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Abstract

An equational basis is given for some members of the lattice of subvarieties of
three-valued Q-Heyting algebras. For any finite subdirectly irreducible algebra, A,
an equation which describes the number of order-connected components (o.c.c.’s) of
the set J = J(A) of join-irreducible elements of A is provided. Then an equation
is exhibited characterizing the number of elements of Max (J) \ Min (). Finally
an inductive process is shown to determine the number of maximal non minimal
elements in each o.c.c. of 7.

1 Introduction and Preliminaries

In this paper we continue the investigation of the variety Qs of three-valued Heyting
algebras with a quantifier which we started in [3]. Here we present equational bases for
some members of the lattice A(Qs3) of subvarieties of Q3. In order to make this paper as
self-contained as possible we add some properties and definitions from [3].

A gquantifier on a Heyting algebra H is a unary operation V satisfying the following
conditions, for any a, b € H: (Qo) V0O =0, (Q)) aAVa = a, (Q2) V(aAVb) = VaAVb
and (Qs) V(aVb)=VaV Vb.

If V is a quantifier on a Heyting algebra H, then V1 = 1 and VVa = Va. In addition,
VH is a subalgebra of H (see [9]). A Q-Heyting algebra is an algebra (H,V) such that
H is a Heyting algebra and V is a quantifier on H. Monadic Boolean algebras are the
simplest examples of Q-Heyting algebras (see [15]).

The class of Q-Heyting algebras form a variety, which we denote Q.

Among Q-Heyting algebras we single out the subvariety Qs of three-valued Q-Heyting
algebras. This is the variety of Q-Heyting algebras such that the underlying structure
of Heyting algebra is three-valued, that is, the following condition is satisfied: ((a —
¢) = b) = (((b — a) = b) - b) = 1. We determined in [3] the simple and subdirectly
irreducible algebras and gave a construction of the lattice of subvarieties of Q3. In this
paper we give a complete equational description for each finite join-irreducible member
of the lattice of subvarieties of Q. It is an open problem to extend these results to
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the general case. However, between the three-valued case and the linear case there is
already a large difference in complexity and we have been unable to find a meaningful
characterization even for the lattice of subvarieties of the variety of linear Q-Heyting
algebras (see [27]).

If X is a Priestley space (see [3] for any undefined terms), then D(X) is the lattice of
clopen decreasing subsets of X, and for f : X — X’ a continuous order preserving map,
D(f) : D(X') — D(X) is defined by D(f)(U) = f~1(U), for each U € D(X'). If Lis a
bounded distributive lattice, then X (L) is the set of prime ideals of L, ordered by set
inclusion and with the topology having as a sub-basis the sets n(a) = {I € X(L)
a¢ I} and X(L)\n(a) fora€ L. If h:L — L’ is a (0,1)-lattice homomorphism, then
X(h) : X(L'") — X(L) is defined by X (h)(I) = h™*(I). The mappingn : L — D(X (L)) is
a lattice isomorphism, and € : X — X (D(X)) defined by e(z) ={U € D(X) : z ¢ U} is
a homeomorphism and an order isomorphism.

Since Heyting algebras are bounded distributive lattices, the category of Heyting al-
gebras is isomorphic to a subcategory of bounded distributive lattices. A Heyting space
is a Priestley space (X, <,7) such that [V) is clopen for every convex clopen Y C X. For
a € H, n(a) € X denote the clopen decreasing set that represents a. If a,b € H then,
under the duality, a — b corresponds to the clopen decreasing set X \ [n(a) \ n(b)). If X
and X' are Heyting spaces, a (Heyting) morphism is a continuous order-preserving map
¢ : X — X' for which ¢((z]) = (¢(z)].

A Q-Heyting space (see [9]) is a pair (X, F) such that X is a Heyting space and E
is an equivalence relation on X satisfying the conditions (E;) VgU € D(X) for each
U € D(X), where VgU is the union of all blocks of E containing an element of U, and
(Eg) the blocks of E are closed in X.

The category of Q-Heyting spaces and continuous order-preserving maps and the cat-
egory of Q-Heyting algebras and homomorphisms are dually equivalent (see [3]).

The following theorem characterizes the dual space of a three-valued Heyting algebra,
and it will play a central role in this paper.

Theorem 1.1 [21] A Heyting algebra H is three-valued if and only if every element of
X(H) is either minimal or mazimal and for every mazimal element J of X(H) there
exists a unique minimal element I of X(H) such that I < J. If Min(X) denotes the
set of all minimal elements of X = X (H), then X = Uremingxy C(1), where C(I) = {J €
X I1<J}=[I).

The quantifier V is called simple if VH = {0,1}. When VH is a 3-element chain, we
always denote VH = {0,qa,1}. Observe that in this case —a = 0.

It is known that the subdirectly irreducible three-valued Heyting algebras are the
2-element chain 2 and the 3-element chain 3 [21]. The following result holds in Qs.

Proposition 1.2 [3] Let (H,V) € Q. If (H,V) is subdirectly irreducible, then VH is
subdirectly irreducible as a Heyting algebra, that is, then V is the stmple quantifier or VH
18 a 3-element algebra.



The following theorem gives a characterization of the simple objects in Q3.

Theorem 1.3 (3] Let (H,V) € Qs;. (H,V) is simple if and only if V is the simple
quantifier and Min(X) = X.

Corollary 1.4 The simple algebras in Q3 are the simple monadic Boolean algebras.
For non simple subdirectly irreducible algebras in Qs we have the following results.

Theorem 1.5 [3] The subdirectly irreducible non simple algebras with the simple quanti-

fier in Qg are the algebras B x 3, where B is a Boolean algebra and 3 is the 3-element
Heyting algebra.

As a consequence of thie theorem we obtain the following corollary.

Corollary 1.6 Let (H,V) € Qs, V the simple quantifier. Then (H,V) is a non simple
subdirectly irreducible algebra if and only if X = Min(X) U {I}, with I ¢ Min(X).

Theorem 1.7 (3] Let (H,V) € Q3 with VH = {0,a,1}, and let (X, E) be the Q-space
associated to (H,V). Then (H,V) is subdirectly irreducible if and only if Min(X) = n(a).

Corollary 1.8 [3] (H,V) is non-simple subdirectly irreducible if and only if the lattice of
congruences of H s isomorphic to 3.

We have characterized the subdirectly irreducible algebras in the variety Q3. In par-
ticular, in the finite case we have:

Theorem 1.9 Let H be a finite algebra in Qs.

(1) H 1is simple if and only if H is an n-atom simple monadic Boolean algebra D, o

(2) H is subdirectly irreducible but non simple if and only if either

(¢) H is an algebra D, ; of the form 2™ x 3, with the simple quantifier, or

(it) H is an algebra T, ;. n, of the form 2" x ({0} ®2™ ) x...x ({0}®2™), n >0,
r>1,n; 21,1 <4< r with the quantifier V such that VI, ., . n = {0,a,1}
and n(a) = Min(X).

The corresponding dual spaces are exhibited in the following figure, where only the
underlying partially ordered sets are shown. Because V is the simple quantifier on D, g
and D, 1, each of X (D, o) and X (D, ;) have only one equivalence class, while X (T}, », . ».)
has two equivalence classes, namely Min(X) and X \ Min(X).
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X(DH,O) X(Dn,l) X(Tn,nl,...,nr>



Next we present some results about the ordering in the set of varieties generated by
the algebras D, o, D,1 and T, n, . ., Or equivalently, in the set of finite subdirectly
irreducible algebras of Q3. These results will be essential in the sequel.

If K is a class of algebras in a variety V, V(K) denotes the subvariety of V generated
by K. Si(K) and Sif,(K) respectively denote the class of subdirectly irreducible algebras
and the class of finite subdirectly irreducible algebras in K. The class of algebras that are
homomorphic images of algebras in K will be denoted by H(K), and the class of algebras
that are subalgebras of algebras in K will be denoted by S(K).

Recall that for A, B € Siy;,(K), we may define a partial preorder: A < B if and only
if A € H(S(B)), so that V(A) < V(B) if and only if A < B.
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Theorem 1.10 [3] The following conditions hold:
(1) Dro < Dp_11, n > 1.
(2) Do £ Dpa, n>0, m>n+1.
(3) Dpi £ Dyg, n >0, m > 1.
(4) Dy < Dy if and only if m < n.

Consequently, the members of J(A(Qs)) generated by finite subdirectly irreducible
algebras with the simple quantifier are ordered according to the following figure:

Corollary 1.11 The ordered set Si #in(Qs) of all finite subdirectly irreducible algebras in
Qs with the simple quantifier is isomorphic to C x 2, where C is a chain of type w.

Observe that the subclass of Q3 generated by the subdirectly irreducible algebras with
the simple quantifier, that is, generated by the algebras D, and D, 1, is a subvariety of
Q3. This subvariety is determined by the equation Vz vV =Vz = 1, where =z = z — 0,
that is, VH is a Boolean algebra.



To complete the ordering between the join-irreducible finitely generated varieties it
remains to show the relationship with the varieties of type 7, ,, .. This is contained in
the following results.

Since the quantifier in D,,;, m > 0, is simple and the image of the quantifier in
Tani,m,n=>0,7r>1,n,>11<7<r, is a 3-element set, we have:

Theorem 1.12 T, ., n €Dm1,n>0,n,>1,1<i<7r, m>0.

Consider the algebras T, ,, ., With n;,... n, such that n; < n,; whenever ¢ < j.

r

It was proved in [3] the following result, where z < y means y covers z.

Theorem 1.13 7oy 1y ms < Tony,on. 0 J(A(Q3)) if and only if one of the following
conditions hold:

a) m=n—1,s=r, m=mn;,1<i<r.

b) m=n, r=s, and there exists t € {1,...,7} such that m; = n; — 1 and m; =mn; if
J#L, 1<j<r

c) m=mn,s=r—1, there existi € {1,...,s}, 7, k € {1,...,r} such that m; = n;+n

and relabeling if necessary the sets {mi,...,ms} \ {m;}, {n1,...,n.} \ {ny, nx},
my=ng, 1 <t<r—2.

Finally, the following theorem completes the ordering in the set of finitely generated
join-irreducible members of the lattice of subvarieties of Qj.

Theorem 1.14 [3] The following conditions hold:
(1) Do < Totpyyne, 1<t <, 1, =1,1<4 <t

(2) Doy < Topy, nnoss, » Li=1,1<i<m, 2,1 =2.
(3) Dpo & Zz~t,n1,.._,n,., 1 <r<t.
(4) D

4) Dpy £ Toumy,..my for v < n and Dn, £7T,

,11,...,1.,.,,_{_1'
Observe that D, g < Znt1,,.1, and Dy < 70,11, 1n,2.41+ 85 1t 1s easily verified.
Corollary 1.15 [3] The following conditions hold:

(2) Dno < Toomy,..om, if and only if n < m +r.

(49) Dn1 < Tymy,m, of and only if (a) 7 >n—+2 or () r=n+1and m, > 2.



2 Equational bases

The aim of this section is to give an equational basis for some members of the lattice of
subvarieties of three-valued Q-Heyting algebras. We are going to give first an equation
which describes the number of o.c.c’s of the set J = J(A) of join-irreducible elements
of a finite subdirectly irreducible algebra A (that is, the number of atoms of the Boolean
algebra of the complemented elements of A). Then we will give an equation which char-
acterizes the number of elements of Max () \ Min (J), where Max (J) denotes the set
of all maximal elements in J. Finally we will give an inductive process to determine the
number of maximal non minimal elements in each o.c.c. of J.

Recall that if {Ai}i=1 ,,,,,,,,,
holds in V if and only if it holds in any algebra A;. Also observe that any finite set
of equations characterizing a variety of @)-Heyting algebras can be transformed into just
one equation of the form vy (xy,...,2,) = 1. Let vy (z1,...,7,;) = 1 denote the equation
which characterizes a variety V.

Consider the following terms:

P{l(rl,,xn)z(;\VmQ/\{( \/ V(QJLATJ))V(\/J%)}

n
Pl (zy,...,z,) = /\ Vz,;
=1

The following theorem gives equational bases for the subvarieties D, ¢ in A(Q3) (see
[22]). The element z — 0 is abbreviated by —z.

Theorem 2.1 Let n > 1. Then the subvarieties D, are characterized within Qs by the
equations

(1) Ve=z and ~—z =1z forn=1
(2) Pr(@1,...,%0) = P3(21,...,2,) and =~z =1z, forn > 1

Proof It is clear that D, satisfies (1). If U is a subvariety such that U ¢ D10, then
there exists { > 1 such that D;g € U, or there exists s > 0 such that D, € U or there
exist mymq,...,m,, m > 0, r > 1, m; > 1 such that Trm,,..m. € U. In the first case,
there exists x € Dy, z ¢ {0,1} such that Vz = 1. If D,; € U, then Dy, € U and there
exists ¢ € Do such that -—c==(c - 0)=-0=1+#c. If Trnpmy,.jmer € U then Tg, € U
and there exists ¢ € Tp; such that ——c # c.

Suppose that n > 1 and let us prove that D, satisfies the equations in (2). For
every £ € Dy, 7z = z. Consider now the equation PJ(zy,...,z,) = Pp(zy,...,T,)
and by,...,bn € Dpo. If b; = 0 for some 4, the equation holds. Suppose that b; # 0
for v =1,...,n. Then Py(by,...,b,) = 1. If by Ab; = 0 for every 1,7, i # j, we have

that \/ b; = 1, which implies that P}*(by,...,b,) = 1. If there exist 7,7, ¢ # 4, such that

i=1
bi Ab; # 0, then V(b; A bj) = 1 and consequently Pr(by,...,b,) = 1.
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Let us see now that these equations do not hold in any subvariety U € D, o. For such
subvariety there exists [ > n such that D;o € U, or there exists s > 0 such that Dg, € U
or there exist m > 0, r > 1, m; > 1,¢=1,...,r such that Ty, ;m, .m, € U. In the first
case, Dny19 € U, since Dypy19 € H(S(Dyg)). Let aq,...,an41 be the atoms of Dy, 1.

Then Va; =1 for all ¢ and a;Aa; = 0 for ¢ # 5. Consequently P*(ay,...,a,) = \/ a; # 1
i=1

and Pf(a1,...,a,) = 1. If D,y € U, with s > 0, then Dy, € U and choosing ge Dy,
c # 0,1 we have that ~—c = 1 # c. Similarly, if Tomy,...m, € U, then Ty; € U and
~=c # ¢, with ¢ € Ty \ {0,1}. O

Observe that if H is an algebra in Q3 with the simple quantifier, then H satisfies
P = P if and only if H satisfies that if ay, a9, ..., a, are n elements of H different from
0 and pairwise disjoint, then a; Vas V...V a, = 1.

We will abbreviate the equations contained in Theorem 2.1 by VDno = 1.

Consider now the following terms (see [22]):

QHzy,. ..\ Tnyo) = (/\ ka> A [ \V V(zi/\x]—)}
k=1

1<i<j<n+2

n+2

Qg(xl, s 7xn+2) = /\ Vmi
i=1

Theorem 2.2 The subvarieties Dy, 1, n > 0, are characterized within Q3 by the equations
QU(T1, ., Tpi2) = QF(T1, ..., Tnyo) and -z V Vz =1.

Proof Let z € D,;. If z = 0 then -2 = 1 and if z # 0, then Vz = 1. In both cases
—zVVz =1

If b1, bnyo € Dpy and b; = 0 for some 4, 1 < i < n + 2, then Qr(by, ..., byi2) =0
and Q3 (b1,...,bnya) = 0. If b; £ 0 for every 4, 1 < i < n+ 2, then Q5 (b1, ..., bnyo) = 1.
Since Dy;; has n + 1 atoms, there exist 1,5 € {1,...n+ 2}, ¢ # 7 such that b; A b; # 0.
Consequently, Q7 (b, ...,b,42) = 1.

Let U be a subvariety such that U € D, ;. Then (i) there exists { > n + 1 such that

Do € Uor (i1) there exists s > n such that D,; € Uor (iit) there exist n, nq,...,n,, n >
0,r>1,n;>1,1<i<rsuchthat T,,,  , €U. In (i), Dypioo€U,and if a,..., 0,49
are the atoms of Dy p0, then QF(ay,...,a,42) = 0 and Q@3(a1,...,an42) = 1. In (31),
Dny1y € U and a similar argument shows that Q3 (zy,...,z,05) # Q3 (x1, ..., Tnga).
Finally, if Ton,,.n, € U then To; € U and ~a V Va = a # 1. O

Observe that if H is an algebra in Qs with the simple quantifier, then H satisfies
QT = Q3% if and only if H satisfies that there exists no set {a1,a9,... 0042} of n + 2
non-zero and pairwise disjoint elements of H.

The equations contained in Theorem 2.2 will be abbreviated by vp,, = L.

In the rest of this section, H will denote the algebra o, n,m>0,7r>1,n; > 1,
1< <r.



Observe that the set D(H) = {z € H : -z = 0} of dense elements in H is [a)
(recall that a is the unique element in VH different from 0 and 1, or equivalently, n(a) =
Min (X (H)).

Consider in the interval [a) the operation 2’ = z — a, for z € [a).
Lemma 2.3 A = ([a),A,V,,a,1,V) is a simple monadic Boolean algebra.

Proof If x € [a), z A2’ =2 A (x — a) =z Aa=a. Itiseasy tosee that zVz' =1 and
that V is the simple quantifier. O

Since the atoms of A are the elements of Max(X (H)) \ Min(X (H)), A is isomorphic
to the the simple monadic Boolean algebra 2™+ +7r,

Lemma 2.4 [14] For everyz € H, x V =z € [a).

Proof Immediate, as z V -z € D(H). O
Observe that every element y € [a) is of the form y = y V —y, as —~y = 0.

Consider the following terms, where z* = z V —x:

Pi(xq,...,25) = (/\ V:ri) A {( \/ V(T;‘/\:r’;)) Y (\/xf)}

3
Pi(zy,...,x5) = /\ V!
i=1

The following theorem gives an equation which determines the number of elements of
X\ Min(X) = Max(X) \ Min(X).

Theorem 2.5 ny+---+n, < s if and only if the equation P{(x1,...,xs) = P§(z1,..., ;)
holds in H.

Proof It is a consequence of Lemma 2.3 and Theorem 2.1. a
"The equation contained in Theorem 2.5 will be denoted by 7% __ = 1.

Let Rg(H) = {—z : = € H} be the set of regular elements in H. We know that if
z,y € H, then ~(z Vy) = -z A —y. Since H is three-valued, it follows that H is a
Stone algebra, so =(z Ay) = ~z V =y. Consequently, (Rg(H),A,V,=,0,1) is the Boolean
algebra B(H) of complemented elements of H with n -+ atoms. If we define Vz = ~-Vz
on Rg(H), then VO = 0 and Vz = 1 for z # 0. So (Rg(H),A,V,—,0,1,V) is a simple
monadic Boolean algebra.

Consider now

TT(Z1, -y Tm) = (7\ v—'xk> A [( V(= A —a:j)> v (\7 —|xi>]

m

Tg"(ml,...,mm) :/\v_ll'i ¢

=1
The following theorem gives an equation which determines the number of o.c.c.’s of
X.

[y



Theorem 2.6 n +r < m if and only if the equation T (x1,...,Tm) = T5(x1,...,Zm)
holds in H.

Proof 1t is a consequence of the previous remarks and Theorem 2.1. a
We will denote vz,,, = 1 the equation contained in Theorem 2.6.

Observe that v7,,,(A4) € Rg(A), for any algebra A and if the number of o.c.c.’s of A
is greater that m, then there exists ¥ € A™ such that 472, (7) < 1.

Following the proofs of Theorems 2.1, 2.2, 2.5 and 2.6, it is long but computational to
check that

L 0 (Dno) = {1} if n < m,
7comp( n1) = {1}, for m > n+1, and
Yeomp(Tnmi,..m.) = {1} when n 47 < m.

2. ’ymax(Dn,O) = {1}7
Vmae(Dr1) = {1} if m > 2, and 477 (Dn1) = {(1,1), (1, 3)}, for m = 1 (recall that
Dn;=2"x3,3={0,3,1 })
Ve Tony..m.) = {1} when n; + ... +n, <m, and
Yo Lnny r) C [a) when ny + ... +n, > m.

Consider the term t;(z) = =—(—~z A Vz). Observe that if a € A € O3, then t;(a) is a
Boolean element in A. This term will be useful in order to determine the equations that
describe the partitions of the maximal non-minimal elements. First we consider this term
on a subdirectly irreducible algebra.

Lemma 2.7 1 €t,(Thpn,,. n) = {t1{(z) 1z € T nnt-

Proof If z = 0 then ¢;(0) = ~—(-0AV0) = ==(1A0) = ==0 = 0. If ¢ < z then -z = 0.
Consequently t;(z) = ==(-~z A Vz) = ==(0A 1) = =0 = 0. Suppose 0 < z < a. Since
—z is associated to [Min(X) \ n(x)) and Vz = a is associated to Min(X), then —z A Vz
is associated to [Min(X) \ n(z)) N7n(a) = Min(X) \ n(z). Hence =(-z A Vz) is associated
to X \ [Min(X) \ 7(z))). Hence ==(~z A Vz) = =z, that is, t;(z) = —z. Observe that
-z # 1, since n(z) # 0. Finally, suppose that x is incomparable to a. Then Vz = 1 and
~z A Vz = -z So t1(z) = -z, and again —z # 1. Therefore 1 ¢ t1(T; O

n,ny.. )

Corollary 2.8 If A is subdirectly irreducible, then t,(A) = B(A)\ {1}.

Proof This is clear for A = D, g or A = Dp;. For A =T, ., n., the corollary follows
from the proof of the previous lemma. O

~~~~~

A} = [0,t1(x0)] considering (AL, A1, V1, —1, V5,01, 1)), where 07 = 0, 1, = ti(xg), © —
y=(z = y)Ati(x0), A1 = A, Vi =V y V() = Vz A ty(xg) for z,y € Al . Observe
that if t;(zo) # 0, A, is a subdirectly irreducible algebra with less o.c.c’s than A. Also
observe that the operatlons in Al0 are terms in the language of Q3.

For an algebra A = T, ,, ., we can algebrize the interval AL, ={zNti(zg) 1 z €

Consider ~q(zg) = —(Vt1(z0) < 0).



Lemma 2.9 For a subdirectly irreducible algebra A and for every zo € A, Yo(Zo) = 1
when t1(xo) # 0 and vo(xo) = 0 when t1(xo) = 0.

Proof t,(x) is a Boolean element different from 1, for every subdirectly | irreducible
algebra A. Since V is simple on the Boolean elements of A, if () # 0, then Vi, (z9) = 1.
Then Vti(zo) « 0 =1 < 0 = 0. Hence —(Vt;(zo) < 0) = =0 = 1, and so yo(zo) = 1.
For t1(zo) = 0, Vti(zg) = 0, thus —(Vti(xe) < 0) = ~(0 « 0) = =1 = 0. Hence
Yo(z0) = 0. u

In what follows we show an inductive process to determine the number of maximal
non minima) elements in each o.c.c. of the poset of jon-irreducible elements of 2 finite
subdirectly irreducible algebra.

Case 1. One order-connected component.

If A is subdirectly irreducible and has one o.c.c., then A is isomorphic to Djg or to
Dy or to Tp,,. Theorems 2.1 and 2.2 give equations for Dy and Do, respectively. For
To,r, the equations are vy, = 1 and /1, = 1.

Case 2. Two order-connected components.

Suppose now that A is subdirectly irreducible and has two order-connected compo-
nents. Then A is isomorphic to one of the following algebras: Dao, D11, Torire, L1
The cases A~ Dy and A = D, ; have already been considered in Theorems 2.1 and 2.2.

Suppose that A is isomorphic to Tg,, r,. Consider the following term:
vr(x) = V-3 < V-u.

Observe that yr(z) =1 is equivalent to V—z = V-z, and this is equivalent to V-z =
——V-z.

Lemma 2.10 The equation vy = 1 holds in a subdirectly irreducible algebra A = Ty, . n,

if and only if there ezists no x € B(A) such that Vz = a, or equivalently, if and only if
k=0.

Proof Suppose that vy = 1in A 2 Ty p,, », 8nd k& # 0. Then by Theorem 1.13, 77
is a subalgebra of A. But there exists z € T}, such that V-z = a, and consequently,
~yr(z) 5 1, a contradiction.

Suppose that k = 0. Then for every z € B(A), x # 0, we have that Vz = 1. Hence, as
—~x € B(A) for every x € A, the equation V-z = ==V -z, holds in A, that is, vr(z) =1
holds in A. !

Corollary 2.11 If A is a subdirectly irreducible algebra with the simple quantifier then
A satisfies yr =1

Proof Observe that Va = 1 for every x # 0, so the second part of the previous proof
can be applied. O
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As a consequence we have that A = Ty, ., satisfies yp(x) = 1 if and only if & = 0,

that is, if and only if 77 ; & S(A).

Now we go back to the case in which A is isomorphic to Tg,, . We want to give
an equation that characterizes the numbers r; and ro. Consider the following equation,
which is a term in the language of Q5.

T

Ty, T =ty (¢ ‘ -t t
(1) Yot = Yo(xo) & [(7%,&1") AV (v A | =1,
where fytT;(fl‘]) = 1 is the characteristic equation of [0, t;(zg)], etc.

Observe that the number of o.c.c’s is given by the equation 7§mp = 1 and the number
of maximal non-minimal elements 71 + r is given by the equation 77137 = 1. We claim
that the characteristic equation of T, ,, is

T1+72

2 71,7
’YTO,rl e T A Tmaz - N ’Ycomp A ’thllrtz = 1.

We have to check first that Tg ,, , satisfies v,.72. Indeed, let 2 € To,ryrp- Hyo(zo) =0,

part ¢
1,72

then v, trivially holds. As Ty, ,, has two o.c.c.’s, then there exists zy such that ¢;(z)
is a Boolean element different from 0. Besides, [0, #;(x¢)], with the operations given before,
is isomorphic to either Tp ., or Ty, If [0, ¢ (z0)] is isomorphic to T ,,, then [0, =t1(z0)] is
isomorphic to Ty, and the equation holds. Similarly if [0,¢1(zo)] is isomorphic to Tp,.

Let us see now that if A is a subdirectly irreducible algebra and A satisfies YT,y g+
then A is a subalgebra of Tj ,, .

If A satisfies VTo,ry .y then A satisfies 'yfomp, and consequently, A has either one or two
o.c.c.’s.
1. Suppose that A has one o.c.c. Then
(a) A= Dy, and thus, by Corollary 1.15, A is a homomorphic image of a subal-
gebra of Tg,, r,, OT

(b) A= Dyp and thus, by Corollary 1.15, A is a homomorphic image of a subal-
gebra of Tg ,, y, OF

(¢) A=Tp,. Since A also satisfies y72572 it follows that r < r; + 75, and then A

max

is a subalgebra of Ty, », , by Theorem 1.13.
2. Suppose that A has two o.c.c’s. Then we have the following cases:

(a) A= Dy and thus A is a homomorphic image of a subalgebra of T0,r1,025 DY
Corollary 1.15.

(b) A= D;;. Recall that 7y < ry. Then we have to consider
1. 79 > 2. By Corollary 1.15, D, ; is a subalgebra of T0,ry 7s-
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ii. 7o = 1. Then r; = 1. Observe that fy%(l“) (YL )220 A (’ylmnp)tl(“)
Then there exists zo € D; ; such that [O t1(xq)] & Dog1. Thus, there exists
T € [0,%;(zo)]™ such that tl(m")(w) <, and so (fy;}o(f°) A 7;;11(“’))(") <3
that is, there exists & € D01 such that y172(&) = 1 — 3 # 1. Hence A

does not satisfy v, = 1, and consequently A does not satisty Yz res
which is a contradiction. So A is not isomorphic to Dj ;.
(¢) A= Ty, s, Since A satisfies y7LE2 = 1, it follows that s; + 52 < 71 +72. Then

there exists zg € Tp s, s, such that tl(azo) # (. Suppose that

t1(z0) A _ ~t1(z0)
(2) Vow, NVTowy 7 1
and
-ty (z t
(3) 7Tolr(1 0) A 10(:?20) # 1.

In (2), ~ 1(“) #1or fyﬁt‘(m") # 1. Thus, there exists & € [0, t1(xo)]™ such that
’yrf,%(ff) A 'y;;‘,_(;")( 7) < b, b a dual atom of [0,%1(zo)]. In a similar way, in (3),

there exists Z € [0, t1(zo)] such that 7;§1T(x°) A 7;30(2)(”) < ¥, b adual atom
of [0, —t1(zo)].

Then (2) V (3) < bV Y = b # 1. Thus 7o(z0) = 1y =1 > b = b # 1.
Then, if . = 1 it follows that (2) = 1 or (3) = 1. In both cases s; < 7, and
sy < ry. Hence A is a subalgebra of Ty, r,.

(d) A=T,. Then by Lemma 2.10, A does not satisty the equation yr(z) = 1.
In order to study this last case, that is, A = T} ,, we consider the following term:
Br(z,y) = (Voz - (yV-y)) V (Vomz = (yV —y)).

Lemma 2.12 Br(z,y) =1 holds in A= T,.

Proof Observe that B(A) = {0,1, a1,a2} and the elements -z, -~z are complemented
elements in B(A). If {-z, -z} = {0,1}, then fr(z,y) = 1 holds, as either (V-z —
(yV-y) =1 o (Voz — (yV ) = 1 If {-z,—-z} = {a1,as}, then either
V=-a; =Vas =a or V-oay =Va; = a. Since a < yV —y for every y € A, it follows that
Br = 1 holds in A. 0

Lemma 2.13 fr(z,y) = 1 does not hold in A= Ty r,r,.

Proof Observe that B(A) = {0,1,a;, as} and that Va; = Va, = 1. If we choose z = a;
and y = a, then

Br(z,y) = Pr(ai,a) = (V-a; — (aV =a)) V (V-ma; — (aV -a)) =

(Vag - a)V(Va, - a)=(1—-a)V(l—a)=(1 —a)=a#1.
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As a consequence of the above results, it follows that the characteristic equation for
the variety generated by T , is

1,
T, = ﬂT A ’Y:naa: A ’yzomp N 7pa7;*t = 1.

For n o.c.c’s, this argument can be recursively applied. As in the case of two o.c.c’s,
the idea is to algebrize the intervals [0, b], where b is a boolean element, b # 1, (b can be
obtained by means of the term ¢;(z)) as it was done in the remark preceding Lemma 2.9.
By this procedure we get algebras with a number of o.c.c’s which is less than or equal to
n— 1.
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