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A non denseness result

Carlos C. Peiig *#

Abstract

We prove that the set of orbits of analytic automorphisms on the complex unit
disk is a non dense subspace of the Helly product space Do,

1 Introduction

Certain Banach spaces B(X) are realized by norming a collection of real or complex
valued functions on a given non empty set X. If ¢ maps X into itself, it is natural to
consider the linear composition operator C,, defined by

(Cof) (@) = fp(z), fEB(X), z€X

The classical Banach spaces of analytic functions are derived from various L spaces.
Hardy and Bergman spaces, as well as Dirichlet ones with an additional Hilbert space
structure, were performed on the unit ball, the unit polydisk, the torus and the unit
sphere of C", while a broad research goes on more general domains (cf. [3], [5], [6]). If
z € D and p € Aut (D) we shall call the set O(z, ¢) = (2, ¢ (2), ¢?(2), ...) the orbit
of z under . The study of orbits, cyclicity and iteration (see [1]) is strongly motivated
because C} = Cyn, where ¢" = @ opo..o¢ (n times). Of course, fixed poir .s play a
major role and they allow a classification of the elements of Aut(D). In fact, accordingly
to the location of its fixed points an analytic automorphism is: elliptic, if one fixed point
is in the disk and the other is in the complement of the closed disk; parabolic, if there is
one fixed point on the unit circle of double multiplicity; hyperbolic, if both fixed points
are different on the unit circle. Moreover, every map of D into itself has an attractive
fixed point (the Denjoy - Wolff point).

Theorem 1 (Cf. [2], [8]) If ¢, not the identity and not an elliptic automorphism of D,
is an analytic self - map of D, there is a unique point a € D so that the iterates ¢" of ¢
converge to a uniformly on compact subsets of D.
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98 CARLOS C. PENA

In considering analytic functions, it is known that the usual euclidean me-tric on the
disk is inappropiate. So, we shall consider the Poincaré metric in which the length of a
curve ['in D is [1.|dz| /(1 - |z]%), or the equivalent pseudohyperbolic metric in which the
distance between two points z;, 23 € D is (21 — 20) /(1 — 21 22)|. If dp(21, 22) denotes
the Poincaré distance between z; and z; then

Z1 -2
dp(z1, 22) =1 1n1_i|i‘_1§_i_2|_ - argtanh—lfl————-iz-]—
1,42 2 1— IZILZEJ ll_z_lz2|
11—21 29}

Moreover, analytic automorphims on D become Poincaré isometries, i.e. a res-triction
of how much they can be accomplished as change of variables.! For instance, if |(z; —
23)/(1 =71 20)| = [(w; —wg) /(1 — Wy wo)| # 0 in D there is a unique ¢ € Aut(D) such
that @(21) = wy and o(z9) = ws.

2 On orbits

If z € D and Sau(p) (2] is the stabilizer of z in Aut(D) then

Sauw(p) [2] = {1dp} U {fe (w) = ap —w——__ﬂ—, weD, 0<f< 27r},
1- dg W
where’
z+ |z| exp (i6)
g = 5 s
1+ 2|
and
2 .
= el -0,

1|2 expli (6 — arg (2))]

For instance,

1 ) 2 1‘9‘6';'9"—5’11}
SAut(D) [5} ={f9(w)=e o 5—(2(1-}')6_"6)?1)7 w € D, 0§9<27T}.

More generally, if ¢ € Aut(D) then z € D is a fixed point of y if there is a positive integer
n such that ¢" € Sauyp) [2]. We'll write

length , (2] =min{n e N: ¢" (2) = z}.

Some authors ([4]) also define the enter length ent,, (2) and the cycle length cyc, (z) of z
at ¢ by

ent ,[2] = min{k € NU{0}:3I(meN)/ " (2) = "™ (2)},

cye plz] = min{m e N: gt ol 5y = gont ol ()]}

'Cf. [7), Ch. 2, Section 7.
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Of course, if length (2] = 1 then O(z, ¢) = (2, 2, z, ...). If length ,[z] = 2 then
O(z, ¢) = (2, v(2), 2z, p(2), ....). Moreover, if z, w are two points of D three possible
arranges of O(z, ) arise:

I: (2, w, 2z, w, ...},
II: (z, w, 2, 2, ...),
I11: (2, w, w, w, ...).

Only in the first case there is ¢ € Aut(D) such that O(z, ¢) = (2, w, 2, w, ...}, where
ent , (2] = 0 and cyc , [2] = 2. The second case fails by the require injectiviness. For the
thirth case, we consider the equations

z—a w—a

(1) A = A =w

1—-a=z l—-dw

Since z # w it must be w # 0. Therefore (1) is equivalent to
(z~w) (1= af*) =0,

which is no possible if |a| < 1. Analogously, if ¢ is a third point in D three new arranges
arise:

IV: (z,w t 2 vt ..),
V. (z, w, t, w, t, w, ...),
VI: (z, w, t, t, ¢t ¢t ...).

The cases V and VT fail by no inyectiviness. The fourth case is realized as an orbit
automorphism under the following restriction

Y

zZ—w ‘

w—t _ t—2
1—wit| |1-tz

l—zw

and then ent ,{z] = 0 and cyc , [2] = 3. The relationship between points that are in the
orbit of rotations is geometrically easy to describe. However, finite orbits of more general
automorphisms involve more severe restrictions. On the other hand, every non elliptic
automorphism as well as their iteractions has infinite orbits at all points within D.

Proposition 2 Let the unit circle 0D to be considered as a subspace of the complex plane
and the unit disk D endowed with the Poincaré metric. For o, € 0D and a, b € D we
shall write

(2) mﬂy01w:<aﬂa+abaa+b)

a+a b’ a+ab
and (0D x D, -) becomes a topological group. Moreover, 3D x D becomes isometrically
isomorphic to Aut (D) if Aut(D) is endowed with the quotient topo-logy by the map

® : 0D xD— Aut(D),

. z—a
o = , D.
(a,a) (z) a5 %€
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Proof. We observe that the product - in (2) is well defined. By the general form of
analytic disk automorphisms ® is bijective. Since
?[(a,a)- (B,0)] =2(B,b)o @ (a,a) if (a,a), (B,0)€ODxD
the product - is associative. We have (1,0) € 0D x D and

(a,a)-(1,0) = (1,0) - (o, a) = (,a) if (o,a)€OD x D.

Moreover (e,a) - (& —a a) = (@ —aa) - (a,a) = (1,0) and we can write (a,a)”" =
(@, —a a),ie (0D x D, -)is a group. let {(ou, a:)}icrs {(Bir b)}icy be netsin 8D x D

which converge to (o, a) and (3, b) respectively. For i € I we write

(3) (s, ai) - (B bi)™ = (o, @) (Biy —Bi bi)
(67} - B— a; — bi
- (5 - 1—aiz;>'

a; —a
1—604 '

Since lim;e; dp (a;,a) = 0 then

0= hm tanhdp (a;,a) = hr?
i€

Further, |a; — a| /|1 — @ as| > |a; — al| /2 and lim;¢1 |a; — a| = 0. Analogously limes |bs — b|
0 and

Since
a; — b i Tgla_ib— - 1a;b3
. (ﬂ 1-q; bi’ ﬁl——a5> = argtanh 1— g -a=b_ ( __—bl_)—
1-a & \Mil-a; b
we obtain
e (0255 07557) =0
By (3)

lim [(as, @) - (B, b:)7'] = (e, @) (B, B)"
and the claim follows. =

Theorem 3 The map © : D x Aut (D) — DN, ©(z, ¢) = O(z, ) is continuous onto
a non dense subspace O of DY .
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Proof. Let {(z;, ® (o, a))},c; be a convergent net to (2, ® (a, a)) and n € Ny. Then

dp [(I)n (ab al) (zl) ) o (Ol, a) (Z)] <
< dp[®" (o, 00) (20) , D7 (u, @) (2)] + dp 27 (cu, @) (2), @7 (o, ) (2)]
= dp(z,z) +dp[®" (ar,;) (2),9" (e, a) (2)].
It will suffice to show that
(4) limdp [®" (a1, a)) (2), @" (@, a) (2)] = 0

for each n. The case n = 0 is trivial and

dp [® (@) (2),® (@, a) (2)] = dp [(® (2, 0) " 0 & (cq, @) (2), 2]

@ (0,0)™ (® (on, 1) (2)) — 2

= arg tanh 1-32 (a7 a)_l ((D (O[l, al) (Z))

(P(—_C( a o~ e b o 6~ a.) (z) — 2

o~ a @’ o—aaa

= argtanh

a—ox a @’ o—xad

1_-2(1)(&——&-[ -0 6 a o ap—o a) (Z)

LS o=e e
o~ a ap oj~a a ay

a—a adg 1_(2¢_az:3__«1)“ z

aj—a a af

[as 7] —Z

= argtanh TR
ap— a ap oaj—a a o
a—a a G 1__(01 a;—aj)" 2

aj—a a af

1 -am z

Since limje;, oy = o in 8D and limyes, |a; — a| =0 in D we obtain

11161}11 dp [®@ (ag, 1) (2),®(e,a) (2)] = 0.

If (4) is assumed to be true for < n for n € N, let w, = ®" (oy, ;) (2) if | . L and
w = d"(a,a) (z). Thus

(5) dp [ (u, @) (2), @™ (o, 0) (2)] = dp [® (ou, 1) (wi) , @ (o, @) (w)].

By the inductive hypothesis limje;, dp (w;, w) = 0 and by the case n = 1 and (5) ©
becomes continuous. On the other hand, let 2y, 21 € D, 79 > 0, 7, > 0. We shall show
that there exist 2z, € D, s >0 such that for all ¢ € Aut(D) thereisn’t z € D so that

dp(z, 20) <70, dp(p(2), z1) <m and dp(¢*(2), ) <s.

The set P = {¢ € Aut (D) : Dp(¢(z0), ro) N Dp(21, m) # 0} is clearly non empty. If
p € P we shall write

(6) Jo = Dp (¢ (), m0) N Dp(z1, 11).
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If z€ D and ¢ >0 then
(7) ©(J,) N Dp(z, t) # 0 & distp(z, @(Jp)) <t
If 2 and ¢ satisfies (7) and w € p(Jy,) N Dp{z, t) then

dp((p—z(’w), ZO) = dP(wa (»OZ(ZO)) < To,

dp(p(e™(w)), 2)

i

dP(w, (P(Zl)) <Ty,

dp(P(p 72 (w)), 2) = dp(w, 2) <1,
Le.
(8) on [DP(ZO, ’l"o) X DP(ZI, ’I‘l) X DP(Z, t) X DNO—{O’LQ}] 75 Q)

Moreover, it is easy to see that (8) => (7). It will be enough to show that (8) does not
hold for some z and t, i.e. we can choose zp = z and s = t. Let us observe that

(9) \ UypepDp((20), To) € Dp(21, 210 + 1)
and if t = 3rg + 71 + dp(20, z1) then
(10) diam [Dp(p(20), 7o) U Dp(21, 2ro + )] =t

Given ¢ € P, wy, wq € J, by (6) there is ws € Dp(z, To) so that wy = p(ws). Moreover,
by (6) y (9) we have J, € Dp (¢ (20), ro) € Dp(21, 2ro+11). By (10) we deduce

dp(wy, p(wy)) = dp(p(ws), p(ws)) = dp(wa, ws) <t.
Therefore
(11) sup {dp(wy, p(w2)): @€P, wy, wy €} <t

Finally, let z € D so that distp(z, Dp(z1, 270 +71)) > 2t. Since (11) forp € P, we J,,
we can write

dp(z, o(w)) > |dp(z, w)—dp(w, p(w))|
> dp(z, w) - dp(w, p(w))
> distp(z, Dp(z, 2ro+11)) — 1

>t

ie. distp(z, ¢(Jy)) >tforeachpeP. m
Actas del VI Congreso Dr. A. A. R. Monteiro, 2001



A NON DENSENESS RESULT 103

References

{1] Paul Bourdon & Joel Shapiro: Cyclic phenomena for composition operators. Memoirs
of the Amer. Math. Soc., Vol. 125, No. 596, 1997.

[2] A. Denjoy: Sur | “itération des fonctions analytiques. C. R. Acad. Sci., Paris, 182,
1926, 255 - 257.

[3] P. Duren: Theory of HP spaces. Dover Publ. Inc., N. Y., 2000.

[4] H. Heidler: Algebraic and essentially algebraic composition operators on the ball or
polydisk. Contemporary Math., Volume 213, 43 - 56.

(5] P. Mercer: Composition operators over conver domains in C™. Contemporary Math.,
Volume 213, 137 - 143, 1998.

[6] B. Russo: Holomorphic composition operators. Contemporary Math., Volume 213,
191 - 212, 1998.

[7] W. Veech: A second course in complex analysis. W. A. Benjamin, Inc., N. Y., Ams-
terdam, 1967.

(8] J. Wolff: Sur | “itération des fonctions bornées. C. R. Acad. Sci., Paris, 182, 1926,
200 - 201.

Actas del VI Congreso Dr. A. A. R. Monteiro, 2001



