Brans-Dicke manifolds with closed timelike curves.
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Abstract

The paper contains, along with a brief review of concepts of Brans-Dicke theory,
a new solution of Brans-Dicke field equations for a rotating geometry with cylindrical
symmetry. It turns out that under these constraints the regulting manifold contains
closed timelike curves.

1 Introduction

In the last two decades, there has been a great deal of activity on the problem of causal
anomalies in general relativity, a subject which had lain rather dormant since the discovery
of closed timelike curves (CTCs) in rapidly rotating geometries [11,7]. There are two main
branches in the current revival, that involving the use of wormholes for backward time
travel [8] - which we will not discuss further here - and that concerning the study of
metrical properties associated with compact and non-compact manifolds [12, 5, 6, 10, 9].

It has long been known that in rotating geometries with cylindrical symmetry particles
are held out against their own gravity by centrifugal forces, and their rotation drags inertial
frames so strongly that the light cones tilt over in the circumferential direction causing
the appearence of CTCs. Thus, in order to look for 4-dimensional spacetimes with CTCs
we need to work in models with rotating cylindrical metric, since, as aforementioned,
such a kind of metric generates inercial forces that can turn aside the light cone, keeping
locally the timelike condition (but loosing the global time-orientation). Moreover, to
obtain new solutions one realize the demand of working in more general spaces. We shall
concentrate here on Brans-Dicke theory (BD), introduced in 1961 [4). It is noteworthy that
BD geometries have already displayed some bizarre effects on stellar configurations through
a local modification of the gravitational constant by the matter energy distribution, see
for instance, [1, 13, 14, 2]. Let us start with a recapitulation of the peculiar features of
BD gravity.
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2 Preliminaries

‘The BD theory, originally formulated in a representation in which the equation of motion
for test particles is identical to that of general relativity, can be expressed in units in
which the local value of the Newtonian “gravitational constant” (G) is a function of a
scalar field, actually, G = 1/¢. The BD scalar is in turn determined by the trace of the
energy-momentuimn tensor of all the other nongravitational fields. The field equations in
the general form are given by

1 87 w 1 3.
Gu = Ry, — o uv R = —Tu+—3 (¢;u¢;v ~ g9 > ¢'a¢?a)

¢ ¢2 a=0
1 3
+ $ <¢;uu — Quv Z ¢’a¢;a> (1)
a=0
and ST
B¢=3 I 2w @)

where w is the coupling constant, R, the Ricci tensor and R the Ricci scalar. 1), is the
usual energy-momentum tensor with trace T'. Semicolons denote covariant derivative with
respect to the metric g, and O¢ stands for the D’Alembertian of ¢.

We want to solve (1) and (2) under the condition
ds® = dt? — ") (dr? + dz?) — £(r)d6® + 2m (r) dodt (3)

which represents the more general ultrastatic! metric tensor with cylindrical symmetry.

We specialize our problem to that of an energy momentum tensor with anisotropic
pressure tensor? II,, such that, is symmetric (I,, = II,,), trace free (Il = 0), and
orthogonal to the comoving observer (ITp, = 0). So,

T;w = puyuy + Huy (4)

with p the energy density, and u# = 84 the four velocity in the comoving system. This
means that I, = diag (0, @, 8, —(a + §)), and thus, T,y in the matrix form reads,

p 0 0 0
0 a 0 0

Tw)=10 08 o
0 0 0 —(a+p)

As usual, the inverse matrix g is given by
Z m 1 1 1
00 _ 03 __ m__ + 22_ 1 33
t+m2? Tim2d T 9= N Jraps A

!An ultrastatic spacetime is described by a manifold wherein the metric is simply given by ds? =
—dt®dt+} . gijdr’ ® da’.
?Recall that such a tensor has the radial pressure different from the lateral and tangential stresses.
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Using that I = 324 g% T,
T;; = ZguaTau = Zgyapuauu + HZ:
a a )

we get, II} = —q, [T = -3, I} = o+ B, and u, = (1,0,0, m). Then, TY = p, T} = —q,
T3 =—6, T5 = o+ B, T = pm, and T3 = 0.

Hereafter, differentiations with respect to r are indicated by accents; with this in mind,
the non-zero Christoffel symbols (computed from the derivatives of the metric tensor) are

PO . mm, F3 — m, I“l _1_’"1
oL 2(6+m?)’ "N 20y me)y BT a0

Ph = )\’» P%z = )\Ia P%z ==X

0 _1 Zm,-—me’ 3 _1 mm’+l’ 1 _ le’
B\ v )= (T ) Te =5
Now, the nonvanishing components of the Ricci tensor are

,2

" n
1{2m ¢+42 2_m'e
Ry3 = i ( = +;_:_me = )

{26m" + 4mm” £ + 4m" m3 — 4! NE — dm! N3
1Wm? —2m2m’ — Amm/ + 4" 22 + 8X" fm? + 40" m?
+266" +20"m? — 2'NE — 20 N'm? — ¢°)
Raz = gty {2mm! X + 20" €4 20"'m2 + ex}
Rss = gamsgimry {26m” + 2004+ 20'm? — 2mmer — 47 }

Applying contraction of index, the field equation can also be written as

8 1 . 1.0
RH = ?” (T,f‘ - ETJ,‘,‘) + %dv“q&;y + @il + —2-6.’,‘%’- (5)
In particular,
Ry = g%R), = 9" Roy + g% Ryp =
bt (@) —mte)

(€ +m?)2e (£ +m?) + (£ + m?) 4 (L +m?) 2>
ED?=(+m? =
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72

Im 2mm”" D? — mm/¢'
Rj= ot
2D% 4D4e2A
Now,
¢ =2DD" — 2mm’
and

!

¢ =2D" +2DD" - 2m” — 2mm”.
Introducing /=g = 22D,

RO _ m'z + 1 mm” 1 ! D, 1
0 = \2p2 T 3p2 op3 MY | e
or since,
d (mm' ) _ (m"” +mm")2D — 2D'mm’
dr \ 2D - 4D?
we obtain

RO = 1 d (mm') _ 1 4 (mm')
~ eXDdr\ 2D ) /=gdr\ 2D )"
For R} we get,
2em” + 4mm” D? - 2m2m” — 4man/ N D? + 4)\" 2

_1 ]. n n 1
R' = gUR, = (ezx)?ﬂﬁ —4mm'l + 8)"tm?2 + 4\"'m* + 24" D?
—" — 20'\'D?)

1 (~2m” (D? - m?) — 4mm" D? + 2m"* m? + 4mm’ (2DD’ — 2mm/')
4D DA -2 (20" +2DD" ~ 2m" - 2mm”) D? + (2DD' — 2mm’)?
—4)"'D* + 4D’ X D?)

. (~2m* D? + 2m" m? — 4mm” D? + 2m" m2 + 8mm' DD’ — 8m?m'”

= Ipim ~4D"D? - 4D°D" + 4m'2Df
+4mm D? + 4D%D’

—~8DD'mm! + 4m?m” — 4)" D* 4 4D')' D?)

and finally,

Rl = m—'z—D"——X'D+D'A’ L
S 7 V=g

The corresponding expression for R2 is easily obtained,

B} = ¢y = smo (3mm'X 420 D? 4+ £X)
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or equivalently,

1
2 - —_— !
For R} we obtain at once,
B} = g™Ryu3 =g Ry3 + g% Ry
— J_‘ " 2 _ 1y 7 g2 " 9 . 2
= UrmiEE (2m (E+m) m'l +20'm” + 2 (z+m)—2mmz—e)
_ __m "o ' 1 . . ,
= 4___D4e2)‘ (Zm D _mg)—m<2£ml +20'D —me'l'—f’)

1 H
= ~ DIy (2mm"D2 —mm'? + Um'” + 20 D? — 2mm/ ¢’ — l'z)

and since,
i
mm' + % = DD’
we have,
B = L {~mm 4 (ODD! — 9mm) — 21? m (D2 - m?) - L

+2~55 (2DD' - 2mm')}.
Recalling that, 2DD’ — 2mm’ = ¢, and

% (e—,:;—g’—m_') = [(ZH + 'm,'2 + mm”) 2D — 92D’ (e/ + mm,)] ,

it becomes,
R3 =

_ 1 i(€’+mm’)
V—gdr 2D ’

It is straightforward to obtain the expression for R}

1 ) mm’” 2m” (14+m?) i

R3 — 3p.R — 30R :(____
0 g " ity = g7 Ligg 5 (l+m2)2e2'\+ 1L +m2)

_ 1 mm,2_l(2 ”D2_ Iel)
T Tedpi\ T g T g\em m

2 "
mm/ m m'e

—2D4€2‘)‘ + 2D?e2X 4D4e2X

1 mm 1 " m’
T @ opf Tope™ T api

(DD’ - 2mm')}
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Ry = ¢"™Ru3=g¢"Ros+g" R

'e n
0 — _— 2 _ t ol
B = ~Tarmare (o (4 m) —m't)
_m 2 4 2) _ gt __ pi?
+4(£+m2)232>‘ (2Zm + 2L (Z+m ) 2mm'l ¢ )
————.1 " 1
= gpig (~2m" D+ m'e e+ 26mm” + 2" mD? — 2P/t —me”)
1 " " 1
T 4D%eR (-—2Zm D? +2¢ sz) + DTN (m’Z’é +20mm/” — 2m2m'e — mg'z)
= ~—~—1 ! ! L 'y 4 y 2 2
T 2D (¢'m—m"t) + iDe (m“+2mf (—mm - 5) + 2tmm )
again
7
— U /
mm - 5 DD
obtaining
1 " " 1 )
T 2D%A (£ me=m Z) t D1 (mlglg —2ml DD’ + 2¢mm/ )
1 7 "
T 2D2e2X (Z m-m E) + 1piax (m'lL + 2¢m! (mm/) — 2mDD'?)
if
ZI
mml = .DDI -— 5
we get
1 " " 1
= speg ({'m—m"8) + i (m'£L+ 2m DD — t'm! — 2mDD'E)
— i_ (Z”m—m”.e) + ——l—D’ (eml_mel)
2D? 2p3
Now, since
; (mE’ 7 mlz) (e md —me—me) oy (mé = m'e)
dr 2D - 2D gp2 \ T m
we obtain
0 1 d (mé’ —m’E)
R3 == — .
V—gdr 2D

Roughly speaking, we use to say that a 4-dimensional spacetime manifold in general
relativity is characterized by Einstein equation, now, in the same sense, we say that a BD
manifold satisfies its general field equations.
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3 Results

Lemma. Let M be a differential manifold with the line element given by ds? =
dt? — X0 (dr? + dz?) — 4(r)d§? + 2m (r) dfdt. If lim,o )\ = 0, £(0) is non singular,
£(0) # 0, and lim, o m = 0, then, there exists a coordinate system where the coordinate
6 behaves like an angular coordinate.

Proof:

We begin introducing the change of coordinates
z° = {t,r,2,0} = 2" = {T,R, Z, 0}

given by 5
0z® Oz
G (@) = 37" 57 908 (z) (6)
a8

with 2%, z# € 2% and 2,2 € 2. Thus, one possible selection compatible with (6)
is

9% = 97> grr = —¢MP, g, = -, g = _F2R)L(R),gr, = F(R)M (R),

or equivalently, T =t, R=r, g,, = g, e2A) = 2AR) ;=7 ¢ ©,

~-£(r) = -F2L(R),

and

m(r) = M(R)F.

With this in mind, the metric tensor can be re-written as,
ds® = dT? — MR (4R? + dz?) - FL(R) dp + 2M FdipdT, (7)

now, one could always choose F such that the product of L times F goes to zero as r2,s0
that around the origin, the line element (7) reduces to that of the cylinder, and ¢ (= 6)
behaves like an angular coordinate.

Theorem. There exists at least one BD manifold with CTCs.

Proof:

For all above, to find such a manifold we have to solve the following system:
10

_ 4w mm' ¢' )
)_Tﬁ_\/——gp— 2D$+§¢\/:§ (@)

d (mm'
dr \ 2D

29



d (¢ +mm'\  Ar mm' +£ ¢ 10¢
g;( 5D )~—E\/fg‘(p+2a+2ﬁ)— 0 gtag VI ©)
d /m m ¢
—_— =) =X 1
dr ( ) 2D ¢ (10)
d (ml —m't m'l —mt' ¢
ar ( 2D ) § VI s ()
,2 ' ” 471' ¢,2 ¢ll
-DX" +E+D>‘ = E\/—_g(p—2a)+wDF+D¢
10¢ ¢
—-—f/=g-DNZT 12
" ' 10
~DX' = DN = /=g (-p—28) + DX% — 3 TPy (13)
8w
O0¢p = —np.
¢= 390" (14)
To do it, we first observe that Eq. (10) is integrable,
d m/ ¢ b
70 (3) =51~ 5 1
where b is a constant to be determined. Multiplying (8) by ¢, we obtain at once
d (mm'
b () = /g0~ T 4 1 /g0
or equivalently,
d ( mm 1
— = 4m/= ~/=g0¢.
dr( D) 4my/—gp+ 5v/~g0¢ (16)

Since \/—g0¢ = — (D¢')’, from Eqgs. (14), (15), 16), we get

3 mp) = -2+ (Dg)
21;b2 = —(2+w) (D¢’
206 = —(2+w) (D'¢'¢ + D¢¢”)

D(26+(2+w)¢¢’) = ~(2+w) D¢

D _ 2l>2+(2+w)¢¢"d
D~ TCe+wde
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and after integration,

D (r) = P1(n),
where \ 5
Do :/% +(2+w) ¢ () (Lo (r ")
—2+w) (&) 6 (r)
We propose,
#(r) = acosh™r (17)
and replace in Eq. (11) so as to get a = 2+w and n = 1.

Now it is straightforward to obtain

v2b
= hr
@ (r) \/m_cos
_ 1-2(2+w)sinh?r
tr) = cosh’r

m(r) = 4+ 2wtanhr

Note that Eq. (9) holds only if & + 8 = 0. Adding (12) and (13), we obtain an
integrable expression for A,

X,__\/:g—(w+1)|]¢_w ¢/ 2~¢ll+m12—Dll
T D ¢ 2\4 $ ' 4D? 2D

which after integration becomes,
r2
A(r) = (1 + w) In(coshr) — T (w+2).
Finally, we calculate p(r) from Eq. (14)

3)(cosh 7)?¥I=3 exp {—'—W%E 'r2} . (18)

dmp= —— (2| -
V2(Jw] — 2)
and from (12), a comes out as

—b \4 2(!0]' - 2) (coshr)2|w|-~l exp {_ le -2 ,,_2}

4 =

(19)
As a help to discuss the singularities, we introduce (as usual) the orthonormal basis 3
given by the differential forms

O'=-mdo+dt ©' =eddr 0 =erdz ©*=Ddf (20)
3For details, see the Appendix of Ref. [3]
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with the corresponding basis vectors
ei~ _ 6i i __ oA 61’ i A 61 i D—l 6i D-—lé‘i 21
h=10% e{=e "1 ey=e"0y e3= 3 + m 0- (21)

Now, it is easy to compute the behaviour of certain scalars built from the Riemann
tensor

and afterwards, to verify that all the above physical parameters remain finite and regular
for the entire range of variables, w € (—o00, —2). This indicates clearly that the model is

free of physical singularities, viz., singularities at a finite proper distance of the origin.

Finally, applying the Lemma, it follows that any curve with constant ¢, 7, and z is
closed (in our case we could set, for instance, F' = r2). In particular, such closed curves
are timelike if 7 > arcsinh[1/4 + 2w).
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