Equational bases for three-valued Heyting algebras with a quantifier

M. Abad, J. P. Díaz Varela, L. A. Rueda* and A. M. Suardíaz

Abstract

An equational basis is given for some members of the lattice of subvarieties of three-valued Q-Heyting algebras. For any finite subdirectly irreducible algebra A, an equation which describes the number of order-connected components (o.c.c.'s) of the set $\mathcal{J} = \mathcal{J}(A)$ of join-irreducible elements of A is provided. Then an equation is exhibited characterizing the number of elements of $\max (\mathcal{J}) \setminus \min (\mathcal{J})$. Finally an inductive process is shown to determine the number of maximal non minimal elements in each o.c.c. of \mathcal{J} .

1 Introduction and Preliminaries

In this paper we continue the investigation of the variety Q_3 of three-valued Heyting algebras with a quantifier which we started in [3]. Here we present equational bases for some members of the lattice $\Lambda(Q_3)$ of subvarieties of Q_3 . In order to make this paper as self-contained as possible we add some properties and definitions from [3].

A quantifier on a Heyting algebra H is a unary operation ∇ satisfying the following conditions, for any $a, b \in H$: $(Q_0) \nabla 0 = 0$, $(Q_1) a \wedge \nabla a = a$, $(Q_2) \nabla (a \wedge \nabla b) = \nabla a \wedge \nabla b$ and $(Q_3) \nabla (a \vee b) = \nabla a \vee \nabla b$.

If ∇ is a quantifier on a Heyting algebra H, then $\nabla 1 = 1$ and $\nabla \nabla a = \nabla a$. In addition, ∇H is a subalgebra of H (see [9]). A Q-Heyting algebra is an algebra (H, ∇) such that H is a Heyting algebra and ∇ is a quantifier on H. Monadic Boolean algebras are the simplest examples of Q-Heyting algebras (see [15]).

The class of Q-Heyting algebras form a variety, which we denote Q.

Among Q-Heyting algebras we single out the subvariety \mathcal{Q}_3 of three-valued Q-Heyting algebras. This is the variety of Q-Heyting algebras such that the underlying structure of Heyting algebra is three-valued, that is, the following condition is satisfied: $((a \rightarrow c) \rightarrow b) \rightarrow (((b \rightarrow a) \rightarrow b) \rightarrow b) = 1$. We determined in [3] the simple and subdirectly irreducible algebras and gave a construction of the lattice of subvarieties of \mathcal{Q}_3 . In this paper we give a complete equational description for each finite join-irreducible member of the lattice of subvarieties of \mathcal{Q}_3 . It is an open problem to extend these results to

^{*}The support of CONICET is gratefully acknowledged

the general case. However, between the three-valued case and the linear case there is already a large difference in complexity and we have been unable to find a meaningful characterization even for the lattice of subvarieties of the variety of linear Q-Heyting algebras (see [27]).

If X is a Priestley space (see [3] for any undefined terms), then D(X) is the lattice of clopen decreasing subsets of X, and for $f: X \to X'$ a continuous order preserving map, $D(f): D(X') \to D(X)$ is defined by $D(f)(U) = f^{-1}(U)$, for each $U \in D(X')$. If L is a bounded distributive lattice, then X(L) is the set of prime ideals of L, ordered by set inclusion and with the topology having as a sub-basis the sets $\eta(a) = \{I \in X(L) : a \notin I\}$ and $X(L) \setminus \eta(a)$ for $a \in L$. If $h: L \to L'$ is a (0,1)-lattice homomorphism, then $X(h): X(L') \to X(L)$ is defined by $X(h)(I) = h^{-1}(I)$. The mapping $\eta: L \to D(X(L))$ is a lattice isomorphism, and $\epsilon: X \to X(D(X))$ defined by $\epsilon(x) = \{U \in D(X) : x \notin U\}$ is a homeomorphism and an order isomorphism.

Since Heyting algebras are bounded distributive lattices, the category of Heyting algebras is isomorphic to a subcategory of bounded distributive lattices. A Heyting space is a Priestley space (X, \leq, τ) such that [Y) is clopen for every convex clopen $Y \subseteq X$. For $a \in H$, $\eta(a) \subseteq X$ denote the clopen decreasing set that represents a. If $a, b \in H$ then, under the duality, $a \to b$ corresponds to the clopen decreasing set $X \setminus [\eta(a) \setminus \eta(b))$. If X and X' are Heyting spaces, a (Heyting) morphism is a continuous order-preserving map $\varphi: X \to X'$ for which $\varphi((x)) = (\varphi(x))$.

A Q-Heyting space (see [9]) is a pair (X, E) such that X is a Heyting space and E is an equivalence relation on X satisfying the conditions (E_1) $\nabla_E U \in D(X)$ for each $U \in D(X)$, where $\nabla_E U$ is the union of all blocks of E containing an element of U, and (E_2) the blocks of E are closed in X.

The category of Q-Heyting spaces and continuous order-preserving maps and the category of Q-Heyting algebras and homomorphisms are dually equivalent (see [3]).

The following theorem characterizes the dual space of a three-valued Heyting algebra, and it will play a central role in this paper.

Theorem 1.1 [21] A Heyting algebra H is three-valued if and only if every element of X(H) is either minimal or maximal and for every maximal element J of X(H) there exists a unique minimal element I of X(H) such that $I \leq J$. If Min(X) denotes the set of all minimal elements of X = X(H), then $X = \bigcup_{I \in Min(X)} C(I)$, where $C(I) = \{J \in X : I \leq J\} = [I)$.

The quantifier ∇ is called *simple* if $\nabla H = \{0, 1\}$. When ∇H is a 3-element chain, we always denote $\nabla H = \{0, a, 1\}$. Observe that in this case $\neg a = 0$.

It is known that the subdirectly irreducible three-valued Heyting algebras are the 2-element chain 2 and the 3-element chain 3 [21]. The following result holds in Q_3 .

Proposition 1.2 [3] Let $(H, \nabla) \in \mathcal{Q}_3$. If (H, ∇) is subdirectly irreducible, then ∇H is subdirectly irreducible as a Heyting algebra, that is, then ∇ is the simple quantifier or ∇H is a 3-element algebra.

The following theorem gives a characterization of the simple objects in Q_3 .

Theorem 1.3 [3] Let $(H, \nabla) \in \mathcal{Q}_3$. (H, ∇) is simple if and only if ∇ is the simple quantifier and Min(X) = X.

Corollary 1.4 The simple algebras in Q_3 are the simple monadic Boolean algebras.

For non simple subdirectly irreducible algebras in Q_3 we have the following results.

Theorem 1.5 [3] The subdirectly irreducible non simple algebras with the simple quantifier in Q_3 are the algebras $B \times 3$, where B is a Boolean algebra and 3 is the 3-element Heyting algebra.

As a consequence of thie theorem we obtain the following corollary.

Corollary 1.6 Let $(H, \nabla) \in \mathcal{Q}_3$, ∇ the simple quantifier. Then (H, ∇) is a non simple subdirectly irreducible algebra if and only if $X = \text{Min}(X) \cup \{I\}$, with $I \notin \text{Min}(X)$.

Theorem 1.7 [3] Let $(H, \nabla) \in \mathcal{Q}_3$ with $\nabla H = \{0, a, 1\}$, and let (X, E) be the Q-space associated to (H, ∇) . Then (H, ∇) is subdirectly irreducible if and only if $Min(X) = \eta(a)$.

Corollary 1.8 [3] (H, ∇) is non-simple subdirectly irreducible if and only if the lattice of congruences of H is isomorphic to 3.

We have characterized the subdirectly irreducible algebras in the variety Q_3 . In particular, in the finite case we have:

Theorem 1.9 Let H be a finite algebra in Q_3 .

- (1) H is simple if and only if H is an n-atom simple monadic Boolean algebra $D_{n,0}$
- (2) H is subdirectly irreducible but non simple if and only if either
 - (i) H is an algebra $D_{n,1}$ of the form $2^n \times 3$, with the simple quantifier, or
 - (ii) H is an algebra T_{n,n_1,\ldots,n_r} of the form $\mathbf{2}^n \times (\{0\} \oplus \mathbf{2}^{n_1}) \times \ldots \times (\{0\} \oplus \mathbf{2}^{n_r}), n \geq 0,$ $r \geq 1, n_i \geq 1, 1 \leq i \leq r$ with the quantifier ∇ such that $\nabla T_{n,n_1,\ldots,n_r} = \{0,a,1\}$ $and \eta(a) = \operatorname{Min}(X).$

The corresponding dual spaces are exhibited in the following figure, where only the underlying partially ordered sets are shown. Because ∇ is the simple quantifier on $D_{n,0}$ and $D_{n,1}$, each of $X(D_{n,0})$ and $X(D_{n,1})$ have only one equivalence class, while $X(T_{n,n_1,...,n_r})$ has two equivalence classes, namely Min(X) and $X \setminus Min(X)$.

Next we present some results about the ordering in the set of varieties generated by the algebras $D_{n,0}$, $D_{n,1}$ and $T_{n,n_1,...,n_r}$, or equivalently, in the set of finite subdirectly irreducible algebras of Q_3 . These results will be essential in the sequel.

If K is a class of algebras in a variety V, V(K) denotes the subvariety of V generated by K. $\mathbf{Si}(K)$ and $\mathbf{Si}_{fin}(K)$ respectively denote the class of subdirectly irreducible algebras and the class of finite subdirectly irreducible algebras in K. The class of algebras that are homomorphic images of algebras in K will be denoted by $\mathbf{H}(K)$, and the class of algebras that are subalgebras of algebras in K will be denoted by $\mathbf{S}(K)$.

Recall that for $A, B \in \mathbf{Si}_{fin}(K)$, we may define a partial preorder: $A \leq B$ if and only if $A \in \mathbf{H}(\mathbf{S}(B))$, so that $V(A) \leq V(B)$ if and only if $A \leq B$.

Let $\mathcal{D}_{n,0}$, $\mathcal{D}_{n,1}$ and $\mathcal{T}_{n,n_1,\dots,n_r}$ be the varieties generated by $D_{n,0}$, $D_{n,1}$ and T_{n,n_1,\dots,n_r} , respectively, that is, $\mathcal{D}_{n,0} = V(D_{n,0})$, $\mathcal{D}_{n,1} = V(D_{n,1})$ and $T_{n,n_1,\dots,n_r} = V(T_{n,n_1,\dots,n_r})$.

Theorem 1.10 [3] The following conditions hold:

- (1) $\mathcal{D}_{n,0} < \mathcal{D}_{n-1,1}, n \geq 1$.
- (2) $\mathcal{D}_{m,0} \not\leq \mathcal{D}_{n,1}, n \geq 0, m > n + 1.$
- (3) $\mathcal{D}_{n,1} \not\leq \mathcal{D}_{m,0}, n > 0, m > 1.$
- (4) $\mathcal{D}_{m,1} \leq \mathcal{D}_{n,1}$ if and only if $m \leq n$.

Consequently, the members of $\mathcal{J}(\Lambda(\mathcal{Q}_3))$ generated by finite subdirectly irreducible algebras with the simple quantifier are ordered according to the following figure:

Corollary 1.11 The ordered set $Si_{fin}(Q_3)$ of all finite subdirectly irreducible algebras in Q_3 with the simple quantifier is isomorphic to $C \times \mathbf{2}$, where C is a chain of type ω .

Observe that the subclass of Q_3 generated by the subdirectly irreducible algebras with the simple quantifier, that is, generated by the algebras $D_{n,0}$ and $D_{n,1}$, is a subvariety of Q_3 . This subvariety is determined by the equation $\nabla x \vee \neg \nabla x = 1$, where $\neg x = x \to 0$, that is, ∇H is a Boolean algebra.

To complete the ordering between the join-irreducible finitely generated varieties it remains to show the relationship with the varieties of type $\mathcal{T}_{n,n_1,\ldots,n_r}$. This is contained in the following results.

Since the quantifier in $D_{m,1}$, $m \geq 0$, is simple and the image of the quantifier in $T_{n,n_1,...n_r}$, $n \geq 0$, $r \geq 1$, $n_i \geq 1$, $1 \leq i \leq r$, is a 3-element set, we have:

Theorem 1.12 $\mathcal{T}_{n,n_1,...,n_r} \not\leq \mathcal{D}_{m,1}, n \geq 0, n_i \geq 1, 1 \leq i \leq r, m \geq 0.$

Consider the algebras T_{n,n_1,\ldots,n_r} with n_1,\ldots,n_r such that $n_i \leq n_j$ whenever i < j.

It was proved in [3] the following result, where $x \prec y$ means y covers x.

Theorem 1.13 $\mathcal{T}_{m,m_1,...,m_s} \prec \mathcal{T}_{n,n_1,...,n_r}$ in $\mathcal{J}(\Lambda(\mathcal{Q}_3))$ if and only if one of the following conditions hold:

- a) m = n 1, s = r, $m_i = n_i$, $1 \le i \le r$.
- b) m = n, r = s, and there exists $i \in \{1, ..., r\}$ such that $m_i = n_i 1$ and $m_j = n_j$ if $j \neq i$, $1 \leq j \leq r$.
- c) m = n, s = r 1, there exist $i \in \{1, ..., s\}$, j, $k \in \{1, ..., r\}$ such that $m_i = n_j + n_k$ and relabeling if necessary the sets $\{m_1, ..., m_s\} \setminus \{m_i\}$, $\{n_1, ..., n_r\} \setminus \{n_j, n_k\}$, $m_t = n_t$, $1 \le t \le r 2$.

Finally, the following theorem completes the ordering in the set of finitely generated join-irreducible members of the lattice of subvarieties of Q_3 .

Theorem 1.14 [3] The following conditions hold:

- (1) $\mathcal{D}_{n,0} \leq \mathcal{T}_{n-t,1,\dots,1}$, $1 \leq t \leq n$, $1_i = 1$, $1 \leq i \leq t$.
- (2) $\mathcal{D}_{n,1} \leq \mathcal{T}_{0,1_1,\dots,1_n,2_{n+1}}$, $1_i = 1$, $1 \leq i \leq n$, $2_{n+1} = 2$.
- (3) $\mathcal{D}_{n,0} \not\leq \mathcal{T}_{n-t,n_1,...,n_r}, 1 \leq r < t.$
- (4) $\mathcal{D}_{n,1} \not\leq \mathcal{T}_{m,m_1,...,m_r}$ for $r \leq n$ and $D_{n,1} \not\leq \mathcal{T}_{m,1_1,...,1_{n+1}}$.

Observe that $\mathcal{D}_{n,0} \prec \mathcal{T}_{n-t,1_1,\ldots,1_t}$ and $\mathcal{D}_{n,1} \prec \mathcal{T}_{0,1_1,\ldots,1_n,2_{n+1}}$, as it is easily verified.

Corollary 1.15 [3] The following conditions hold:

- (i) $\mathcal{D}_{n,0} \leq \mathcal{T}_{m,m_1,\dots,m_r}$ if and only if $n \leq m+r$.
- (ii) $\mathcal{D}_{n,1} \leq \mathcal{T}_{m,m_1,\dots,m_r}$ if and only if (a) $r \geq n+2$ or (b) r = n+1 and $m_r \geq 2$.

2 Equational bases

The aim of this section is to give an equational basis for some members of the lattice of subvarieties of three-valued Q-Heyting algebras. We are going to give first an equation which describes the number of o.c.c's of the set $\mathcal{J}=\mathcal{J}(A)$ of join-irreducible elements of a finite subdirectly irreducible algebra A (that is, the number of atoms of the Boolean algebra of the complemented elements of A). Then we will give an equation which characterizes the number of elements of Max $(\mathcal{J}) \setminus \text{Min } (\mathcal{J})$, where Max (\mathcal{J}) denotes the set of all maximal elements in \mathcal{J} . Finally we will give an inductive process to determine the number of maximal non minimal elements in each o.c.c. of \mathcal{J} .

Recall that if $\{A_i\}_{i=1,\dots,n}$ is a finite set of algebras and $V=V(\{A_i\}_{i=1,\dots,n})$, an identity holds in V if and only if it holds in any algebra A_i . Also observe that any finite set of equations characterizing a variety of Q-Heyting algebras can be transformed into just one equation of the form $\gamma_V(x_1,\dots,x_r)=1$. Let $\gamma_V(x_1,\dots,x_r)=1$ denote the equation which characterizes a variety V.

Consider the following terms:

$$P_1^n(x_1, \dots, x_n) = \left(\bigwedge_{k=1}^n \nabla x_k\right) \wedge \left[\left(\bigvee_{1 \le i < j \le n} \nabla (x_i \wedge x_j)\right) \vee \left(\bigvee_{i=1}^n x_i\right)\right]$$
$$P_2^n(x_1, \dots, x_n) = \bigwedge_{i=1}^n \nabla x_i$$

The following theorem gives equational bases for the subvarieties $\mathcal{D}_{n,0}$ in $\Lambda(\mathcal{Q}_3)$ (see [22]). The element $x \to 0$ is abbreviated by $\neg x$.

Theorem 2.1 Let $n \geq 1$. Then the subvarieties $\mathcal{D}_{n,0}$ are characterized within \mathcal{Q}_3 by the equations

- (1) $\nabla x = x$ and $\neg \neg x = x$ for n = 1
- (2) $P_1^n(x_1,...,x_n) = P_2^n(x_1,...,x_n)$ and $\neg \neg x = x$, for n > 1

Proof It is clear that $\mathcal{D}_{1,0}$ satisfies (1). If U is a subvariety such that $U \not\subseteq \mathcal{D}_{1,0}$, then there exists l > 1 such that $D_{l,0} \in U$, or there exists $s \geq 0$ such that $D_{s,1} \in U$ or there exist $m, m_1, \ldots, m_r, m \geq 0, r \geq 1, m_i \geq 1$ such that $T_{m,m_1,\ldots,m_r} \in U$. In the first case, there exists $x \in D_{l,0}, x \notin \{0,1\}$ such that $\nabla x = 1$. If $D_{s,1} \in U$, then $D_{0,1} \in U$ and there exists $c \in D_{0,1}$ such that $\neg \neg c = \neg (c \to 0) = \neg 0 = 1 \neq c$. If $T_{m,m_1,\ldots,m_r} \in U$ then $T_{0,1} \in U$ and there exists $c \in T_{0,1}$ such that $\neg \neg c \neq c$.

Suppose that n>1 and let us prove that $D_{n,0}$ satisfies the equations in (2). For every $x\in D_{n,0}$, $\neg\neg x=x$. Consider now the equation $P_1^n(x_1,\ldots,x_n)=P_2^n(x_1,\ldots,x_n)$ and $b_1,\ldots,b_n\in D_{n,0}$. If $b_i=0$ for some i, the equation holds. Suppose that $b_i\neq 0$ for $i=1,\ldots,n$. Then $P_2^n(b_1,\ldots,b_n)=1$. If $b_i\wedge b_j=0$ for every $i,j,\ i\neq j$, we have that $\bigvee_{i=1}^n b_i=1$, which implies that $P_1^n(b_1,\ldots,b_n)=1$. If there exist $i,j,\ i\neq j$, such that $b_i\wedge b_j\neq 0$, then $\nabla(b_i\wedge b_j)=1$ and consequently $P_1^n(b_1,\ldots,b_n)=1$.

Let us see now that these equations do not hold in any subvariety $U \not\subseteq \mathcal{D}_{n,0}$. For such subvariety there exists l > n such that $D_{l,0} \in U$, or there exists $s \geq 0$ such that $D_{s,1} \in U$ or there exist $m \geq 0$, $r \geq 1$, $m_i \geq 1$, $i = 1, \ldots, r$ such that $T_{m,m_1,\ldots,m_r} \in U$. In the first case, $D_{n+1,0} \in U$, since $D_{n+1,0} \in \mathbf{H}(\mathbf{S}(D_{l,0}))$. Let a_1,\ldots,a_{n+1} be the atoms of $D_{n+1,0}$. Then $\nabla a_i = 1$ for all i and $a_i \wedge a_j = 0$ for $i \neq j$. Consequently $P_1^n(a_1,\ldots,a_n) = \bigvee_{i=1}^n a_i \neq 1$ and $P_2^n(a_1,\ldots,a_n) = 1$. If $D_{s,1} \in U$, with $s \geq 0$, then $D_{0,1} \in U$ and choosing $c \in D_{0,1}$, $c \neq 0,1$ we have that $\neg \neg c = 1 \neq c$. Similarly, if $T_{m,m_1,\ldots,m_r} \in U$, then $T_{0,1} \in U$ and $\neg \neg c \neq c$, with $c \in T_{0,1} \setminus \{0,1\}$.

Observe that if H is an algebra in Q_3 with the simple quantifier, then H satisfies $P_1^n = P_2^n$ if and only if H satisfies that if a_1, a_2, \ldots, a_n are n elements of H different from 0 and pairwise disjoint, then $a_1 \vee a_2 \vee \ldots \vee a_n = 1$.

We will abbreviate the equations contained in Theorem 2.1 by $\gamma_{D_{n,0}} = 1$.

Consider now the following terms (see [22]):

$$Q_1^n(x_1, \dots, x_{n+2}) = \left(\bigwedge_{k=1}^{n+2} \nabla x_k\right) \wedge \left[\bigvee_{1 \le i < j \le n+2} \nabla (x_i \wedge x_j)\right]$$
$$Q_2^n(x_1, \dots, x_{n+2}) = \bigwedge_{i=1}^{n+2} \nabla x_i$$

Theorem 2.2 The subvarieties $\mathcal{D}_{n,1}$, $n \geq 0$, are characterized within \mathcal{Q}_3 by the equations $Q_1^n(x_1,\ldots,x_{n+2}) = Q_2^n(x_1,\ldots,x_{n+2})$ and $\neg x \vee \nabla x = 1$.

Proof Let $x \in D_{n,1}$. If x = 0 then $\neg x = 1$ and if $x \neq 0$, then $\nabla x = 1$. In both cases $\neg x \vee \nabla x = 1$.

If $b_1, \ldots, b_{n+2} \in D_{n,1}$ and $b_i = 0$ for some $i, 1 \le i \le n+2$, then $Q_1^n(b_1, \ldots, b_{n+2}) = 0$ and $Q_2^n(b_1, \ldots, b_{n+2}) = 0$. If $b_i \ne 0$ for every $i, 1 \le i \le n+2$, then $Q_2^n(b_1, \ldots, b_{n+2}) = 1$. Since D_{n+1} has n+1 atoms, there exist $i, j \in \{1, \ldots, n+2\}$, $i \ne j$ such that $b_i \land b_j \ne 0$. Consequently, $Q_1^n(b_1, \ldots, b_{n+2}) = 1$.

Let U be a subvariety such that $U \not\subseteq \mathcal{D}_{n,1}$. Then (i) there exists l > n+1 such that $D_{l,0} \in U$ or (ii) there exists s > n such that $D_{s,1} \in U$ or (iii) there exist $n, n_1, \ldots, n_r, n \geq 0, r \geq 1, n_i \geq 1, 1 \leq i \leq r$ such that $T_{n,n_1,\ldots,n_r} \in U$. In $(i), D_{n+2,0} \in U$, and if a_1,\ldots,a_{n+2} are the atoms of $D_{n+2,0}$, then $Q_1^n(a_1,\ldots,a_{n+2}) = 0$ and $Q_2^n(a_1,\ldots,a_{n+2}) = 1$. In $(ii), D_{n+1,1} \in U$ and a similar argument shows that $Q_1^n(x_1,\ldots,x_{n+2}) \neq Q_2^n(x_1,\ldots,x_{n+2})$. Finally, if $T_{n,n_1,\ldots,n_r} \in U$ then $T_{0,1} \in U$ and $\neg a \vee \nabla a = a \neq 1$.

Observe that if H is an algebra in \mathcal{Q}_3 with the simple quantifier, then H satisfies $Q_1^n = Q_2^n$ if and only if H satisfies that there exists no set $\{a_1, a_2, \ldots, a_{n+2}\}$ of n+2 non-zero and pairwise disjoint elements of H.

The equations contained in Theorem 2.2 will be abbreviated by $\gamma_{D_{n,1}} = 1$.

In the rest of this section, H will denote the algebra $T_{n,n_1,\dots,n_r}, n \geq 0, r \geq 1, n_i \geq 1, 1 \leq i \leq r.$

Observe that the set $D(H) = \{x \in H : \neg x = 0\}$ of dense elements in H is [a) (recall that a is the unique element in ∇H different from 0 and 1, or equivalently, $\eta(a) = \text{Min } (X(H))$.

Consider in the interval [a] the operation $x' = x \to a$, for $x \in [a]$.

Lemma 2.3 $A = ([a), \land, \lor, ', a, 1, \nabla)$ is a simple monadic Boolean algebra.

Proof If $x \in [a)$, $x \wedge x' = x \wedge (x \to a) = x \wedge a = a$. It is easy to see that $x \vee x' = 1$ and that ∇ is the simple quantifier.

Since the atoms of A are the elements of $\operatorname{Max}(X(H)) \setminus \operatorname{Min}(X(H))$, A is isomorphic to the simple monadic Boolean algebra $2^{n_1+\cdots+n_r}$.

Lemma 2.4 [14] For every $x \in H$, $x \vee \neg x \in [a)$.

Proof Immediate, as $x \vee \neg x \in D(H)$.

Observe that every element $y \in [a]$ is of the form $y = y \vee \neg y$, as $\neg y = 0$.

Consider the following terms, where $x^* = x \vee \neg x$:

$$P_1^s(x_1, \dots, x_s) = \left(\bigwedge_{k=1}^s \nabla x_k^*\right) \wedge \left[\left(\bigvee_{1 \le i < j \le s} \nabla (x_i^* \wedge x_j^*)\right) \vee \left(\bigvee_{i=1}^s x_i^*\right)\right]$$

$$P_2^s(x_1, \dots, x_s) = \bigwedge_{i=1}^s \nabla x_i^*$$

The following theorem gives an equation which determines the number of elements of $X \setminus \text{Min}(X) = \text{Max}(X) \setminus \text{Min}(X)$.

Theorem 2.5 $n_1 + \cdots + n_r \leq s$ if and only if the equation $P_1^s(x_1, \ldots, x_s) = P_2^s(x_1, \ldots, x_s)$ holds in H.

Proof It is a consequence of Lemma 2.3 and Theorem 2.1.

The equation contained in Theorem 2.5 will be denoted by $\gamma_{max}^s = 1$.

Let $Rg(H) = \{ \neg x : x \in H \}$ be the set of regular elements in H. We know that if $x, y \in H$, then $\neg (x \lor y) = \neg x \land \neg y$. Since H is three-valued, it follows that H is a Stone algebra, so $\neg (x \land y) = \neg x \lor \neg y$. Consequently, $(Rg(H), \land, \lor, \neg, 0, 1)$ is the Boolean algebra B(H) of complemented elements of H with n+r atoms. If we define $\overline{\nabla} x = \neg \neg \nabla x$ on Rg(H), then $\overline{\nabla} 0 = 0$ and $\overline{\nabla} x = 1$ for $x \neq 0$. So $(Rg(H), \land, \lor, \neg, 0, 1, \overline{\nabla})$ is a simple monadic Boolean algebra.

Consider now

$$T_1^m(x_1, \dots, x_m) = \left(\bigwedge_{k=1}^m \overline{\nabla} \neg x_k\right) \wedge \left[\left(\bigvee_{1 \le i < j \le m} \overline{\nabla} (\neg x_i \wedge \neg x_j)\right) \vee \left(\bigvee_{i=1}^m \neg x_i\right)\right]$$
$$T_2^m(x_1, \dots, x_m) = \bigwedge_{i=1}^m \overline{\nabla} \neg x_i$$

The following theorem gives an equation which determines the number of o.c.c.'s of X.

Theorem 2.6 $n + r \le m$ if and only if the equation $T_1^m(x_1, \ldots, x_m) = T_2^m(x_1, \ldots, x_m)$ holds in H.

Proof It is a consequence of the previous remarks and Theorem 2.1.

We will denote $\gamma_{comp}^m=1$ the equation contained in Theorem 2.6.

Observe that $\gamma^m_{comp}(A) \subseteq Rg(A)$, for any algebra A and if the number of o.c.c.'s of A is greater that m, then there exists $\vec{x} \in A^m$ such that $\gamma^m_{comp}(\vec{x}) < 1$.

Following the proofs of Theorems 2.1, 2.2, 2.5 and 2.6, it is long but computational to check that

- 1. $\gamma_{comp}^{m}(D_{n,0}) = \{1\} \text{ if } n \leq m,$ $\gamma_{comp}^{m}(D_{n,1}) = \{1\}, \text{ for } m \geq n+1, \text{ and }$ $\gamma_{comp}^{m}(T_{n,n_{1},\dots,n_{r}}) = \{1\} \text{ when } n+r \leq m.$
- 2. $\gamma_{max}^{m}(D_{n,0}) = \{1\},\$ $\gamma_{max}^{m}(D_{n,1}) = \{1\}$ if $m \geq 2$, and $\gamma_{max}^{m}(D_{n,1}) = \{(1,1),(1,\frac{1}{2})\}$, for m = 1 (recall that $D_{n,1} \cong \mathbf{2}^{n} \times \mathbf{3}, \ \mathbf{3} = \{0,\frac{1}{2},1\}$). $\gamma_{max}^{m}(T_{n,n_{1},...,n_{r}}) = \{1\}$ when $n_{1} + ... + n_{r} \leq m$, and $\gamma_{max}^{m}(T_{n,n_{1},...,n_{r}}) \subseteq [a]$ when $n_{1} + ... + n_{r} > m$.

Consider the term $t_1(x) = \neg \neg (\neg x \wedge \nabla x)$. Observe that if $a \in A \in \mathcal{Q}_3$, then $t_1(a)$ is a Boolean element in A. This term will be useful in order to determine the equations that describe the partitions of the maximal non-minimal elements. First we consider this term on a subdirectly irreducible algebra.

Lemma 2.7 $1 \notin t_1(T_{n,n_1,\ldots,n_r}) = \{t_1(x) : x \in T_{n,n_1,\ldots,n_r}\}.$

Proof If x = 0 then $t_1(0) = \neg \neg (\neg 0 \land \nabla 0) = \neg \neg (1 \land 0) = \neg \neg 0 = 0$. If $a \le x$ then $\neg x = 0$. Consequently $t_1(x) = \neg \neg (\neg x \land \nabla x) = \neg \neg (0 \land 1) = \neg \neg 0 = 0$. Suppose 0 < x < a. Since $\neg x$ is associated to $[\operatorname{Min}(X) \setminus \eta(x))$ and $\nabla x = a$ is associated to $\operatorname{Min}(X)$, then $\neg x \land \nabla x$ is associated to $[\operatorname{Min}(X) \setminus \eta(x)) \cap \eta(a) = \operatorname{Min}(X) \setminus \eta(x)$. Hence $\neg (\neg x \land \nabla x)$ is associated to $X \setminus [\operatorname{Min}(X) \setminus \eta(x))$. Hence $\neg \neg (\neg x \land \nabla x) = \neg x$, that is, $t_1(x) = \neg x$. Observe that $\neg x \ne 1$, since $\eta(x) \ne \emptyset$. Finally, suppose that x is incomparable to $x \in \mathbb{C}$. Then $x \in \mathbb{C}$ and $x \in \mathbb{C}$ is a specific to $x \in \mathbb{C}$. Therefore $x \in \mathbb{C}$ is a specific to $x \in \mathbb{C}$. Therefore $x \in \mathbb{C}$ is a specific to $x \in \mathbb{C}$. Then $x \in \mathbb{C}$ is a specific to $x \in \mathbb{C}$. Therefore $x \in \mathbb{C}$ is a specific to $x \in \mathbb{C}$. Therefore $x \in \mathbb{C}$ is a specific to $x \in \mathbb{C}$ is a specific to $x \in \mathbb{C}$. Therefore $x \in \mathbb{C}$ is a specific to $x \in \mathbb{C}$. Therefore $x \in \mathbb{C}$ is a specific to $x \in \mathbb{C}$. Therefore $x \in \mathbb{C}$ is a specific to $x \in \mathbb{C}$. The $x \in \mathbb{C}$ is a specific to $x \in \mathbb{C}$. The $x \in \mathbb{C}$ is a specific to $x \in \mathbb{C}$. The $x \in \mathbb{C}$ is a specific to $x \in \mathbb{C}$. The $x \in \mathbb{C}$ is a specific to $x \in \mathbb{C}$. The $x \in \mathbb{C}$ is a specific to $x \in \mathbb{C}$. The $x \in \mathbb{C}$ is a specific to $x \in \mathbb{C}$. The $x \in \mathbb{C}$ is a specific to $x \in \mathbb{C}$.

Corollary 2.8 If A is subdirectly irreducible, then $t_1(A) = B(A) \setminus \{1\}$.

Proof This is clear for $A = D_{n,0}$ or $A = D_{n,1}$. For $A = T_{n,n_1...,n_r}$, the corollary follows from the proof of the previous lemma.

For an algebra $A \cong T_{n,n_1,\dots,n_r}$ we can algebrize the interval $A^1_{x_0} = \{x \wedge t_1(x_0) : x \in A\} \cong [0,t_1(x_0)]$ considering $(A^1_{x_0},\wedge_1,\vee_1,\to_1,\nabla_1,0_1,1_1)$, where $0_1=0,\,1_1=t_1(x_0),\,x\to_1 y=(x\to y)\wedge t_1(x_0),\, \wedge_1=\wedge,\, \vee_1=\vee\,y\,\,\nabla_1(x)=\nabla x\wedge t_1(x_0)$ for $x,y\in A^1_{x_0}$. Observe that if $t_1(x_0)\neq 0,\,A^1_{x_0}$ is a subdirectly irreducible algebra with less o.c.c's than A. Also observe that the operations in $A^1_{x_0}$ are terms in the language of \mathcal{Q}_3 .

Consider $\gamma_0(x_0) = \neg (\overline{\nabla} t_1(x_0) \leftrightarrow 0)$.

Lemma 2.9 For a subdirectly irreducible algebra A and for every $x_0 \in A$, $\gamma_0(x_0) = 1$ when $t_1(x_0) \neq 0$ and $\gamma_0(x_0) = 0$ when $t_1(x_0) = 0$.

Proof $t_1(x_0)$ is a Boolean element different from 1, for every subdirectly irreducible algebra A. Since $\overline{\nabla}$ is simple on the Boolean elements of A, if $t_1(x_0) \neq 0$, then $\overline{\nabla} t_1(x_0) = 1$. Then $\overline{\nabla} t_1(x_0) \leftrightarrow 0 = 1 \leftrightarrow 0 = 0$. Hence $\neg(\overline{\nabla} t_1(x_0) \leftrightarrow 0) = \neg 0 = 1$, and so $\gamma_0(x_0) = 1$. For $t_1(x_0) = 0$, $\overline{\nabla} t_1(x_0) = 0$, thus $\neg(\overline{\nabla} t_1(x_0) \leftrightarrow 0) = \neg(0 \leftrightarrow 0) = \neg 1 = 0$. Hence $\gamma_0(x_0) = 0$.

In what follows we show an inductive process to determine the number of maximal non minimal elements in each o.c.c. of the poset of join-irreducible elements of a finite subdirectly irreducible algebra.

Case 1. One order-connected component.

If A is subdirectly irreducible and has one o.c.c., then A is isomorphic to $D_{1,0}$ or to $D_{0,1}$ or to T_{0,r_1} . Theorems 2.1 and 2.2 give equations for $D_{1,0}$ and $D_{0,1}$ respectively. For T_{0,r_1} the equations are $\gamma_{comp}^1 = 1$ and $\gamma_{max}^{r_1} = 1$.

Case 2. Two order-connected components.

Suppose now that A is subdirectly irreducible and has two order-connected components. Then A is isomorphic to one of the following algebras: $D_{2,0}$, $D_{1,1}$, T_{0,r_1,r_2} , T_{1,r_1} . The cases $A \cong D_{2,0}$ and $A \cong D_{1,1}$ have already been considered in Theorems 2.1 and 2.2.

Suppose that A is isomorphic to T_{0,r_1,r_2} . Consider the following term:

$$\gamma_T(x) = \nabla \neg x \leftrightarrow \overline{\nabla} \neg x.$$

Observe that $\gamma_T(x) = 1$ is equivalent to $\nabla \neg x = \overline{\nabla} \neg x$, and this is equivalent to $\nabla \neg x = \neg \nabla \neg x$.

Lemma 2.10 The equation $\gamma_T = 1$ holds in a subdirectly irreducible algebra $A \cong T_{k,n_1,\dots,n_r}$ if and only if there exists no $x \in B(A)$ such that $\nabla x = a$, or equivalently, if and only if k = 0.

Proof Suppose that $\gamma_T = 1$ in $A \cong T_{k,n_1,\dots,n_r}$ and $k \neq 0$. Then by Theorem 1.13, $T_{1,1}$ is a subalgebra of A. But there exists $x \in T_{1,1}$ such that $\nabla \neg x = a$, and consequently, $\gamma_T(x) \neq 1$, a contradiction.

Suppose that k = 0. Then for every $x \in B(A)$, $x \neq 0$, we have that $\nabla x = 1$. Hence, as $\neg x \in B(A)$ for every $x \in A$, the equation $\nabla \neg x = \neg \neg \nabla \neg x$, holds in A, that is, $\gamma_T(x) = 1$ holds in A.

Corollary 2.11 If A is a subdirectly irreducible algebra with the simple quantifier then A satisfies $\gamma_T = 1$

Proof Observe that $\nabla x = 1$ for every $x \neq 0$, so the second part of the previous proof can be applied.

As a consequence we have that $A \cong T_{k,n_1,\ldots,n_r}$ satisfies $\gamma_T(x) = 1$ if and only if k = 0, that is, if and only if $T_{1,1} \not\in \mathbf{S}(A)$.

Now we go back to the case in which A is isomorphic to T_{0,r_1,r_2} . We want to give an equation that characterizes the numbers r_1 and r_2 . Consider the following equation, which is a term in the language of Q_3 .

$$(1) \qquad \qquad \gamma_{part}^{r_{1},r_{2}} = \gamma_{0}(x_{0}) \leftrightarrow \left[(\gamma_{T_{0,r_{1}}}^{t_{1}(x_{0})} \wedge \gamma_{T_{0,r_{2}}}^{\neg t_{1}(x_{0})}) \vee (\gamma_{T_{0,r_{1}}}^{\neg t_{1}(x_{0})} \wedge \gamma_{T_{0,r_{2}}}^{t_{1}(x_{0})}) \right] = 1,$$

where $\gamma_{T_0,r_1}^{t_1(x_0)} = 1$ is the characteristic equation of $[0,t_1(x_0)]$, etc.

Observe that the number of o.c.c's is given by the equation $\gamma_{comp}^2 = 1$ and the number of maximal non-minimal elements $r_1 + r_2$ is given by the equation $\gamma_{max}^{r_1+r_2} = 1$. We claim that the characteristic equation of T_{0,r_1,r_2} is

$$\gamma_{T_{0,r_1,r_2}} = \gamma_T \wedge \gamma_{max}^{r_1+r_2} \wedge \gamma_{comp}^2 \wedge \gamma_{part}^{r_1,r_2} = 1.$$

We have to check first that T_{0,r_1,r_2} satisfies $\gamma_{part}^{r_1,r_2}$. Indeed, let $x_0 \in T_{0,r_1,r_2}$. If $\gamma_0(x_0) = 0$, then $\gamma_{part}^{r_1,r_2}$ trivially holds. As T_{0,r_1,r_2} has two o.c.c.'s, then there exists x_0 such that $t_1(x_0)$ is a Boolean element different from 0. Besides, $[0, t_1(x_0)]$, with the operations given before, is isomorphic to either T_{0,r_1} or T_{0,r_2} . If $[0, t_1(x_0)]$ is isomorphic to T_{0,r_1} , then $[0, \neg t_1(x_0)]$ is isomorphic to T_{0,r_2} and the equation holds. Similarly if $[0, t_1(x_0)]$ is isomorphic to T_{0,r_2} .

Let us see now that if A is a subdirectly irreducible algebra and A satisfies γ_{T_0,r_1,r_2} , then A is a subalgebra of T_{0,r_1,r_2} .

If A satisfies γ_{T_0,r_1,r_2} , then A satisfies γ_{comp}^2 , and consequently, A has either one or two o.c.c.'s.

- 1. Suppose that A has one o.c.c. Then
 - (a) $A \cong D_{0,1}$ and thus, by Corollary 1.15, A is a homomorphic image of a subalgebra of T_{0,r_1,r_2} , or
 - (b) $A \cong D_{1,0}$ and thus, by Corollary 1.15, A is a homomorphic image of a subalgebra of T_{0,r_1,r_2} , or
 - (c) $A \cong T_{0,r}$. Since A also satisfies $\gamma_{max}^{r_1+r_2}$, it follows that $r \leq r_1 + r_2$, and then A is a subalgebra of T_{0,r_1,r_2} , by Theorem 1.13.
- 2. Suppose that A has two o.c.c's. Then we have the following cases:
 - (a) $A \cong D_{2,0}$ and thus A is a homomorphic image of a subalgebra of T_{0,r_1,r_2} , by Corollary 1.15.
 - (b) $A \cong D_{1,1}$. Recall that $r_1 \leq r_2$. Then we have to consider i. $r_2 \geq 2$. By Corollary 1.15, $D_{1,1}$ is a subalgebra of T_{0,r_1,r_2} .

- ii. $r_2=1$. Then $r_1=1$. Observe that $\gamma_{T_{0,1}}^{t_1(x_0)}=(\gamma_{max}^1)^{t_1(x_0)}\wedge(\gamma_{comp}^1)^{t_1(x_0)}$. Then there exists $x_0\in D_{1,1}$ such that $[0,t_1(x_0)]\cong D_{0,1}$. Thus, there exists $\vec{x}\in [0,t_1(x_0)]^n$ such that $\gamma_{T_{0,1}}^{t_1(x_0)}(\vec{x})\leq \frac{1}{2}$, and so $(\gamma_{T_{0,1}}^{t_1(x_0)}\wedge\gamma_{T_{0,1}}^{-t_1(x_0)})(\vec{x})\leq \frac{1}{2}$, that is, there exists $\vec{x}\in D_{0,1}$ such that $\gamma_{part}^{r_1,r_2}(\vec{x})=1\leftrightarrow \frac{1}{2}\neq 1$. Hence A does not satisfy $\gamma_{part}^{r_1,r_2}=1$, and consequently A does not satisfy γ_{T_0,r_1,r_2} , which is a contradiction. So A is not isomorphic to $D_{1,1}$.
- (c) $A \cong T_{0,s_1,s_2}$. Since A satisfies $\gamma_{max}^{r_1+r_2} = 1$, it follows that $s_1 + s_2 \leq r_1 + r_2$. Then there exists $x_0 \in T_{0,s_1,s_2}$ such that $t_1(x_0) \neq 0$. Suppose that

(2)
$$\gamma_{T_{0,r_1}}^{t_1(x_0)} \wedge \gamma_{T_{0,r_2}}^{-t_1(x_0)} \neq 1$$

and

(3)
$$\gamma_{T_{0,r_1}}^{\neg t_1(x_0)} \wedge \gamma_{T_{0,r_2}}^{t_1(x_0)} \neq 1.$$

In (2), $\gamma_{T_0,r_1}^{t_1(x_0)} \neq 1$ or $\gamma_{T_0,r_2}^{-t_1(x_0)} \neq 1$. Thus, there exists $\vec{x} \in [0, t_1(x_0)]^n$ such that $\gamma_{T_0,r_1}^{t_1(x_0)} \wedge \gamma_{T_0,r_2}^{-t_1(x_0)}(\vec{x}) \leq b$, b a dual atom of $[0, t_1(x_0)]$. In a similar way, in (3), there exists $\vec{x} \in [0, \neg t_1(x_0)]$ such that $\gamma_{T_0,r_1}^{-t_1(x_0)} \wedge \gamma_{T_0,r_2}^{t_1(x_0)}(\vec{x}) \leq b'$, b' a dual atom of $[0, \neg t_1(x_0)]$.

Then $(2) \vee (3) \leq b \vee b' = b'' \neq 1$. Thus $\gamma_0(x_0) \leftrightarrow \gamma_{part}^{t_1(x_0)} = 1 \leftrightarrow b'' = b'' \neq 1$. Then, if $\gamma_{part}^{r_1,r_2} = 1$ it follows that (2) = 1 or (3) = 1. In both cases $s_1 \leq r_1$ and $s_2 \leq r_2$. Hence A is a subalgebra of T_{0,r_1,r_2} .

(d) $A \cong T_{1,r}$. Then by Lemma 2.10, A does not satisfy the equation $\gamma_T(x) = 1$.

In order to study this last case, that is, $A \cong T_{1,r}$, we consider the following term:

$$\beta_T(x,y) = (\nabla \neg x \to (y \vee \neg y)) \vee (\nabla \neg \neg x \to (y \vee \neg y)).$$

Lemma 2.12 $\beta_T(x,y) = 1$ holds in $A \cong T_{1,r}$.

Proof Observe that $B(A) = \{0, 1, a_1, a_2\}$ and the elements $\neg x, \neg \neg x$ are complemented elements in B(A). If $\{\neg x, \neg \neg x\} = \{0, 1\}$, then $\beta_T(x, y) = 1$ holds, as either $(\nabla \neg x \rightarrow (y \vee \neg y)) = 1$ or $(\nabla \neg \neg x \rightarrow (y \vee \neg y)) = 1$. If $\{\neg x, \neg \neg x\} = \{a_1, a_2\}$, then either $\nabla \neg a_1 = \nabla a_2 = a$ or $\nabla \neg a_2 = \nabla a_1 = a$. Since $a \leq y \vee \neg y$ for every $y \in A$, it follows that $\beta_T = 1$ holds in A.

Lemma 2.13 $\beta_T(x,y) = 1$ does not hold in $A \cong T_{0,r_1r_2}$.

Proof Observe that $B(A) = \{0, 1, a_1, a_2\}$ and that $\nabla a_1 = \nabla a_2 = 1$. If we choose $x = a_1$ and y = a, then

$$\beta_T(x,y) = \beta_T(a_1,a) = (\nabla \neg a_1 \to (a \lor \neg a)) \lor (\nabla \neg \neg a_1 \to (a \lor \neg a)) =$$
$$(\nabla a_2 \to a) \lor (\nabla a_1 \to a) = (1 \to a) \lor (1 \to a) = (1 \to a) = a \neq 1.$$

 \neg

As a consequence of the above results, it follows that the characteristic equation for the variety generated by $T_{1,r}$ is

$$\gamma_{T_{1,r}} = \beta_T \wedge \gamma_{max}^r \wedge \gamma_{comp}^2 \wedge \gamma_{part}^{1,r} = 1.$$

For n o.c.c's, this argument can be recursively applied. As in the case of two o.c.c's, the idea is to algebrize the intervals [0, b], where b is a boolean element, $b \neq 1$, (b can be obtained by means of the term $t_1(x)$) as it was done in the remark preceding Lemma 2.9. By this procedure we get algebras with a number of o.c.c's which is less than or equal to n-1.

References

- [1] M. Abad and J. P. Díaz Varela, Free Q-distributive lattices from meet semilattices, submitted for publication.
- [2] M. Abad and J. P. Díaz Varela, On some subvarieties of closure algebras, submitted for publication to The Journal of the Australian Mathematical Society.
- [3] M. Abad, J. P. Díaz Varela, L. A. Rueda and A. M. Suardíaz, Varieties of three-valued Heyting algebras with a quantifier, to appear in Studia Logica.
- [4] M. E. Adams, The Frattini sublattice of a distributive lattice, Algebra Universalis 3 (1973), 216-228.
- [5] M. E. Adams, Maximal subalgebras of Heyting algebras, Proceedings of the Edinburgh Mathematical Society 29 (1986), 259-365.
- [6] M. E. Adams and W. Dziobiak, Quasivarieties of distributive lattices with a quantifier, Discrete Math. 135 (1994), 12-28.
- [7] R. Balbes and P. Dwinger, Distributive Lattices, University of Missouri Press, Columbia, Missouri, 1974.
- [8] G. Bezhanishvili, Varieties of monadic Heyting algebras, Studia Logica 61, 3(1998), 367-402.
- [9] R. Cignoli, Quantifiers on distributive lattices, Discrete Math. 96 (1991), 183-197.
- [10] R. Cignoli, Free Q-distributive lattices, Studia Logica 56 (1996), 23-29.
- [11] B. A. Davey, On the lattice of subvarieties, Houston J. Math. 5 (1979), 183-192.
- [12] B. A. Davey and H. A. Priestley, Introduction to lattices and order, Cambridge Univ. Press, Cambridge, 1990.
- [13] J. P. Díaz Varela, Equational classes of linear closure algebras, to appear.
- [14] G. Grätzer, General Lattice Theory, Birkhäuser Verlag, Basel, 1978.
- [15] P. R. Halmos, Algebraic Logic I. Monadic Boolean algebras, Compositio Math. 12 (1955), 217-249.

- [16] B. Jónsson, Algebras whose congruence lattices are distributive, Math. Scand. 21 (1967), 110-121.
- [17] Th. Lucas, Equations in the theory of monadic algebras, Proceedings of the American Mathematical Society, Volume 31, No. 1 (1972) 239-244.
- [18] J. D. Monk, On equational classes of algebraic logic. I, Math. Scan. 27(1970), 53-71.
- [19] A. Monteiro, Algebras monádicas, Atas do Segundo Colóquio Brasileiro de Matemática, São Paulo, 1960.
- [20] A. Monteiro and O. Varsavsky, Algèbres de Heyting monadiques, Notas de Lógica Matemática No. 1, Universidad Nacional del Sur, 1974.
- [21] L. Monteiro, Algèbre du calcul Propositionnel trivalent de Heyting, Fund. Math. 74 (1972), 99-109.
- [22] A. Petrovich, Equations in the theory of Q-distributive lattices, Discrete Mathematics, 175(1997), 211-219.
- [23] H. A. Priestley, Representation of distributive lattices by means of ordered Stone spaces, Bull. London Math. Soc. 2 (1970), 186-190.
- [24] H. A. Priestley, Ordered topological spaces and the representation of distributive lattices, Proc. London Math. Soc. 24 (1972), 507-530.
- [25] H. A. Priestley, Ordered sets and duality for distributive lattices, Ann. Discrete Math. 23 (North-Holland, Amsterdam, 1984) 39-60.
- [26] H. A. Priestley, Natural dualities for varieties of distributive lattices with a quantifier, Banach Center Publications, Volume 28, Warszawa 1993, 291-310.
- [27] L. Rueda, Linear Heyting algebras with a quantifier, submitted for publication.
- [28] M. Servi, Un'assiomatizzazione dei reticoli esistenziali, Boll. Un. Mat. Ital. A 16(5) (1979), 298-301.
- [29] O. Varsavsky, Quantifiers and equivalence relations, Revista Matemática Cuyana, Vol. 2, Fasc. 1 (1956), 29-51.

Departamento de Matemática Universidad Nacional del Sur e-mail: imabad@criba.edu.ar 8000 Bahía Blanca Argentina