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ABSTRACT : The work deals simultaneously with two different neurodynamic
contexts: The magnetic spin systems and the neurophysiological systems. Both are
analyzed within a unifying set of modular tools which enable us to handle all initial
conditions at once. Our generic neurodynamic model mimicks the behaviour of a single
layer of neurons that are activated or deactivated according to a step function and its
algorithmic implementation. The latter allows us to verify the convergence properties of
the system, thus, reaching conclusions about the stability and/or the attractive character
of certain configurations, focusing on the interrelationship of such properties and the
choices of synaptic tensors and updating strategies. Specifically, we investigate the
dynamics of recurrent periodic and deterministic networks updated by parallel and serial
operation modes. The work involves computer experiments which provide support for
our theoretical tenets. The work is organized as follows: First we discuss our
inspirational source, rooted in a neurobiological model, then we provide an algorithmic
formulation of the model, suplemented by novel theoretical developments and finally, we
cast our results making use of new representational tools.

INTRODUCTION AND CUTLINE OF THE WORK

This work presents a comparative study unifying by means of a single set of
representational modular tools the behavior of two different neurodynamic systems
representing differentiated contexts: The magnetic spin systems, typically lacking self-

coupling of their units, and the neurophysiological systems endowed with self-coupling
of their units.

Two different operational regimes are handled for the sake of comparison:
synchronic and asynchronic updating.

The advantage of our approach is a representational one, enabling us to visualize
in matrix form, all conformations of the systems.

Thus, mapping the conformation into a two dimensional object, facilitates the
assessment of the dynamical visually traits determined by specified initial conditions. This
representational  tool  considerably  simplifies the comparative  analysis.
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This paper is organized as follows, in Section 1 we outline our biological
motivation for our neurodynamic model which will be subsequently compared.
Section 2 deals with the theoretical tenets of the algorithm built upon the models.
Section 3 is devoted to the comparative characterization of the dynamic properties
such as stability and attractivity of persistent states vis a vis different updating and
synaptic schemes. Section 4 is concerned with numerical simulations of the most
revealing dynamical features, and finally the conclusions are presented.

1. ELEMENTS OF THE MODEL
1. 1 Basic building blocks of the model

The basic physiological structure of the brain has been intensely studied s
The fundamental constructive blocks are neurons. Each neuron can be activated by
the flow of a chemical activator through synaptic bindings between different neurons.
The neuron can be inhibited or excited, since this chemical activators change the ionic
concentration resulting in a change on the electrochemical potential. These electric
effects are known as activator or inhibitor postsynaptic potentials. If the whole
potential reaching a specific neuron surpasses certain threshold, the neuron is
activated; if this is null, the neuron remains in its previous state and, otherwise, the
neuron is deactivated. The potential of a neuron is determined by the integrated
effect of all inhibitor and excitor potentials that reach it.

1.2 The canonic neural scheme

The model is based on assuming a simplified form of reality. In the first place,
the neural network is considered as isolated from any external stimulus. Secondly,
neurons are activated or not according to the sign function and the net input that
excites or inhibits each neuron. In particular the potential is determined by the sum of
all the postsynaptic inputs resulting from the previous stage. Its value will determine
the state of the neuron being considered. Finally, it is supposed that connections
between neurons and synaptic binding properties remain stable, i.e. they do not
change with time. These simplifications are justified in order to solve the problem
mathematically.

The algorithmic implementation of the model has four stages: learning,
imitiation, iteration up to convergence and oulput according to the following
standard scheme: The only two possible neuronal states are active s, =+1 and

deactive s, =-1. The learning stage consists in specifying the ¥
synaptic matrix through Hebb’s rule, once a set of persistent states L, is selected.
The family L, belongs to the 2N space of binary vectars of N components with each

entry adopting the values +1 or -1, from Hebbian rule it follows that ¥ is symmetric.
. The initiation stage consists of presenting a vector from configuration space.
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¢ Learning

L,= {f‘,fz,...,é"’} family of p vectorsof N  components,
representing the p a-priori patterns to be learned by the system.
Hebbian synaptic conectivities without self-feedbacks:

i o
0, -GG U+

(1)
w; = 0
s Inpitiation
5,(¢=0) initial state of the j neuron
e lteration up to convergence
Update of state vector §(¢)
s, (t+1) = sign(v (1)) 2)
with
N
v, = zl WS (1)
i=
e  Output

Record the vector obtained in the previous stage.

2. ALGORITHMIC CONVERGENCE PROPERTIES

All the results presented in this and the next section provide the theoretical
background for our comparative study. Their validity is confirmed by our computations,
as indication in Section 4.

The algorithmic convergence properties ' depend on the operation mode and
the structure of synaptic matrix, these issues are investigated in the next forthcoming
two subsections .
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2.1 Warranting convergence in serial operation mode

The asynchronic updating process is carried out following Eq. (2), and the
output is the vector to which it converges after iteration.

We introduce a quadratic function to the model

1
Q_—_——Z-Zw,js,sj Vi Vj (3)
if

similar to that defined by Hopfield ®. This quadratic function is called “energy” of
these recurrent dynamics. Then, it is known that the asynchronic operation of the
algorithm warrants convergence.

Let s/ the new value of the unit j, and s, its previous value. Then the

s = sigﬂ(Zwﬁs,)
i

following relations hold :

AQ=AQ, = Zwusisl
i
sign(z w,,s,) # sign(s,)
AQ <0

The asynchronic algorithmic operation in the 2V state discrete binary space with
constant Hebbian matrix (1), dynamic rule (2) evolves with an “energy” decrease
(3). (Otherwise , s\=s, and AQ =0 , there is not change of the unit j ). From the
relations indicated above, it follows also thar the system undergoes the same
convergence properties once self-feedback is allowed (i.e. w, #0) .

2.2 Warranting convergence in parallel operation mode
2.2.1 Mutually orthogonal patterns

This recurrent model updates in synchronic operation mode with Hebb's rule
(1) and self-feedbacks (w, # 0) and evolves with an ever-decreasing “energy” function
for mutually orthogonal patterns. No cycles can occur in this particular symmetric case

1 :
in which the synaptic matrix is directly W = VZZZ 1t statement is valid in the more
4

general analysis at the next subsection. Otherwise, the self-feedbacks lack (W, = 0)
becomes the previous avowal not longer true and cycles of length 2 could appear so
the algorithm may be trapped in a 2-cycle between two states with the same Q

quadratic function value "',
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2.2,2 Linearly independent patterns

The Hebb's rule (1) with self-coupling does not warrant an ever decreasing
energy function or algorithmic convergence in parallel operation mode for general
linearly independent patterns and updating by Eq. (2). In this situation, Eq. (1) must
be changed for the projection rule in which the synaptic tensor is constructed as

W=22x" “4)
where X is the Moore-Penrose pseudoinverse.

Thus, during the evolution of the system performing parallel iterations, the encrgy is an
ever decreasing function. Therefore, no cycles can occur. A similar result holds valid for
the evolution of a network in which one necuron only reevaluates its state at each time
step ( sequential operation ) as indicated below.

We consider the evolution of a network, designed afier the projection rule, from a state
K=1K(t) to a state K(¢+1) in one parallel iteration: first, the network computes the
potential vector v by the relation ¥ = Wx(t); then, the update rule (2), sets the network

into the state k(¢ +t) such that (E(t + r))T V= Zlv,].
i

Consider a vector k¥ #%(t+1) , the difference between them arising from at least one

component j with (vj s 0), then (E')Ti? = Z‘v, |1<;K(l‘ +1),. At least the jth term of the

i
sum is equal to —Ivjl , SO Zlv,}K.;K(t+t),<Zlv,
i i

it leads to Lq. (5) :

&z +0)-3] <[k -¥] | (5)
Eq. 5 sets that if the state k(r) has all components of ¥ =W«x(t) different from zero,

the next state K(¢+1) will be the vector of {~1,+1}" which is closest to v ( with respect
to the Euclidean distance).

The quadratic function associated to these recurrent networks is proportional (o
the square of the synaptic potential vector'' . If the network evolves from a state to
another different state, it is performed with a decreasing the associated ‘“energy”

Sunction Q.

After the learning stage is completed, one parallel iteration takes place, so, the
K(t) state becomes the £(¢ + 7) state , where the delay time is selected equal to one ,
i e,z =1_1It consists in the cvaluation of potencial vector v =WK and applies the
updating rule (2). Let ™ a vector that verifies & # £(f 4+ 7) and it assumes that the ¥
entries are nonzero. In this particular case x(¢-+ 7) will be the 2" vector which is
closest to v with respect to the Euclidean distance, therefore, by Eq. 5
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K-> kee+)-¥] VR +1) = £(@) (6)

Since Wk (¢ + 1) is the vector belonging to the subspace spanned by the patterns closest
to xK(¢ +1),

Ik(e+ 1) =wrer+ D) <[fee+ 1)~ wiee)) i £(e+ 1) # £(2) 7

thus the previous two inequalities: gives “l?(t +1)= Wk (t + l)” < “fc(t) - WI—E(t)Il
and it is equivalent to

O(r(t+1)) < Xx(1)) (8)

For practical purposes, however, paralicl operation is morc efficient as far as
computation time are concerncd. Otherwise when operating in asynchronic mode, will
always lead to a stable state which corresponds to a local minimum in the quadratic
function ). This property suggests the use of the model as a device for performing a

Jocal search algorithm in order to find a local minimum value of the quadratic function.

3. STABILITY AND ATTRACTIVITY PROPERTIES

3.1 Parallel dynamics with orthogonal patterns

Let (&8, 67} be a family of p orthogonal patterns p< N and T the p-range
matrix formed by them. Matrix W is calculated by the projection rule which, in this case,
it is reduced to Hebb’s rule (1) with w, # 0. Let 1} be a state different from the patterns.
We investigate the evolution of the system when started in state 1. Thus W1 is a lincar
combination of the p orthogonal patterns , the coeflicients of which are the inner
products of E“ and 11 . Since the components of these vectors are -1’s and +1’s , we
get:

. I . .;. ’ -
(&) 77 =n=2d,(E*,i) ©
where d ,,({;? #,17) is the Hamming distance between the states &" and #j. We denote

d ,,(f_,_':”,ﬁ) by M, then IVﬁ:( %)i(;z—ZHH)E“. A suflicient condition for the

u=1/

attractivity of the pattern EV , while the system evolves from a slate fjto pattern & in
one iteration is (FVI?)if, "> 0, forall i, it issatisfied if

ﬁ:(zz ~ 20 Jee | <n-21, Vi (10)

n=17
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The triangular inequalities of Hamming distance and the orthogonality of the patterns
E" and &Y direct to Eq. 11

ﬁ(n—zﬁ'“)g;'a <2H (p—1) (11)

u=/
p#v

Consequently, if 2H,(p—1) <n—2H, is satisfied, relation (10) will be verified, thus the
network will certainly evolve from state 1 to state EV . The last relation implies that :

H,<%, (12).

In summary, if a state Wlies within a distance of '} 2p of a pattern £ First,
& is the nearest pattern, and finally the network will evolve from state 1 to state E" in
one iteration’. It should be noticed that % » is a lower limit of the size of basin of

attraction of a pattern; starting states lying at larger distance may lead the network to
that pattern. it can be shown similarly that any state lying within a distance of % » of

a state -£” will converge to that state in one iteration '"**.

3.2 Parallel dynamics and linearly independent patterns

If the patterns are not orthogonal, an order of magnitude of the average minimun
attractivity is given by 72/ 27, where # is the rank of the pattern family'?

3.3 Serial dynamics

The stability for multi patterns / <p < p in serial operation mode, Hebbian
transition matrix (1) with w, #0 .

sigi-/(Zwa;;j =E (Vi) (13)
=& +——Zf &g

( \
N p |
<[ )L—f; P aia,)J (14)
: L:
LAV
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The stability condition (13) for several persistent states of the Hebbian matrix
with w, # 0 imposes the validity of (14), that shows that if & is stable, -€ is also
stable.

The asynchronic updating with Hebbian synaptic matrix (1) with w, # 0 andp -
vectors (£ €7, EF ) stability of the 2V state discrete binary configuration space and
dynamic rule (2) has stability in its respective negatives.

4. RELEVANT DYNAMICAL FEATURES AS REVEALED BY SIMULATION

Prior to a detailed analysis, it is worth mentioning that the stability of the learned
patterns in the systems we focus upon is not sufficient to warrant the emergence of
associative memory. Clearly, the most extreme case of uselessness as memory associative
function is furnished by the orthogonal patterns of complete range, i. e., when
w = i~ hadamard(N)*hadamard(N)" .

An important requirement for a system to feature an associative memory is that
the stable patterns must have a sizable basin of attraction. This ensures the retrieval of
the full memory by an input which contains only partial informatjon on it. Let be & the
ratio between the numbers of linearly - independent patterns over the numbers of units,
so, a = p/ N. On the other hand, whenever we have mutually orthogonal patterns with
a ='. we get poor attractive properties. This represents another limit situation which
is almost useless in vyiclding an associative memory function. For instance, let
Y =hadamard(1:N,1:N/2) and w=n""Z(X)", almost all states of configuration space are
stable but they are weak attractors.

In general terms, if we have linearly-independent patterns whith « approaching
Y, , the systems are losing its attractive character for the patterns, so that, they cease to
provide associative memory if & > 1/ 2, although they have pattern stability for @ < 1.
Thus, the attractivity of the patterns falls sharply if p becomes of the order of N /2,

and concurrently, the number of stable nonprototype states increases BB

Let’s consider the set of ten target vectors represented below in Figure 1. They
have been sketched by our graphic tool. These patterns are the ten digits in the decimal
digits and we assume that they are the a-priori memories of the system.

First at all, we have checked the validity of our algorithms using the theoretical
underlays previously detailed. Thus, we pose the following question: What happens with
the stability of this particular set -Figure 1- as we introduce the four different synaptic
tensors ?

This family is a set of linearly-independent vectors with range equals to ten, but
are not a mutually orthogonal memory sct. Then only the projection rule warrants the
stability of their components. This fact has been verified in one of our numerical
experiences. The diagonal coefficients of the projection matrix are smaller than or cqual
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to one, then pattern stability was also shown to hold when self-coupling was removed.
Other simulations confirm that the synaptic tensor constructed by the projection rule with
self-coupling decrease its associative memory function with respect to the same system.
We obviously exclude the main diagonal. Therefore, the pattern attractivity is altered
depending on whether self-coupling is allowed or not allowed under the projection
synaptic matrix ', while synchronic updating is performed. All asynchronic
manipulations make it apparent the absence of spurious limit cycles for systems with
self-coupling and the projection synaptic tensor. If the updating is carried out in the
asynchronic mode, both random selection or specific order selection neuron updating
evolves to the same final state as in the synchronic mode if the initial state and the final
state are not involved in a limit length 2 cycle. Possibly the emergence of limit cycles of
length 2 for synaptic tensor is obtained by projection rule without self-coupling, while
the systems are operated under synchronic regimen. In these cases, the differentiable
asynchronic dynamics spread to diflerent local minima .

The Hebbian synaptic tensor does not warrant the pattern stability for this family
and the digits 1, 2, 7 and 8 are unstable. The self-coupling cancelling for Hebbian matrix
undergoes the stability loss for seven of the ten prototypes. Only the numbers 0,5, and 9
preserve their stability. This kind of behaviour is opposite to that of the projection rule
behavior. Therefore, for linearly independent patterns with Hebbian matrix self-coupling
whether allowed or forbidden also alter the stability of a priori patterns.

In general, synchronic dypamics may lead to attractors which are cycles rather
than fixed states™. For symmetric synaptic tensors such as that given in the present
context, the cycles are at most of length 2. For our particular example the lack of self-
coupling generated the presence of spurious cycles of length 2 for projection rule
synapses ', as we have readily probed.

Our simulations make evident that the basins of attraction are sensitive to the
details of the dynamics. For instance, asynchronic and synchronic dynamics may defline
different basins of attraction. The basins may be aflected also by the order of updating in
the asynchronous mode. This last statement is validated since our modular tools can
handle the two differential ways for asynchronic update. One has a random selection for
the neuron update and the other permits us to select the choosing order of neuronal
selection updating.

All asynchronic manipulations in general could be use as an algorithm that
searchs for spurious stable states in each particular synaptic tensors and then the
algorithmic outputs could be match for synchronic updating performance.

To conclude, the stable state patterns under determined synaptic tensors are
stable for both synchronic or asynchronic updating, although their attractive basins are
altered. In addition, the attractive basins are aflected if in asynchronous operation mode
of the neuron order selection of updating is changed.
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5. CONCLUDING REMARKS

In this work we have investigated two different deterministic neurodynamic
contexts within a unifying approach. Thus, the convergence and stability propertics of
both the magnetic spin and neurophysiological systems have been established, focusing
on the interrelationship between such properties and the synaptic and updating features
of the systems. A set of modular representational tools enabling a qualitative assessment

of the dynamical characteristics has been implemented to facilitate our comparative
analysis.
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