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AN N-DIMENSIONAL FORCED PENDULUM EQUATION
WITH FRICTION

P. AMSTER, P. DE NAPOLI AND M.C. MARIANI

ABSTRACT. We study the elliptic boundary value problem

Au+b.Vu +asin u = p(z) in Q
u|aq = constant, a6 g—',‘f =0

where 2 C R™ is a bounded domain. We prove that for any forcing term p
orthogonal to constants there exists a compact interval I, C R such that the
problem is solvable for $(z) = p(¢) + ¢ if and only if ¢ € I,. -

1. INTRODUCTION

The periodic problem for the forced pendulum equation has been studied by many
authors. In 1922 Hamel [6] proved that the equation

v +asiny=LFsint

for constant a and 3 admits a 27-periodic solution that can be obtained as a mini-
mum of the action functional

J(u) = /0 ") + a cos (u(t)) + u(t)F sin t dt.

2
The same argument can be generalized for T-periodic solutions of the equation
(1.1) v’ 4+ asin u = p(t)

where p isAT-periodic and orthogonal to constants, leading to the following result
(see [7],[8]):

Theorem 1.1. 1.1 has at least one T-periodic solution for any p € L'(R/TZ) such
that

/(;Tp(t) dt = 0.

If we allow the presence of friction, namely the equation
(1.2) u” + bu' + a sin u = p(t)

(where b is a positive constant) then variational methods are not applicable to the
periodic problem. The question of whether or not it was possible to extend Theorem
1.1 to (1.2) remained open until 1987, when Ortega [9] gave a negative answer for
a and b large enough. Ten years later Alonso [1] obtained a nonexistence result for
arbitrary a and b assuming that 7" is large. In a more recent work Ortega, Serra
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and Tarallo [10] have constructed a rather general class of counterexamples that are
valid for arbitrary a,b and 7.

However, existence results for (1.2) can be obtained by various methods: for
example, Fournier and Mawhin proved in [5] the existence of a T-periodic solution
of (1.2) using the method of upper and lower solutions and degree arguments. More
precisely, they assume the condition

a

1.3 0< ———=<29¢
(13) Ty =0
with w = QT", and
= = i ( <
6(p) = 7 [( /0 sin (P(t)) dt) + ( /0 cos (P(t)) dt) | s
where P is the unique T-periodic function satisfying
1 T T
P" 4+ bP" = p(t) — = / p(t) dt, / P(t) dt = 0.
T Jg 0
If (1.3) holds, there exist a; < 0 < ay with |oy| > 6(p) — S5 such that (1.2)

admits a T-periodic solution if and only if aoy < % fOT p(t) di < aa;.

In this work we consider a generalization of the periodic problem for equation (1.2)
to higher dimensions: with this aim, note that the periodic boundary condition can
be written as

T
w(0) = u(T) = ¢, / W(8) dt = 0
0

where c is a non-fixed constant. Thus, by the divergence Theorem the problem may
be generalized to a boundary value problem for an elliptic PDE in the following way:

(1.4) Au+b.Vu + a sin u = p(x) in Q
' u|gn = constant, 50 g% =0

where 2 C R" is a bounded C''! domain, b € R" and p € L3(Q).

This kind of boundary conditions have been considered for example in [3], where
the authors study a model describing the equilibrium of a plasma confined in a
toroidal cavity.

The paper is organized as follows. First we show that Theorem 1.1 can be extended
for the n-dimensional problem (1.4) with b = 0. Then we prove by topological
methods that for a given p there exists a nonempty closed and bounded interval I,
such that problem (1.4) is solvable for = p + ¢ if and only if ¢ € I,. A similar
result for the one-dimensional case has been proved by Castro [4] using variational
methods, and by Fournier and Mawhin [5], using topological methods.
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2. THE n-DIMENSIONAL PROBLEM

2.1. Existence by variational methods.

Theorem 2.1. Ifb =0 then (1.4) has at least one solution for any p € L*(Q) such

that
/p(x) dz = 0.
Q

Proof. Consider the functional Z : R + H}(Q) — R given by

Z(u) = /Q qu—éx)E +a cos (u(z)) + p(z)u(z) dz.

By standard results, 7 is weakly lower semicontinuous in R 4 H}(Q). Moreover, if
u is a critical point of Z then

‘£Vﬂ@WW@0—a$nW@%@@%+M@¢@Mh=0

for any ¢(z) € R + Hj(Q). It follows that Au + a sin u = p(z), and taking ¢ = 1
we deduce that

a/ﬂsin (u(t)) dt = /Qp(t) dt = 0.

Hence, [5, % = [, Audz =0 and u is a solution of (1.4).
Furthermore, the functional verifies that

T(u+27) = I(u)

for any u. Thus, if {u, } C R+ H}(£2) is a minimizing sequence of Z, we may assume
that ¢, = u,|an € [0, 27]. By Poincaré’s inequality,

it = callfs < cliVunllte < 2e(T(wn) + fal 191 + ol ] 12

It follows that {u,} is bounded, and hence Z has a minimum on R + H} (). ]

2.2. The maximal interval I,. For fixed p € L*(Q2) such that [, p(z) dz =0, let
us consider the problem

(2.1) Au+bVu+asinu=p(z)+c in Q
' u|sn = constant 0o 2 =0

with ¢ € R. Integrating the equation it follows that necessarily —|a| < ¢ < |a|. In
the next theorem we establish also a sufficient condition. More precisely, if we define

I, ={ceR: (2.1) admits a solution in H*(Q)},

we shall prove that I, is a nonempty compact interval. In the particular case b = 0,
from Theorem 2.1, it follows that I, = [A,, B,], where

—la| < 4, <0< B, < |a].
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In order to prove our assertion, let P € H2 N Hj(Q) be the unique function
verifying

AP +bVP=np.
It follows that [, %{i = 0; thus, for v := u — P problem (2.1) becomes
(2.2) Av+bVu+asin (v+P)=c in Q
' v|an = constant 50 g—”,; =0

For each v € L?(Q) define

Cy = £ / sin (v(z) + P(z)) dz
€2 Ja
We shall need the following lemmas:

Lemma 2.2. For each s € R the integro-differential boundary value problem

: Av+bNVv+asin (v+ P) =g¢, in Q
(2.3) _ o0
vlon = s o0 v

admits at least one solution v € H*(Q).

Proof. For © € H'(R) define v = T? as the unique solution of the linear Dirichlet
problem

Av+b.Vv = ¢, —asin (v+ P) in Q
v]on = s

By standard a priori estimates, a straightforward application of Schauder Theorem
shows that 7" has a fixed point v, and integrating the equation it is immediate that
8
L= (. O
o0 v

Lemma 2.3. Let
E = {ve H*SQ) : v is a solution of (2.3) for some s € R}
Then the (nonempty) set
A(E):={c,:veE}CR
is compact. Furthermore, I, = c¢(E).

Proof. It is clear that ¢ € I, if and only if ¢ = ¢, for some v € E. On the other
hand, if v, € E and ¢, := vp|sq, by standard a priori estimates we have that
1o, — cullrz < C for some constant C. As E = E + 27 and ¢y = Cyior, from the
compact imbedding H*(Q2) — H(Q) it is immediate that {c,,} has a convergent
subsequence.

O

Then we have:

Theorem 2.4. I, is a nonempty compact interval.
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Proof. From Lemma 2.3, it suffices to show that I, is connected. Let ¢1,¢y € 1,
¢1 < ¢g, and take vy, vy € E such that ¢,, = ¢;. Asv; € C (ﬁ}, adding 2k7 for some
integer k if necessary, we may assume that v, < v;. For ¢ € |cy, ¢;] we have that

Avy +b Vv +asin (v +P)=c; <c<cy=Avy+ b.Vuy + a sin (vg + P)

It follows that (vs,v;) is an ordered couple of a lower and an upper solution and
the proof follows as in [2].

O

Remark 2.1. From Lemma 2.3, E is infinite. In particular, if I, = {¢} then (1.4)
admits a continuum of solutions. More precisely, if I, = {c} then every solution of

Au+bVu+asin u=p(z)+c, u|an = constant

is a solution of (2.1).

The problem of finding p with I, = {c} or proving that such a p does not exist ié
still open. In the one-dimensional case

(2.4) u” + bu' + a sin u = p(t)

Ortega and Tarallo have proved in [11] that the following statements are equivalent:

i) I, = {c}.

ii) For any s € R there exists a unique T-periodic solution u, of (2.4) such that
us(0) = s.

iii) There exists a continuous path s — u, which satisfies

lim wus(t) = o0

s—Eoo

uniformly in ¢.
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