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REMARKS ON Y0, 52 AND ((} +it).

PABLO PANZONE

ABSTRACT. Using a combinatorial identity we give a different expression for the sum
— ’ﬂ.—l . . - - .

o <N %)th_ We also show an approximate functional equation for ¢( % + it) given
n

only in terms of sums of above type with N = O(/1).

0. Introduction.

It is well known that C(% + it) = O(zn<\/z —%l_’_:) See [2]
g_l)n—-l

In this note we derive some results concerning the sum Zns N~ — Where 1 <
N < ct, ¢ is some fixed positive constant and, as usual, s = o 4 it. We describe briefly
this note.

The main result of section 1 is Corollary 1 below which gives an equivalent sum, if
s = %+it, for the above expression. This is done using a combinatorial identity (Lemma
1) which allows to write the above sum in a different manner (Theorem 1). Lemma 2
is an auxiliary lemma that we use to simplify the expression that finally appears.

The main result of section 2 is Theorem 2 which gives an approximate functional

n 27
done using the Hardy-Littlewood functional equation and a variant of it (Lemma 4).
Finally in section 3 we present an identity suitable for treating other sums.
Sections 1 and 2 can be read independently and are almost self-contained. Section 3
depends only on Lemma 1.

equation for ¢ (% + it) depending only on Zn<c Vi (_112::, with ¢ = /2 \/g . This is

(-1
1. On the sum z —

S
1€<ngN

We begin with a combinatorial result.
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86 PABLO PANZONE

Lemma 1. Let N =1,2,.... The following identity holds:

1n1

=y (2n —2)! 3 1 1
Z (n+x) 24” 12n+zx). (1+x){§n+§x“1}+

N

+n§=:1( E gr-I(N+n+z)...(N-n+z+1) 5 Al (L1.1)
Proof. We have
K
D=1 1 by ...bg
o b) =5 , (L2
;wx+a1 (w"’ak)(m a = be) =7 z(z+a1)...(z+ax) (11.2)

which follows from writing the right hand side as Ag — Ax and noticing that each
term on the left is Ax_, — Ax. Replace z by (n + 2)?, ax by —k? and b by k(3 — k).
Multiply everything by (n +z)(—1)""! and add from n = 1 to N. Then by...bx—1 =

(—1)k= 1——-—(% 2! and
N N ‘
(=1*! (=)™ %y by
,L_Z_l (n+z) _;(Zn-l-f—x)...(l-{—m) -
N n—1 yn—1 | ‘
=Z (n+k+§c)1) (n-—k+:z:)b1"'bk 1((”'{"-’5)2—;‘)- (L1.3)
Tinnt ]

If we define

(2k —2)1(25= + 3)

" e _1 n-tk
€nk(T) = (1) 4e-1n+k+2z)...(n—k+1+2x)’

then €, k() — €n—14(z) = . Therefore the right-hand side of (L1.3) is equal to

N N
Z enk(T) — €n_y k(2) = ZeN,k(x>~Zek,k(m),
k=1

n=1 k=1 k=1

and this yields formula (L1.1). O

The above lemma allows to rearrange the sum of the title of this section in a different
way.

Theorem 1. For any s=o0+1it and N = 1,2,... we have

-1 n—-1
> -

1<ngN
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n2

3 2n—1 : s
Z 2(2n _?)477,-—1 Z ( j )("’1)j(1+.7) -

1<nEN 0<j<2n-1
H 2n—1 ;
T 2 (Mg
1<ngEN 2(2n —1)4 0<j<2n-1 J
1 2n—1 ;
- — 1Y+ 5) "+
> g 2 () evass
1<ngN 4(2n — 14 0<j<2n—1 J
oy et S (2”“1>(~1>3‘(N—n+1+j)~3(n—1-j)+
— -1 i
1<n<N 2(2n ~ 1)dr 0<5<2n-1 J
(=M (Zn — 1) , s
+ > — > T EDIN —n4 1+ )7,
1<ngN 4(9n —1)4 0<j<2n~1 J
Proof. Let (—7)“3 = e79109(-2) where —7 < Arg(—z) < w. Then El<n<N —(_—ILI =
n-—1
271m f (—2) N %BL—Z)—dz where v is a positively oriented curve enclosing —1, -2, . . .,

~2N and not touchmg the positive real axis. Now use Lemma 1 and the theorem of
residues again. The ﬁrst three double sums of Theorem 1 correspond to the three terms
of the bracket {32 £— 2} and the other two double sums to the terms of (Mt i3 O

The following lemma is a tool that will be used to simplify the number of double
sums in Theorem 1. From now on ¢ will denote a fixed positive constant.

Lemma 2.
(i) Let o = L. We have that

2n—1

1 2n — .
Ani(s) = J; ( ; )( 1Y (k+j+1)7°(1+j —n),
is O(t) umformly ¥0 <e<1/4,1 < tandn,k are such that (log t)¢ < n < ct,
k=0,1,2,.
(ii) Let o0 = % Then Ani(s) = O(y/n) uniformly for all 0 < t, n = 1,2,...,
k=01 2,

(i) If 3 < o < 1, then
An i (s) = O(ni~9),

uniformly for all0 <t,n=1,2,..., k=0,1,2,....
(iv) Let o0 = -é— Then there exist a real number 8, 1 < B < e such that the sum

4n1—1 > (an >( 1(1+4)7°,

n— 2n4—~—-+ <j§n——'n%+e

1/4

n+n2+€<j<n+2n4 —-%—.n_ll;z
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88 PABLO PANZONE

is O(ti—tog Bloaty yniformly on 0 < € < 1/4, 1 < t and n such that (log t)ye <n <t
12 < n.

Proof. Recall the inequality

2n—1 4m
< ———s5, L2.1
z ( J > 8(2n — 1)62 (L2.1)
5<| gy — 3
which is (7) of [1] page 6, with z = 1/2; 2n — 1 instead of n.
We first prove i). Let 0 < e < 1/4. Divide 0 < j < o2n—1, j € Z, into three pairwise
disjoint sets

: . s 1 g 1 .
’Pl:{g/OQJSn—Qn‘*—§+n1/4,n+2n4—§—n1/4<J€2ﬂ—1}a
: 3 1 1 . 1ie 1., . s 1 1
Po={j/n—2n% = 5+ 37 <J <n—ndnntte < <namd -5 - o),

Py={j/n— nite < j < n+n3te},
We rewrite the sum Ap k(s) as Zje’Pl +Zj€p2 + EjePs' We have

2
1Y 1< (1 +n!/?*) <nf0(1) < O(). (L2.2)
-t (n —nt/2+e 4+ 1)

For j € Py we have ([x] means as usual the integer part of x)

DTS D DR S ED DN

JjEP1 JEPLIn/2<] j€P1;i<(n/2

ey, (7 ) e 5 ")

JEPy < jePii<in/a N 7

The first summand of this last expression is readily seen to be O(1) using (L2.1) and
the fact that Py is the set {j/|z15 — 51 > n~14}. Also

:‘<[;/21 <2n J_ 1) < (2(;/_2]1> [n/2] < O(a™), (L2.3)

for some a, 0 < a < 4. This follows using Stirling formula. Therefore

Y <o), (12.4)

JEP

If (—2)7* is defined as e=%109(=2) and —71 < Arg(—2z) < then ), p, is equal to
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1 (n-1)1 <3 (cz+k)(z-m)
omi 4n-1 ;'[7’ (2n+2)2n—-1+2)...(1+2) “

where 71 is a positively oriented curve enclosing z = — J where j € Z satisfies n—2ni —
% + # +1<j<n—-n2t"41. Denote Jo, j1 the smallest and largest integer numbers
satislying the preceding inequality. We assume 12 < n , this gives that 0 < j9 and
2< 1 (fn <12 then Api(s) =O(1) forallt € R, k =0,1,2,... ). The same for v,
with 2 = —j and j such that n+n3+c + 1< j<n+2ni-— % - ;xl—/z + 1. We consider
first 7. The same argument applies to ;. Now take 71 as the rectangle —jg + % + ih,
~Jj1— 3 +ih, —j; — % —1h, —jo + % —th, h > 0. Thus v, is a rectangle of side j; — jo + 1
and height 2h, where h will be defined below. We have

(2n —1)! (—2+Ek)"°(-z—n)
TS A Grnto)@n-147). (1524

(2n - 1)! |z — k[~7|2 +n| t.Arg(—z+k)
. . Ar9(=2+k) length 7. (L2.5
T T nt )@ —1+2)... (142) L2 e ength 7. (L2.5)

Notice that the maximum maz et A79(~¥k) ig taken on 2y = —jo + 1/2 — ih. Also
Ze

maz et A2k gy et Ara(=2) i | — 0,1,2,.... If one wished maz et-Ar9(-2) — ¢
2€M €71 z€M
then one must have Arctan%-_hl—/2 = 1 and therefore h = (jo — 1/2)tan(L). Thus we

set h:=min{l, (jo — 1/2)tan( 1)}. From the above discussion we then have

maz etATI(=2+k) e, ifk=0,1,2,... (L2.6)
z€M

Also using the definition of j; one sees that for some positive constant a

_a_tg <h, (L2.7)
and

length 7 = O(n3/4) ; MaTzey, |2 — k| 77|z +n| = O(n1/4). (L2.8)

It remains to estimate

7;%7%711[(271, +2)...(1+2)]:= min w(z).
w(z) is the product of distances from z to —1,~-2,...,-2n. If z is on the vertical
segment [—j; — 1/2 + ih, —j; — 1/2 — ih] one sees that the minimun is taken on z; =
—Jj1 — 1/2 since moving z upwards or downwards increases all these distances. In
the same way for the other vertical segment one sees that the minimum is taken on
z2 = —jo +1/2. It is easy to see that the minimum is on z; if both segments are taken
into account (for w(—j; — 1/2) < w(~J1 + 1/2) < w(—j; + 3/2) < ...) and is greater
than (2n—j1 —1)!(j1—1)!3. If z and z+1 belong to the horizontal segment [—j; —1/2+
th, —jo +1/2+1h] then one sees by elementary considerations that w(z) < w(z+1) and
therefore the minimum on this segment is equal to min w(z). This

2€[—j1—1/241ih,~j1+1/2+4ih]
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90 PABLO PANZONE

last expression is seen to be greater than (2n — j; — 1)!{j; — 2)!%. By symmetry the
bound on the other horizontal segment is the same. The above discussion yields (recall
2 € 73 and by definition h < 1)

— ! — i
(2n — j1 — D)1 2) ?E%glw()

Using this last estimate, (L2.6) and (L2.8) one has that (L2.5) is bounded by

1 2n — 1 1
—— i1(j1 — 1)=-0(n). L2.
A1 ( i )Jl(Jl )7,0(n) (L2.9)
But |n — nl/2*+¢ — j;1 < 1. By Stirling formula (2';1—1) = O(‘\/fgyﬁ?) for any n with g
some fixed number such that 1 < # < e (this is proved in the Appendix). Using this
and (L2.7) in (L2. 9) one obtains |} . p, | < O(%L—:g/; . As (logt)e < n < ct then
¢llog B)(log t) < Bn**  Therefore

| Z ] < O(t5/2~log B..log t)_ (L2.10)
JEP2
From (L2.10), (L2.2) and (L2.4), i) follows. We observe again that the O-term is
uniform in the stated range of the variables.
Proof of ii). This is easy upon using (12.3).
Proof of iii). Write Ank(s) again as 3 ;cp, +3_,cp, Where P3 is defined as in the
proof of 1) and take Py as its complement. Take € in P3 to be . Thus

1 -
121< Ta s (L +n%%) < O(m*/-7),
JEPa (n—n/ +1)

and | Yiep, | < v Ljepsicingal (znfl)(l +4)77(1+j —n)+

=20 I G (R R (R R0}

JEP4,[n/2]<7

The first term is O(n(§)") ( use (L2.3) ) and the second is O(Z’%:ff > iePs (Z”j_l)).
From (L2.1) with 6 = "~;/8 one obtains that } ;. p, 1 = O(%}l). Therefore

J
1> 1< 0@mEi).

JEPs
From this iii) follows.
Proof of iv). The stated sum is
(2n - 1)! (—2)~°
— dz, 12.11
m' 4n-1 Z/ (2n + z)( 2n—1+z) (1+2) “ ( )

where the curves y; and 7y, are those defined in the proof of Zjepz in i) above. The
proof goes unchanged, except for the right-hand side of (L2.8) which must be substitued
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by max.cy, |27 = O(n=Y/2). Then, if 12 = ng < n, (L2.11) is O(tF—1esBlog t) and
the lemma follows. O

Now we simplify the number of double sums appearing in Theorem 1. We do this in
two steps, the first being

Lemma 3. Lett > e? and 1 < N < ct. Then

2n—1

_1\n—1 N
Z %_:%;4:_1 (2 )( 1)7(1 + §)™° + error term,

1<ngN =0

where the error term 1s

i) O(log t.exp(y/ ettogllogt) if o =1/2, (here exp(z) = e*).
/ 2

i) O(1) uniformly in o if 3 < o9 <o < 1.

Proof. Set
N 1 2n—1 o —
Sam e (e - S
n=1 j=0

Now, the third and the fifth double sums of Theorem 1 are easily seen to be O(1). In
fact, if 1/2 < 0 < 1 we have, using (L2.1), that

2n-1

2n — 4n
Z( § )( Y (+5)° —0(%)- (L3.1)

7=0

This gives that the third double sum is O(1). The same argument applies to the fifth
double sum.

The first, second and fourth double sum of Theorem 1 are written by rearrangement
respectively as

N 3 N 3
nZ::l ZBn(S) + nz=:1 mBn(S), (L32)
N ) N, N )
>, 3@n 1) I)An,o(s) +y° 75n(8) + > Z(Z—n—_—ﬁBn(s), (L3.3)
n=1 n=1 nei
N (_qyn+N
-> %%:%An,N—n(S), (L3.4)

where Ap, (s) is defined in Lemma 2. Again the second sum of (L3.2) and the third of
(L3.3) are O(1). The main term of Lemma 3 is equal to the first term of (L.3.2) minus
the second of (L3.3). The first term of (1.3.3) and (L3.4) are estimated using Lemma
2. They yield the ’error term’ of Lemma 3. From this we readily get ii) of Lemma 3.
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92 PABLO PANZONE

To prove i) consider, for example, (L3.4). It is bounded in absowute value, because
of Lemma, 2 i) and ii), by

1 1
L — |Ann-n(s)] <
> 2(n =1y AnN = (S + zl: 302 = 1) Am-n (o)l
1<n<(log t) e (log t) e <N
o ¥ %) + O(tlog t) = O((log t)%) + O(tlog t). (L3.5)

1
1<n<(log t) <

Now if we take € = ¢(t) = 5%?9—%5) then t¢ = (logt)ze = exp( lo—g-t—'l—oé’—(lﬁgﬂ). From

this and (L3.5), i) follows. O

Finally we prove the main result of this section:

Corollary 1. Lett > €2, e :=¢(t) = l—%i‘;—gttz and exp(+/2.logt.log(logt)) < N < ct.
Then

=3 > D SR G (SR Rt

J
exp(+/2.log t.log(logt))<n<N n-n3te <j<n+n%+€

. t
+0 (log t.exp( M_Og_(ﬂ_)_))

Proof. From the definition of € one has t2¢ = (log t)¢ = exp(~/2-logt.log(logt)). The
difference between the double sum of Corollary 1 and the double sum of Lemma 3 (with
o=1/2)is

2n-1

1 1 2n—1 . N—s
D IE—D I G [C R
1<n<te j=0
1 1 2n —1 ; N—g
Y o X (e
t2¢<ngN

. 3
j€<n—-2n? —%4—;3172

2 1 ,

T = 5 (" evaer

t2¢<ngN 1/2+4€

n—-Zn% —%J";TITI <j€<n—mn

/246 2 1.1
n+n ESJ<n+2n4 —--2-—;—177

Using (L3.1) one obtains that the first sum is O(t¢). The second one is treated analo-
gously to (L2.4) and it is easily seen to be O(log t) (this is left to the reader). To get a
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REMARKS ON 3, v —%L— AND ¢(3 +1t). 93

bound for the third sum use Lemma 2 iv), obtaining that this sum is O(1) . Collecting
the O—terms and the O—term of Lemma 3, the corollary follows, O

_1\n—1
2. Relation between the sum E %and ¢(1/2 + it).
n

1<ngeVt

The main result of this section is the following theorem which is proved using the
Hardy-Littlewood approximate functional equation and a variant of it. To simplify the

notation we write L(z, s) 1= 3, Q_L Also ~ means conjugation and [z] denotes
the integer part of a real number z.

Theorem 2. Ift > 2 and s = 1/2 + it then

¢(8)x(5)(3 — 2v2cos(t log2)) = —%(-_E%L(Q[\/%] +1,5) + x(s)L( 5%’3)_

—231_1 L(Z[\/gl +1,8) + L(\/;i;, 8) + 0@t~ Y*logt),

where, as usual, x(s) = 2°~'nsec(2F)/T(s).

Using Theorem 2 and (T2.1) below, it is easily seen that the growth' of ((5 + it)
depends on Zn<c Nos: ,);H: with ¢ = \/%, % Thus, estimations of these sums

yields an estimation of {(3 + it).
To prove the above theorem we need to recall

The Hardy-Littlewood approximate functional equation (2l pg. 79). Ifh
ts a positive constant and 0 < o0 <1, 2mzy=t, 0< h <z, 0< h <y, then

()= 3 = +x() Y

n<r nLy

“logt]) + 012~y (H-L)

Our proof requires also a variant of this equation.

Lemma 4. If0<t,0<0<1,2ray=t,1/2 <z <y then

—1\n—1
(1-21=)(s) = 3 2 —;‘s(fz > @ +11)1 — +0(z™7).  (Ld1)
n<e 0<ngfy+3]-1

Proof. We have for 0 < o < 1

- B o (_1)17,—1 m n 1 (_1)m ooms_le_mz
(1-2 )C(s)~; = Z; T /O 7

This last integral can be transformed in the way of 2.4 of [2] and give

3 m (_1)77.-—1 (___1)me—i7rsl'\(1 _ S) wS—le—mw
_ ‘1 s — \ d
(1 =272)¢0s) Zl n 2mi /c P
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94 PABLO PANZONE

where C is a curve coming from +o0, going around 0 and going back to +oo (it excludes
all zeros of e® +1). Suppose 0 < ¢, 1/2 <z <y. Set m=[z], y = 54, ¢ = [y + 1
(thus 1 < q), n = 2ny. Deform the contour into straight lines Ci,...,Cy joining
+00,c0m + 1M(1 + o), —con + in(l — cp), —con — 12mg, +oc where ¢y is an absolute
constant 0 < ¢g € 1/2. We have then

m l)n 1

q—1
( —215 Z 23 IZ 2n+1)ls

o _mm‘s{/cl ot e e

The last summand of the above expression is O(z~7). The proof of this fact is exactly
the same as that given in pages 82 through 84 of 2. O

Proof of Theorem 2. Take z =y = /5, s = § +it, t > 2 in (H-L) and (L4.1). Recall
([2] pg.78) that

XG5 +it) = (%D +0(3)). (T2.1)

Perhaps with the addition of one term to the second sum of (L4.1) one arrives to the
formula

(- 2-0g(e) = Iy ) - Xy Y GEmmtoety @)

ss\/%

Now add (H-L) and (T2.2) to yield

(e2n-27= 3 1 —t;,s)—;‘s(sz(z[ g;]+1,s)+0(t“l/4logt).

(T2.3)
Multiply (T2.3) by % = x(s) and add to the complex conjugate of (T2.2) to
obtain

¢(s)2(1 = 27°)x(5) + {(s)(1 - 2'7%) =

= o [y 0+ L [ 0)-
- ";@1‘2 L(Z[\/g] +1,8) + L(\/;-g, s) + Ot~ Y*log ). (T2.4)

The left-hand side of (T2.4) can be simplified a bit using the functional equation

C(s) = x(s)¢(1 — s) or ¢(s) = x(s)C(s) if s = 1/2 4 it. Also |x(1/2 + it)|> = 1. This
gives the theorem. [

3. Final remarks.
Finally we prove the following identity :
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REMARKS ON ¥, ¢y (;%IL‘ AND ¢(1 +it). 95
n

Generalization of L1.1, If N =1,2,..., and z,0 € C, then

iv: ei@n _
— (n+2)
i — 2)lgif(2n—1) ot — O(n+x) 3 e®(e?n+n—1)
1 (e - 2(" D@2n+2z)...(1+x) e —1 (e —1)2
XN: e (n+N=1)(on _ 2)1 e (N +z) e%en+n-1)
(e —1)2-D(N+n+z)...(N—n+z+1) et — 1 (e —1)2

n=1

Proof. 1f in the passage from (L1.2) to (L1.3) we multiply by e*"(n + z), instead of
multiplying by (—1)"~*(n + z), and leave bx undefined for the moment, we get

Cwnbl e b'n.—l

N
Z@n—l—!—m)...(l-i—x) -

1

ifn
Z(n-l—m

n=1
N n-1 z@n ) k
= by...be_ —=.
;;(n+k+x ko)l 1<(n+x). 2)1
Let by = ze(ejz,L‘;il (thus by ... bg_1 = (ofpsme=ry (2 — 2)1) and define
0 (il g
eib(k—1) (e (’I’L + (E) + _"%’:'i'e'_—‘igcz 1))

——c 16N ,
€n i (2) : (e — yat—ny 2k~ 2T Y1) (n—k+1+a)

Check that €,,x(z) — €n—1(z) = . Now the proof follows as in the Lemma 1 and

is left to the reader. O

Appendix.

Proposition. There ezist positive constants a,3, 1 < B < e such that for all0 < € <
1/4, n,51 € N, |n — n'/2*< — 41| < 1, one has

2n—1 4"

Proof. We shall denote by a1, as, a3 absolute positive constants. Now writing n—7j; = k
one sees that k = O(n34). Stirling formula yields

- 1)27'1.—1/2

n—1\  /(2n—-1\ (2n —1)! <4 (2n
i) \n-k) (n+k=—Dn—k)! > (n+k- 1)n+k—1/2(n — f)n—k+1/2
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96 PABLO PANZONE

(2n)2n—-1/2 4n
K G2 (?’L + k)n+k(n _ k;)n—k; = Qa2 f—2n(1 + %)n+k(1 _ %)n——k
We have for § some small positive number independent of € and ji, that
: k 2%
(1+E)n+k(1_ﬁ) --{(1____)'7} {(1+_~“};) };:‘:‘E >

Tiﬁz@—éﬁf—z/{(e Oy = e > 6% 5 ayp),
e n

this last inequality because of & — n? =o(1). O

We point out that Lemma 1 (an other identities derived by the author ) can be used
to obtain an approximate functional equation for ((s) in the critical strip. This will
appear elsewhere.
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