + cx = p(t) (5)
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when §(s) = As + g(s) for bounded g, A = m? (m € Z ) and ¢ = am? # 0. Let
g : R — R be a continuous bounded function such that the limits (1) exist and let
p € L*(0,2x). If furthermore, we assume that

4 \
Ao (P) + 07(p) < —5[g(+00) — g(~00)]? (6)
then equation (5) has at least one 2m-periodic solution in H3(0, 2r).

Some previous results for third-order equations appeared ‘n [4] and 15). In [11],
the case of a non-resonant fourth-order equation is studied.

This result was generalized in [2] for higher order differensial equations. There,
we have considered the problem:

Lz +g(z, ..., 2WD) = p(r) (7
where
Ly =a™ 4 ay_1a®™ V4 +apz (8)
under periodic conditions
z(0) = z(2)
'(0) = a'(27)

zN=1(0) = zWN-D(2x)

for continuous and bounded g.
We assume that L is a resonant operator, i.e. that the homogeneous problem
Lz = 0 admits nontrivial periodic solutions. Namely, we assume that the polynomial

) P(/\) = /\N -+ aN_l)\N“l 4+ ...+ [47) (9)
admits imaginary roots +im (m € Z). \
For notatjonal convenience, let us introduce the n-dimensional symbolic vectors
Vit given by

Vig = (400, +00, —00, —00,...)
Vo = (+00, —00, —00, +00,...)
V_ = (—00, +00, +00, —00, . . .)
V__ = (—00, =00, +00, +00,...)

where the sequences of signs are 4-periodic..
Then, the following result holds:

Theorem 2.2. Let us assume that
1. The polynomial (9) has ezactly two roots +im in iZ, which are simple.
2. g : RY"* - R is a continuous bounded function such that the four limits

lim g(s) = ey
8=Vt

exist.
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Let p € L*(0,27). If furthermore, we assume that

B p) + V() < o [0~ 9 + (015 = 9] (10)

then equation (7) has at least one 2m-periodic solution in HN(0,2w).

3. MAWHIN COINCIDENCE DEGREE THEORY

One useful tool for proving this kind of results is Mawhin coincidence degree
theory. Let us briefly summarize some aspects of this theory.

Let X and Y be real normed spaces, L : dom(L) — Y be a linear mapping, and
N : X — Y be a continuous mapping. The mapping L is called a Fredholm mapping
of index 0 if Im(L) is a closed subspace of Y and

dim(Ker(L)) = codim(Im(L)) < oo

If L is a Fredholm mapping of index 0, then there exist continuous projectors
P:X — X and Q:Y — Y such that Im(P) = Ker(L) and Ker(Q) = Im(L). It
follows that

Lp = LlgomzynKer(p) : dom(L) NKer(P) — Im(L) = Ker(Q)

is one-to-one and onto Im(L). We denote its inverse by Kp. If Q is a bounded
open subset of X, N is called L—compact on Q if QN(Q) is bouaded and Kp(I —
Q)N : Q@ — X is compact. Since Im(Q) is isomorphic to Ker(L), there exists and
isomorphism J : Im(Q) — Ker(L).

The following continuation theorem is due to Mawhin [17]:

Theorem 3.1. Let L be a Fredholm map;bing of index zero and N be L—compact
on §2. Suppose :

1. For each X € [0,1], x € 00 we have that Lz # ANz

2. QNz # 0 for each z € Ker(L) N 0N

3. The Brouwer degree satisfies: dg(JQN,Q2 N Ker(L),0) # 0
Then the equation Lz = Nz has at least one solution in dom(L) N Q.

This technique has been also applied to many other problems, see e.g. [6] and
[11]. For further details see [17], [7].

4. SKETCH OF THE PROOF OF THEOREM 2.1

In this section, we sketch the proof of theorem 2.1. For furthar details, see [1].
The proof of Theorem 2.2 is similar but somewhat more complicated (see [2]).

In this case, we shall consider X = HZ (0,27), Y = L*(0,2n) and L the linear
differential operator

L(z) = 2" + az” + m?*2’ + cx

It is immediate to see that Ker(L) = &, is the subspace generated by sin(mt)
and cos(mt) and that Im(L) = &£. It follows that L is a Fredholm mapping of
index zero. Moreover, we may take () as the orthogonal projection F,, onto &, in
L*(0,27) and P as the restriction of P, to H2,_(0,27). Q will be an appropriate

per
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open bounded subset of H2,(0,27). ‘Then, if Nz := p(t) — g(z'), it can be proved
that IV is L-compact on €.

The proof requires three stages. First, we need an estimate for the linear operator
L:
Lemma 4.1. ||lz — Fu(2)|| g2 < ¢||Lal|,. Vo € H,,(0,27)
Then, one needs to establish the following a priori bound:

Lemma 4.2. Under the conditions of Theorem 2.1, there exist a constant C inde-
pendent from A € [0, 1] such that if x € H*(0,27) is a solution of

L(z) = Mp(t) — g(="))
then |||z < C.

The proof follows by contradiction: if the result is not true, shere exists a sequence
(Zn)nen of solutions such that ||z,|/ g2 — 400. We decompose z,, as

Tn =Yn+ 2n

where y, = Pn(z,) and 2z, = z, — P,(z,) € £+, Using the previous estimate

for the linear operator, some compactness arguments and a careful estimate of the

oscillatory integrals that give the explicit expression of y, , we get a contradiction.
It follows that if we take :

Q={ue H.(0,2r) : |uf|g= < R} ‘
then there are no solutions Lz = ANz on 0. Hence, the coincidence degree
d(JQN,Q N KerL,0) is well defined.

Finally, we need an explicit degree computation, taking into account the behavior
of J@N restricted to the two dimensional kernel of L.

Lemma 4.3. If

2 [9(+00) — g(—o0)P

2 2
am+bm<ﬁ

and R is large enough, then
d(JQN,QN Ker(L),0) = —1

This lemma involves also some estimates for the oscillatory integrals that give
the explicit expression of the operator JQN, applied to functions in &,,. Hence, all
the conditions of the Mawhin continuation theorem are fulfilled, and the proof is
complete.
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