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Abstract

In this paper the distributive Hilbert algebras are presented as algebras
(A, =, A, V,0,1) of type (2,2,2,0,0), where the reduct (A, —,1) is a Hilbert
algebra, the reduct (A,A,V,0,1) is a distributive lattice with first element 0
and last element 1, and the identities z A (z—=y)=zAy, (A z)) —
(zA2)=(zAy) =1, (z Vy)—z = (z—2z)A(y— z) are verified. It is
proved that the class of distributive Hilbert algebras is a variety of algebras
that strictly include the variety of Heyting algebras. Besides, it is verified that
the congruences of a distributive Hilbert algebra can be obtained by means
of absorbent deductive systems of A, that is to say those subset of A which
fulfil the properties: (D1) 1€ D, (D2) if z,2 —y € D then y € D, (D3)
ifd € D then z— (z A djeDforallze A F inally, a family of subdirectly
irreducible distributive Hilbert algebras is determined.
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1 Introduction and Preliminaries

In his paper on Hertz algebras of fractions, D. Busneag first considered the
Hilbert algebras and gave the name Hertz algebra to every Hilbert algebra whose
underlying ordered structure is a meet semi-lattice. Later, basing his work on an
article written by H. Porta [11] and another produced by A. Monteiro [§], he stated
that the Hertz algebras coincide with the variety of algebras that W. Nemitz called
implicative semi-lattices [10]. With respect to what has been said above, we can
make de following assertions:

(i) In [8] the Hertz algebras do not appear.
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(ii) In [11], H. Porta used A. Diego’s definition [5] to name the Hilbert algebras
and, like D. Busneag, gave the name of Hertz algebras to the Hilbert algebras
such that their underlying ordered set is a meet semi-lattice. He also asserted
that the Hertz algebras coincide with the implicative semi-lattices.

(iti) In [12], H. Porta called the Nemitz implicative semi-lattices Hertz algebras.

(iv) The assertion about the equivalences betwen the two definitions of the Hertz
algebras above mentioned is not true, as we shall show in Example 1.1.

(v) The fact mentioned in (iii) suggests the study of at least three classes of alge-
bras that may be of interest on account of their relation to the intuitionistic
propositional calculus. They are:

(a) The Hilbert algebras with underlying structure of join semi-lattice.
(b) The Hilbert algebras with underlying structure of meet semi-lattice.

(c) The Hilbert algebras with underlying structure of lattice, and in partic-
ular those algebras whose ordered structure is a distributive lattice with
a first and a last element.

We have obtained some results about particular cases of the class indicated in
(a) (ver [6]). In addition, we are studying the classes indicated in (c), some results
about which we shall communicate in this work. The layout of this work is as
follows. In Section 1 we recall some basic definitions. In Section 2 we introduce
the variety of distributive Hilbert algebras ( or dH —algebras, to abbreviate), which
are the Hilbert algebras with underlying structure of distributive lattices, but in
which we have considered as primitive operations the lattice operations yielded by
the underlying order. Then, the dH —algebras constitute a generalization of the
Heyting algebras. In Section 3 we obtain the congruences of any dH —algebra and,
in Section 4, we determine two classes of subdirectly irreducible dH —algebras.

The results on the Hilbert algebras may be consulted in [1,2,4,5,9, 13] and
those on the distributive lattices in [3]. Throughout this paper we shall be including
the definitions and properties necessary for the understanding of the remaing part.

Definition 1.1 ([5]) A Hilbert algebra (or H—algebra) is an algebra (A, —,1) of
the type (2,0) which satisfies these identities:

(H1) z—z =1,
(H2) 1>z =1z,
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(H3) 2> (y—2) = (z—y)—(z—2), |
(H4) (x—>y)—>((y—>m)—>x)=<fv~>y)~>((y—>w)~>y)-

We shall denote by H the variety of H—algebras. Then we state the following
lemma;

Lemma 1.1 For each A € H the following properties are verified:
(H5) z2—1=1,
(H6) f r>y=y—a=1, theng = Y,

(H7) the relation < defined byz <y ifand only if t—y=11isaq partial order on
A,

(H8) y <z—y,

(H9) 2= (y—2) = y— (z—2),
(H10) if x < y—z, theny < T— 2,
(H11) ifx <y, then z— 2z < z—y,

H12) if z < vy, then y—z < z— 2.
Yy

In [4] and [11] a definition of the Hertz algebra equivalent to the following defi-
nition is used:

Definition 1.2 A Hertz algebra (or implicative semi-lattice, according to Nemitz
[10]) us an algebra (A, =, A, 1) of the type (2,2,0) which satisfies these identities.

)
(Hed) zA (z—y) =z Ay,
(Hed) z—(yAz) = (z—=y) A (z—2).
Definition 1.3 ([3,7]) 4 Heyting algebra is an algebra (A, =, A, V,0,1) of the type

(2,2,2,0,0) such that the reduct (A, —, A1) is a Hertz algebra and the following
identities are satisfied:
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(He5) 2 A0 =0,

(Heb) (zVy)—z=(z—2)A(y—2).

In a subsequent step, Example 1.1, we shall show that the identities (Hel) to
(He4) do no characterize the Hilbert algebras in which the order given by (H7) is of
meet semi-lattice.

Example 1.1 [t is well known (see [4, 5]) that, if in an ordered set (A, <) with a
last element 1 the operation — is defined by the prescription

I, ifz<y
r—y =

y, otherwise,

then (A,—,1) is a Hilbert algebra. Then, considering the set A = {0,a,b,1} with
the order indicated in the following Hasse diagram,
it follows that the Hilbert algebra (A, —, 1), whose implication is given by this table

— 10 a b 1
0/1 1 1 1
a {0 1 b 1
b /0 a 1 1
110 a b 1

is such that every pair of elements has infimum, but it does not verify property (Hed)
since a—(aAb) =a—0=0, (a—a)A(a—b)=1Ab=b.

2 Distributive Hilbert Algebras

In this section we shall consider the Hilbert algebras with a natural ordered
structure of distributive lattice with a first and a last element.

Let A € H and a,b € A, we shall denote by aAb and aV b the infimum and the
supremum of a and b respectively.

Lemma 2.1 For every A € H the following properties are verified:
(H13) ifa,b € A are such that there exists aAb, then a = aNb if and only ifa—b =1,
(H14) if a,b € A are such that there exists a b, then for every c € A there exists

(@—c) A (b—c) and the following identity is verified:
(aVvb)—c=(a—c)A(b—c)
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(H15) If a,b,c € A are such that there exist b A ¢ and (@a—=c) A (b—c), then the
condition a—(bAc) < (a—c) A (a—b) is verified,

(H16) If a,b € A are such that there exists a Nb then, for every c € A the condition
a—(b—c) < (a Ab)—c is verified,

(H17) Ifa,b € A are such that exist a Ab and a A (a—b), then the identity a A (a—
b) = a A b is verified.

Proof.

(H13) It derives directly from (HT).
(H14) (1) a<aVvb

(2) b<aVvh,

(3) (avb)—c<a—e, [(1), (H12)]
(4) (aVvb)—c<b-e, [(2), (H12)]
(5) (aVb)—c< (a—c) A (b—e). [(3), (4)]

(6) Let z € A such that 2 < a—c and 2z < b—c. Then

(7) a <2, [(6), (H10)]

(8) b<z2—vq, [(6), (H10)]

(9) aVb< z—se, [(7), (8)]

(10) z < (aVb)—c, [(9),(H10)]

(11) (aVbd)—c= (a—c) A (b—c). [(5), (6), (10)]
(H15) (1) brc<e,
(2) bAc<b,

(3) a—=(bA¢c) < (a—0) [(1), (H11)]

(4) a=(bAc) < (a—b) [(2), (H11)]

(5) a=(bAc) < (a—c) A (a—b), [(3), (4)]
(H16) (1) aAb<b,
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(H17)

=1-=((aNb)—c)
=(aAb)—c,

(6) a—(b—c) < (aAb)—ec.

)

Definition 2.1 Let A € H. We shall say that A is distributive if its ordered
structure (A, <) is a distributive lattice set with a first element, where < is the
relation given by (HT).

In Theorem 2.1 we shall show the equivalence between Definition 2.1 and Defi-
nition 2.2, which is given below.

Definition 2.2 A dH -algebra is an algebra (A, —,V, A, 0,1) of the type (2,2,2,0,0)
which satisfies the following properties:

(i)

the reduct (A, —,1) is a Hilbert algebra

(ii) the reduct (A,V,A,0,1) is a distributive lattice with first element O and last

element 1,
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(iii) the following identities are verified:
(dHI) zA(z—>y) =z Ay,
(dH2) (z—=(yA2)) = ((z—2) A (z—y)) = 1,
(dH3) (zVy)—z = (z—=2) A (y—2).
We shall denote the variety of d —algebras by dH.

Remark 2.1 Taking account Ezample 1.1, we can state that in dH the wdentity

(Hed) does not hold. In the same example it can be shown that the following identity
18 not true either.

(He7) 2—(y—2) = (z Ay)— 2.
Nevertheless, it can be proved that in dH weaker properties are valid:
(dH4) z—=(yn2) < (z—y) A (x—2),
(dHS) z—(y—2) < (zAy)—z.
Lemma 2.2 For each A € dH the following properties are verified:
(dH6) zA 1 =g,

(dH7) for each x,y € A, the property (a) x—y = 1 is equivalent to the property (b)
T=xTNy.

Proof.

(dH6) It is a direct consequence of (dH1) and (H1).
(dH7) (a) = (b):

(1) eoy =1, [(a)]

2 z=zA1 [(dH6)]
=T A (z>y), [(1)]
=z Ay [(dH1)]

(b) = (a):

(1) z=zAy, [(b)]

145



(2) 1=2z—(zAy), (1), (H1)]

3) @=@AY) = (oY A@—z) =1, [(dH2)]
(4) z—y =1, (3), (2), (H2), (H1), (dH6)]
|

Is is clear that from Lemma 2.2 it follows that in a d H —algebra the order deter-
mined by the structure of the distributive lattice coincides with the order determined
by the structure of an H—algebra. On the other hand, from definitions 2.1, 2.2 and
Lemmas 2.1, 2.2 the following theorem results:

Theorem 2.1 Let (A,—,V,A,0,1) be an algebra of the type (2,2,2,0,0). Then, the
following conditions are equivalent:

(i) (A,—,V,A,0,1) € dH,

(i) (A,—,1) is an H—algebra with first element 0 and for each {z,y} C A the
following identities are satisfied: inf {z,y} =z Ay, sup {z,y}=2zVy.

3 Congruences

Now we shall consider the way to determine the congruences of a dH —algebra.
Let’s recall that:

Definition 3.1 ([5]) Let A € H. D C A is a deductive system if the following
conditions are verified:

(D1) 1€ D,
(D2) z,z—y € D implyy € D.
We shall denote the family of the deductive systems of A by D(A).

Remark 3.1 It is well known [5] that:

(i) f Ae H, D € D(A) and R(D) = {(z,y) € A’ :x—y € D,y—z € D},
then R(D) € Cong(A), where Cong (A) is the set of all the H—congruences

on A. If R € Congyg(A) and zr denotes the equivalence class of ¢, T € A, then
1R(D) =D.

(it) If R € Cong (A), then there exists a unique D € D(A) such that R = R(D)
and D = 1p.
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By means of Example 3.1 given below we shall show that the deductive systems
do not determine the congruences of a dH —algebra.

Example 3.1 Let’s consider the dH —algebra whose Hasse diagram and operation
— are those indicated below :

Then, D = {b,¢,d, 1} is a deductive system of A. But the H—congruence 6 (D)
is not a dH —congruence because (b, c), (¢, c) € 8 (D) but (bAc,cAc) = (a,c) ¢ (D).

The previous result has led us to determine which are the deductive systems D
such that R(D) are dH —congruences.

Definition 3.2 Let A € dH. We shall say that the deductive system D C A is
absorbent if it verifies this property :

(D3) Ifz € D, then z— (2 Az) € D for every z € A.

We shall denote by D,;(A4) the set of the absorbent deductive systems of A.

Lemma 3.1, which is given below, can be easily proved.
Lemma 3.1 Let Ac dH and D € Dav(A), then D is a filter of A.

Remark 3.2 Let A be the algebra introduced in Ezample 3.1. Then D = F(b) =
{b,d, 1} is a filter which is not an absorbent deductive system. In effect, b € D, and
c—(cAb)=c—a¢D.

Next we shall determine the dH —congruences of A and establish an isomorphism
betwen the lattices Congy (A) and Das(A).

Lemma 3.2 Let A € dH and D ¢ Dar(A). Then the following properties are
verified:

(i) R(D) € Congy (A).
(i) 1rp) = D.

Proof. We shall only prove that, if (z,y) € R(D), then (z A z,y A z) € R(D) for
every z € A.

(1) Let (z,y) € R(D) and z € 4,

then these properties are verified:
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(2) z—ye D,

(3) y—z e D,

(4) zA2)=((zA2) A (@ —y)) € D [(2), (D3)]
(5) (zAz)—(zAxAY)ED [(4), (dH1)]
6) zAyAz < zAy,

(1) (zA2)= (AT AY) < (2 A2) > (2 Ay), [(6),(H11)]
(9) (zAz)—(zAy) € D. [(5), (7))

From (3), we can prove:

(10) (zAy)—(zAz) € D,

then

(11) (zAz,2Ay) € R(D). [(9), (10)]
u

Lemma 3.3 Let A € dH, R ¢ Congu(A) y D = 1g. Then the following are
verified:

(i) D € Doy(A).
(i) R(D) =R,

(il) The lattices Conag (A) and Da(A) are isomorphic if we consider the corre-
spondences R+—— 1p and D — R(D), one being the inverse of the other.

As a direct consequence of Lemmas 3.2 and 3.3 we can formulate the following
theorem:

Theorem 3.1 Congy(A) = {R(D) : D € Dgy(A)}.
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4  Subdirectly Irreducible Algebras
In this section we shall show some results on the subdirectly irreducible d H—algebras

Lemma 4.1 Let A € dH and D = F(a) be a principal filter of A. Then, the
following are equivalent:

(1) F(a) € Dgy(A),

(ii) for allz € A\D, a—(2Aa) = a— 2z is verified.

Proof.
(i) = (i):
(1) Let z € A\ D. [hip.]
Then
(2) z—(2na) € D, [(1), (D3)]
3) a<2—(2n0), [(2), hip.]
4) 1=a—(z—(2na)) [(3), (H7)]
= (a—=z)—(a— (2 a)), [(H3)]
(5) a—z<a—(zMa), [(4), (HT7)]
(6) zAa <z,
(7) a—(2Aa) < a—z, [(6), (H11)]
(8) a—(2na) =a—z. ((5), (7), (HT)]
(i) = (i):
(1) D= F(a) [hip.]
(2) a—(zAa)=a—zforallze A\ D, [hip]

(3) 1=(a—=2)—(a—(zNa)
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=a—(z2—(zAa)), [(2), (H3)]

4) a < z—(zAa), [(3), (H7)]
(5) z—(zAa) € D. [(4), (1)]
(6) Let be D.

Then

(7) a<b (1), (6)]
(8) zAa < zAb, forall z € A, [(7)]
(9) z—(2Aa) < z—(zAb), forall z € A, [(8), (H11)]

(10) z—(2Ab) € D, for all z € A, [(9), (1)]

(11) D verifies (D3). [(10)]

N

Theorem 4.1 Let Ac dH. If A has a penultimate element, then A is subdirectly
trreducible.

Proof. By hipothesis there exists p € A, p < 1 such that
(1) z<pforallz € A = #1.

Let F'(p) = {p,1} the principal filter of A generated by p. Then, if we choose
z € A such that

(2) z€ A\ F(p),
from (1) and (2), the identity :
(3) p—(2Ap) = p— 2 is verified.

(From (3) and Lemma 4.1 we obtain as a result that F (p) is an absorbent
deductive system of A. Clearly, F(p) is the only atom of (Das(A), C). Then A is
subdirectly irreducible. |

Example 4.1 Let (A,A,V,—,0,1) be the dH—algebra determined by the ordered
set indicated in Example 1.1. Then, it can be easily verified that A is subdirectly
wrreducible and does not have a penultimate element.
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Definition 4.1 Let A be an ordered set and D CA D#A D#0. We shall say
that D is a node if, for everya € A\ D and d € D, the relation a < d is verified.

Theorem 4.2 Let (A,V,A,0,1) be a bounded distributive lattice and D a node of
A with four elements, whose order is that of a Boolean algebra. If the tmplication
— gwen by the lattice order is like that indicated in Ezample 1.1, it follows that
(A, —,V, A0, 1) isa subdirectly irreducible dH —algebra.
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