ON THE NUMBER SYSTEM (-2,{0,1,exp2 = i/3,exp4 zi/3}):
NUMBERS WITH TWO REPRESENTATIONS

Agnes Benedek and Rafael Panzone
ABSTRACT. In the number system (-2,D) with base b=-2 and family of ciphers D= {0, 1,w,w} where

by — ] .
w=e2”‘3, w:wz, every complex number z is representable: z=(ay..a,a_a.,..)_,, ie,

N
z= Za jb’ . (-2,D) has as set of integers W:= {aN e NI = D} , the family of Eisenstein numbers

E= {m+nw:m,n eZ } The integers of the system are uniquely representable. The set of fractional

numbers F:= {O. a.,a,..a,e D} coincides with a copy of the so called Eisenstein set. This set is a

fractile. In this paper we study the behaviour of the ciphers in the positional representations of numbers
that are not uniquely representable in the system.

L INTRODUCTION. Let b €C, |b[>1, D={0,d,,d,,...,d, } cC. o is said representable
M
in base & with ciphers D if there exists { a ; €D j=MM-1,...} such that @ = Za b We

wiite a=a,,..a,.a.a,..= (ef), and call (e) the integral part of o and (/) the
fractional part of a. G denotes the set of all representable numbers. F is the set of
Jractional numbers, i.e., those numbers in G with a representation such that (e)=0. The
set W of integers of the system is the subfamily of G with a representation such that
(/0. A number r will be called a rational of the number system (4,D) if it has a finite
positional representation, that is, a ;=0 for j < J(r). U will denote the set of rationals of

the system. We study the number system with base —2 and the set of ciphers D ¢ R,

V3

D:={0,1,w,w’ } where w=—-;—+i—2—. D\{O}={third roots of unity}, is a muitiplicative

group such that 1+w +w? = 0 (the cyclotomic equation).

DEFINITION I 1. E denotes the Eisenstein’s point-lattice: E = [1Lw] =

={m.1+nw:m, n € Z}. Let 6 = DU(-D) = {0,+1,+w,+w}. S =D-D =

={ 0t Ltwtw 2 (1-w) +(1-w)E(w-w) }, §"= S\o = { (1-w),+(1~ W) E(w - w) } .o
Then, S and o are subsets of the set E of Eisenstein “integers”. It is easy to verify that
the numbers in S\{0} can be written in a unique way as a difference of two numbers in D.
The numbers in o\ {0} have modulus equal to 1 and those in S’ have modulus equal to

V3. Besides, @ €S = e <3, [Rea|<3/2, [Ina]<+3.

NOTATION I 1. x used as a cipher will represent the number w”> =w. m(A) will denote
the plane Lebesgue measure of AcC and B(z;r) the open ball of center z and radius r. e
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The reader will find in [Z] or [P] a detailed proof of each statement in the following Ths.
I 1-3. Any number in W, the set of integers of the number system (-2,{0,L,w,w}),

belongs to E. This follows from the identity: 1+w+x=0. Moreover,
THEOREM I 1. W=E and m+nw has a unique representation in (=2,{0,1,w, x}).e

DEFINITION 12 F,:=g+F where gcE. e

~ Thus, F =F, the fractional set of the number system (-2,{0,1,w, x}).
We shall call it the Eisenstein set. The definition I 2 can be extended in
~ the following way: F. ={xx=ay,..a,a,.a,.}.

Q0.0 4G 5.0 "

- THEOREM 1 2. The family {F,:g €E} defines a fessellation in the

sense that R*= U {Fg:g ek } and any two different sets of the family

have an intersection of plane Lebesgue measure zero.e

DEFINITION 1 3. For j € D= {0,1,w,x} let us define ® (z) = %+i - —%!- .

Then, F = UCI),. (F) . Thus, the 4-rep tile F is the invariant
ieD
i set of the family {©, }.
R %% THEOREM I 3. The compact connected set FcB(0;1) is
" the attractor of the family of similarities { @, } that satisfies
4 the open set condition. It holds that m(F,) = V372, Besides,
% if zeC and |2/ <1/8 then z €F. The convex hull of F is a

hexagon that does not tile the plane. The interior and
exterior of F are composed of infinitely many open

components.e
II. STATES and TYPES. Since G=C any n7edF has at least two representations. A

main objective is to make clear the relations among the different representations of a
given complex number. For this purpose, let z=(0.a,a,...), €F and e e W\{0} be such
that e.bd,... = 0.a,a,.... Then,

- i o ia —b
I e:Z(ai—bi)b” 221:(_1) 5
for e € E\{0}. Therefore, |¢|,[Ime| < /3 and the bound is reached, for example when
a,-b, = (~1y' (w—w). Besides |[Ree|<3/2, the bound reached for a, — b, = ) (1-w).
If |e|=1, (I 1) has several solutions. For example, 1.1w*10=0.ww0! and 110=0.01

are two solutions for e=1. However, if |e| =43 then ec$ and (a) and (b) are

determined: e=b, —a,, a,=b,,,, b, =a,,,. Thus, we have proved the next theorem that
we borrowed from [Z].
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THEOREM 11 1. i) The numbers in S\{0} can be written in a unique way as a difference
of two ciphers.

ii) Let be z=e.(b)=e.b b,..., ecW and z=0.(a)=0a ,a,.... Then e€S. If |¢|=+3
then ecS’, (a) and (b) are uniquely determined and b | —a , =e, a,=b,,, b, =a,,.

i) FNF, #J=>eeS and e eS'= (e + F)F contains only one point.e

L
The state k of the p-expansion of z, z=z p].bj , 1s the number p(k) in W defined by
L
p(k):=(z pj.b’)b”" . p(k) will also be called the kth state of the p-representation
k

L
P Py-P.DP,... . If z has also a g-expansion z=qub" then by Theorem II 1, ii),

p(k)—q(k) belongs to S since (p(k)-q(k)).p,.,...=0.q,,... .

LEMMA NI 1. z= p,..p,.p.P,... and {=q,...9,.9 .9 ,... are equal if and only if
Vk:p(k)y—q(k)eS .o

PROOF. The if part follows from |b™* (z—¢)| <|p(k)—q(k)| + 2 < 4 letting k — -,
QED.

We have p(k-1) = p(k)b + p,_, and a similar expression for the q-expansion. Thus,

1r2) P(k)~q(kDb+ (P — i) = Pk~ 1) —q(k-1).

Since b=-2, this formula can be written as

(Ir2) Pey — G =Pk —1)—q(k - 1)) +2(p(k) - q(k)) .

By the state k of the p, g-representations of z we mean the pair of states (p(k),q(k))

and will also refer to it as the kth state (p(k),q(k)). Most of the times it is not necessary
to consider the kth state (p(k),q(k)) but only the difference A =p(k)—q(k). We call this

number in S the type of the kth state (p(k),q(k)). That is,

DEFINITION H 1. Given a number z with two positional representations p,q, we say
that the kth state, (p(k),q(k)), is of type <A> if A = p(k)—q(k) .

The formula (I1.2) gives the transition from the type A of the state k to the type A | of the
state (k1) in terms of the ciphers p, ,, g, ,. We shall represent it graphically as

(I 3) <A>T<A1>

where A | =p(k—1)-q(k-1) and a=p,_,, c=q, ,. Thus, (II 3) stands for
(I13) 2A+A, =a—c.
One readily sees that if the type A is not zero then neither the type A, nor a—c can be

zero. So, a-¢ €S\{0} in this case. Since any number in S\{0} can be uniquely written as
a difference of two numbers in D, a and c are uniquely determined. We shall construct a
digraph I" with nodes the types <A>, A €8, and arrows given by (II 3). To this end we
examine the possible ciphers a and ¢ that can occur in (II 3) in order that A, €S

assuming that AeS.

43



THEOREM H 2. i) If a,ceD and A = a—c#0 then <a-c> —Fj—) <c-a>.

iIfAeS (|A|=+3)thenA, =-A=

c—d.

[

i) If A = +1 then Graph 1 and Graph —1 show all the possibilities for A, €.

iv) <0> T;T—) <a—c> for any a, c belonging to D.

v) the state <0> can only be reached from <0>.e
PROOF. The proofs of all the statements follow from (II 3). For example A | =0 and A=0

implies | a—¢| 2> the modulus of any number in S. This contradiction proves v). If A=1

then A, =a-c-2. So A, €S only if Re(a—<)> % This occurs in five cases, yielding the

five arrows in Graph 1. We leave the details to the reader, QED.

Graph 1

(1,w)

oW

Ow)
and —x, respectively.

y
01om %

<-1> ;

‘Graph -1

from Fig. 5 multiplied by 1, w and x.e

G -<;>
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<1-0>
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<]-w=>

<1-w>
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a
Fig. 1. Note that (a, c)=( ) :
c

The types reached from <+d>,
deD\{0}, can be obtained from
Graph 1 and Graph —1. In fact since
D\{0} is a multiplicative group,

<i1>—w—)<s>and

<t &> (da,dc)

for deD\{0}. Hence multiplying

Graphs 1 and -1 in Fig. 1 by w and x
we obtain the Graphs w,-w, x and —x
with the arrows starting at w,-w, x

<ds> are equivalent

DEFINITION I 2. We call T the
digraph with nodes the types in S and
arrows from <A> to <A > if
2A+A,=a-c witha, ceD. o

The arrows of I starting at <0> are
shown in Fig.2 except for a loop at
<0>, (Th.II 2 v)).

THEOREM II 3. The digraph T is
obtained superposing the digraph
with the arrows starting at <0>
shown in Fig. 2, a loop at <0>, the
three digraphs obtained from the one
shown in Fig. 3 multiplied by 1, w
and x and the three digraphs obtained



i) of Th. II 1 explains the oscillation in the semicircular arcs in Figs. 3 and 4. The dotted
edges that appear in Figs. 3, 5 and 4 bis have arrows only in one direction. In Fig. 4 we
show in full lines the edges of the graph I which have arrows in both directions. In Fig.
4 bis we have added, as dotted lines, the remaining edges that start at o\ {0} . Therefore
one obtains the complete graph I' by superposing the graph VI" of Fig. 4 bis with the
graph in Fig. 2 and a loop at <0>. Suppose z has two different positional representations.
Then for some fixed k, the kth type is a node <A> of T' different from <0> The
successive (k—1), (k-2), ..—th types of the representations are obtained following an
infintte string starting at <A > n the digraph T . The ciphers {p, ,,4,.), (7,,,4,.,).
., are completely determined by the arrows, (cfr. (II 2) or (II 3)).
Combining this with Lemma II 1 the next result is obtained.

<wow> 7
1]
&
<w-1> : <J-w>
o <W> <> ®
L) H Fd
* R e
\ [
L, A
IR A
<l o e - W
I% 202 ® <1>
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oY
& b \
dﬁ
e <w> L w ©
<w-1> <1-w>
—_— Y Fig.2
<w-w> o

THEOREM I 4. Given keZ and a node <A >#<0> in the digraph I" then two
positional representations p,q of a number zeC
Fig. 5 are obtained following an infinite string starting at
<A> in such a way that p(k)—qk)=A. z is
<t-w> defined by any of these representations.
Pt Conversely, for a number with two positional
’ representations p,q, the types of the successive
states follow an infinite string in the graph T" .o

>8 <>

<y-1>

We leave to the reader the remaining details G
of the proofs of Theorems I 3 and 4.

Next Fig. 5 reproduces Fig. 4 bis but with
the ciphers beside the arrows that permit
the passage from one state to the next one. Once a state dlﬁ‘erent of <0> is reached the
states in I" follow an infinite string in the digraph VT

<}-w>
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To say “two representations” means “at least two”. As a matter of fact, there are
numbers with three representatlons that we shall characterize elsewhere. An example:

~1/3=01=w.wx=xxw. However, the following result holds,
THEOREM 11 V. There is no number with four representations. e

PROOF. Assume that a number y has a p-,
q-, r- and z-expansion, pairwise different.
This means thaty=P.p p,.. =Q. .=
=R. ... =Z. ... . Multiplying by an adequate
power of b and adding an integer we may
assume without loss of generality that P, Q,
R, Z are pairwise different, Z=0, and
|P|>1. By theorem II 1 ii), P, Q, ReS\0,
so PeS’. Theny is equal to
u—vuv=0yvu,uy eD\{0}.
If Qe¥§’ then y=m—n.;71: O.;n, mneD.
It is easy to see that
O.E:O.r_zi_n-:>V=n,u:m.

Therefore, Q,R € o\{0}. Multiplying all the representations by a non null cipher we may

- assume that R=1. Then P=1-x,
Q=-x or P=1-w, Q=-w. Let us

ANEANEAVA NI \
NI

consider the case where R=1,
P=1-x, Q=—x. Then, y =

1-x1x=0x1= Llr,..=-xq_..
From the third equality we get

that there is an infinite string
starting at <1> such that the

WA

A\
N

ciphers beside the arrows are

G () ()

But

\ | B
Elsensuem s point- lat; \

\ \ w= (- 1a3)i2

P=1-w, Q=—w then y=1—w.l-uj=0.v71=1.r_, LEWg ..

digraph VI' shows that such a
string does not exist. Similarly, if

This is again impossible since

there is no infinite string in VI starting at <1> such that the ciphers beside the arrows are

(rwlj (r"f) : (':) ... .QED.

Final remarks. W=E is also a consequence of the fact that the family of periodic points
in (-2,D) is equal to {0}, (cf. K], §2 and 9). On the other hand W=E implies that G=C,
(cf. [KS] or [IKR], Th. 2). The behaviour of the ciphers corresponding to numbers that

have three positional representations in the number system (~2,D) will be studied in [Q].
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