W_{n+1} -algebras with an additional operation

Marina B. Lattanzi

Abstract

In this paper, we investigate the (n+1)-bounded Wajsberg algebras (or W_{n+1} -algebras) with an additional operation which is an automorphism of period k. We characterize the congruences and the subdirectly irreducible algebras. Finally, we determine the structure of the free algebra over a finite set of generators.

1 Preliminaries

In this section, we define and give properties of Wajsberg algebras. Properties of Wajsberg algebras can be found in [3, 4, 5, 6].

Definition 1.1 An algebra $\mathcal{A} = (A, \rightarrow, \sim, 1)$ of type (2, 1, 0) is a Wajsberg algebra (or W-algebra) if the following identities are verified:

(W1)
$$1 \rightarrow x = x$$
,

(W2)
$$(x \rightarrow y) \rightarrow ((y \rightarrow z) \rightarrow (x \rightarrow z)) = 1$$
,

(W3)
$$(x \rightarrow y) \rightarrow y = (y \rightarrow x) \rightarrow x$$
,

(W4)
$$(\sim y \rightarrow \sim x) \rightarrow (x \rightarrow y) = 1$$
.

We shall denote by W the variety of W-algebras.

It is well known that in any W-algebra the following operations are defined:

(i)
$$0 = \sim 1$$
,

(ii)
$$a \lor b = (a \rightarrow b) \rightarrow b$$
,

(iii)
$$a \wedge b = \sim (\sim a \vee \sim b)$$
,

(iv)
$$a + b = \sim b \rightarrow a$$
,

(v)
$$0 \cdot a = 0$$
, $(n+1) \cdot a = n \cdot a + a$ for all positive integer n.

Lemma 1.1 ([4, 5]) For any $A \in \mathbf{W}$ it holds:

$$(W5) \ x \rightarrow x = 1,$$

(W6)
$$(A, \vee, \wedge, \sim, 0, 1)$$
 is a Kleene algebra where $x \leq y$ if and only if $x \rightarrow y = 1$,

$$(W7) \ x \rightarrow (y \rightarrow x) = 1,$$

(W8)
$$x \rightarrow 0 = \sim x$$
,

(W9)
$$x \le y$$
 implies $z \to x \le z \to y$,

(W10)
$$x \le y \to z \text{ implies } y \le x \to z,$$

(W11)
$$(x \lor y) \rightarrow z = (x \rightarrow z) \land (y \rightarrow z)$$
.

Let [0,1] be the unitarian interval of the totally ordered additive group of real numbers, then $R[1] = ([0,1], \rightarrow, \sim, 1)$ is a W-algebra where the operations \rightarrow and \sim are defined by the formulas

$$x \to y = min \{1, 1 - x + y\}$$
 and $\sim x = 1 - x$.

It is known (see [4]) that **W** is generated by R[1]. On the other hand, for every positive integer n, $C_{n+1} = \{0, \frac{1}{n}, \frac{2}{n}, \dots, \frac{n-1}{n}, 1\}$ is a subalgebra of R[1] and C_{n+1} is a subalgebra of C_{m+1} if and only if n divides m (or for short n/m).

If $A \in \mathbf{W}$, B(A) denotes the set of Boolean elements of A and if A is finite, At(B(A)) denotes the set of atoms of B(A).

Lemma 1.2 ([4, 5]) Let $A \in W$. For all $a \in A$, the following conditions are equivalent:

- (i) $a \in B(A)$,
- (ii) $a \wedge \sim a = 0$,
- (iii) $2 \cdot a = a$,
- (iv) $a \rightarrow b = \sim a \lor b$, for all $b \in A$.

Definition 1.2 Let $A \in \mathbf{W}$. A subset $D \subseteq A$ is a deductive system (d.s.) if it verifies:

- (D1) $1 \in D$,
- (D2) $a, a \rightarrow b \in D \text{ imply } b \in D.$

In every finite W-algebra, the d.s. are principal filters generated by the elements of B(A) and the maximal d.s. are principal filters generated by the elements of At(B(A)).

Let $A \in \mathbf{W}$ and $a, b \in A$, [a, b] denotes the set $\{x \in A : a \le x \le b\}$.

Theorem 1.1 ([5]) Let $A \in \mathbf{W}$ be finite. Then $A \simeq \prod_{a \in Al(B(A))} [0, a]$, where $[0, a] \simeq C_{r+1}$ if |[0, a]| = r + 1. ($D \simeq E$ denotes isomorphic algebras)

Definition 1.3 A W-algebra A is a W_{n+1} -algebra, if the following identity holds:

(W12)
$$\sim a \vee n \cdot a = 1$$
.

We shall denote by W_{n+1} the variety of W_{n+1} -algebras.

Theorem 1.2 ([5]) Let $A \in W_{n+1}$. The following conditions are equivalent:

- (i) A is simple,
- (ii) $A \simeq C_{r+1}$, for some $r, 1 \le r \le n$.

Let $A \in \mathbf{W}$ and $D \subseteq A$. D is a Stone filter if it is a lattice filter and for all $d \in D$ there is $a \in D \cap B(A)$ such that $a \leq d$. For any $A \in \mathbf{W}_{n+1}$, $D \subseteq A$ is a d.s. if and only if it is a Stone filter. Besides, the sets of completly irreducible, irreducible, prime and maximal d.s. of A coincide, and we will denote them as $\mathcal{E}(A)$.

Theorem 1.3 ([5]) If $A \in W$ has more than one element, then A is a subdirect product of $\{A/M\}_{M \in \mathcal{E}(A)}$, where $A/M \simeq C_{i+1}$ for any $i, 1 \leq i \leq n$. Furthermore, if A is finite, then A is a direct product of $\{C_{i+1}^{m_{i+1}}\}_{1 \leq i \leq n}$, where $m_{i+1} = |M_{i+1}|$ and $M_{i+1} = \{D \in \mathcal{E}(A) : |A/D| = i+1\}$.

If A is finite, Theorem 1.3 and Theorem 1.1 coincide.

2 k-cyclic W_{n+1} -algebras

In this section, we introduce the definition of k-cyclic W_{n+1} -algebras, and we give properties of these algebras. We determine the simple k-cyclic W_{n+1} -algebras and we prove that these algebras coincide with the subdirectly irreducible ones.

Definition 2.1 Let n and k be positive integers. An algebra $(A, \to, \sim, \tau, 1)$ of type (2, 1, 1, 0) is a k-cyclic W_{n+1} -algebra (or $W_{n+1,k}$ -algebra) if $A = (A, \to, \sim, 1)$ is a W_{n+1} -algebra and $\tau : A \to A$ is an automorphism such that $\tau^k(x) = x$ for all $x \in A$.

The variety of k-cyclic W_{n+1} -algebras will be denoted by $\mathbf{W}_{n+1,k}$. As usual the elements of $\mathbf{W}_{n+1,k}$ will be denoted simply by A o by (A,τ) in case we want to specify the automorphism. In what follows, I(A) will be the set of the elements of A invariant by τ .

Example 2.1 Let n and k be positive integers. For each integer t, such that $1 \le t \le n$, let $C_{t+1,k} = (C_{t+1,k}, \tau)$, where $C_{t+1,k}$ is the product of k copies of C_{t+1} , and τ is defined by

$$\tau(x)(i) = \begin{cases} x(i-1), & \text{if } i \neq 1 \\ x(k), & \text{if } i = 1 \end{cases}$$

It is easy to see that $C_{t+1,k} \in \mathbf{W}_{n+1,k}$. If $j \geq k$, then

$$\tau^{j}(x)(i) = \tau^{r}(x)(i) = \begin{cases} x(i-r), & \text{if } i > r \\ x(i-r+k), & \text{if } i \le r \end{cases},$$

where j = qk + r, $0 \le r < k$.

Definition 2.2 Let $(A, \tau) \in W_{n+1,k}$. A kernel of A is a subset $N \subseteq A$ such that:

- (i) N is a d.s.,
- (ii) N verifies (D3): if $x \in N$ then $\tau(x) \in N$.

We shall denote by $\mathcal{N}(A)$ and Con(A) the sets of kernels and congruences of A respectively.

Lemma 2.1 If $(A, \tau) \in W_{n+1,k}$, then $Con(A) = \{R(N) \subseteq A \times A : N \in \mathcal{N}(A)\}$, where $R(N) = \{(x, y) \in A \times A : x \to y, y \to x \in N\}$.

If A is an algebra with more than one element, the family of proper kernels of A is a upper inductive, therefore every proper kernel of A is contained in a maximal one.

Lemma 2.2 Let $(A, \tau) \in W_{n+1,k}$. For any $N \in \mathcal{N}(A)$ it holds:

- (C3) $\tau(N) = N$,
- (C4) If X is a subset of A such that $N \subseteq X$, then $N \subseteq \tau(X)$.

Lemma 2.3 In any $(A, \tau) \in W_{n+1,k}$ it holds:

- (i) if D if a maximal d.s. of A, then $N = D \cap \tau(D) \cap \ldots \cap \tau^{k-1}(D)$ is a maximal kernel of A,
- (ii) if N is a maximal kernel of A, then there is a maximal d.s. D of A such that $N = D \cap \tau(D) \cap \ldots \cap \tau^{k-1}(D)$.

Proof. (i): Cleary N is a d.s. of A. Besides, if $x \in N$, then $x \in \tau^{j}(D)$ for every j, $0 \le j \le k-1$. Hence $\tau(x) \in \tau^{j+1}(D)$ for every j, $0 \le j \le k-1$ and so $N \in \mathcal{N}(A)$. Now, suppose that there is $M \in \mathcal{N}(A)$ such that $N \subseteq M$ and $M \ne A$. Let $D' \in \mathcal{E}(A)$ be such that $M \subseteq D'$. As D' is prime, there is j, $0 \le j \le k-1$, such that $\tau^{j}(D) \subseteq D'$ and so $D \subseteq \tau^{k-j}(D')$. Since D is maximal, it follows that $D = \tau^{k-j}(D')$. Then, $M \subseteq D' = \tau^{j}(D)$ and by (C4) we have $M \subseteq N$.

(ii): As N is a d.s. of A, there is $D \in \mathcal{E}(A)$ such that $N \subseteq D$. From (C4) $N \subseteq D \cap \tau(D) \cap \ldots \cap \tau^{k-1}(D)$ and taking into account that both are maximal kernels, the equality holds.

We will say that a maximal d.s. D is of period d, if d is the least positive integer such that $\tau^d(D) = D$. In this case, we will say that the maximal kernel $N = D \cap \tau(D) \cap \ldots \cap \tau^{d-1}(D)$ is of period d (or d-kernel for short).

Remark 2.1 It is easy to check that:

- (i) if D is a maximal d.s. of period d, then d/k,
- (ii) if $N = D \cap \tau(D) \cap \ldots \cap \tau^{d-1}(D)$ is a d-kernel of A, then D, $\tau(D), \ldots, \tau^{d-1}(D)$ are the unique maximal d.s. which contains N.

Lemma 2.4 If $A \in W_{n+1,k}$ has more than one element, then the intersection of all maximal kernels of A is $\{1\}$.

Proof. Let $\{N_i\}_{i\in I}$ be the family of all maximal kernels of A. For each $i\in I$ there is a maximal d.s. D_i of period k_i such that $N_i\subseteq D_i$. It follows at once from Lemma 2.3 and Remark 2.1 (ii) that $\mathcal{E}(A)=\{D_i,\tau(D_i),\ldots,\tau^{k_i-1}(D_i)\}_{i\in I}$. Hence, $\bigcap_{i\in I}N_i=\bigcap_{i\in I}D_i\cap\tau(D_i)\cap\ldots\cap\tau^{k_i-1}(D_i)=\bigcap\{D:D\in\mathcal{E}(A)\}=\{1\}$.

Theorem 2.1 Any $A \in W_{n+1,k}$ with more than one element is a subdirect product of the family $\{A/N : N \text{ is a maximal kernel of } A\}$.

Proof. It follows from Lemma 2.4 and from a well - known result of universal algebra. \square

Lemma 2.5 If $A \in W_{n+1,k}$, then the following properties are satisfied:

- (C5) [a, 1] is a kernel if and only if $a \in B(A) \cap I(A)$.
- (C6) [a, 1] is a maximal kernel if only if a is an atom of the Boolean algebra $B(A) \cap I(A)$.
- (C7) If $a \in At(B(A))$, then $a \vee \tau(a) \vee \ldots \vee \tau^{k-1}(a)$ is an atom of $B(A) \cap I(A)$.

It is clear that if (A, τ) is a finite algebra, every kernel is a principal filter. Besides, if $\Pi(A)$ is the poset of prime elements of A and $C \subseteq \Pi(A)$ is a connected component of A, then $\tau(C)$ so is.

Theorem 2.2 Let $A \in W_{n+1,k}$ be finite non trivial and $\{N_i\}_{1 \le i \le r}$ be the set of maximal kernels of A. Then A is a direct product of the family $\{A/N_i\}_{1 \leq i \leq r}$.

Proof. By Theorem 2.1 there is monomorphism $h:A\to\prod_{i=1}^rA/N_i$ such that for each $a \in A$, $h(a) = (q_{N_i}(a))_{1 \le i \le r}$, where $q_{N_i} : A \to A/N_i$ is the canonical homomorphism.

Let $y \in \prod_{i=1}^r A/N_i$, from (C6) for each $i, 1 \le i \le r$ there is $b_i \in At(B(A) \cap I(A))$ such that (1) $(x_i, y(i)) \in R(N_i)$, where $N_i = [b_i, 1]$ and $x_i = y(i) \wedge b_i$. Let $x = \bigvee_{i=1}^r x_i$, then $x_i \to x = 1 \in N_i$. By (W11) it follows that $x \to x_i = \bigwedge_{i=1}^r (x_j \to x_i)$. From (W8), (W9) and Lemma 1.2 for each $j, j \ne i$, we have $x_j \le b_j \le \sim b_i \le b_i \to x_i$ and by (W10) $x_j \to x_i \in N_i$. Therefore, (2) $(x, x_i) \in R(N_i)$, so (1) and (2) we obtain y = h(x).

Lemma 2.6 If $A \in \mathbf{W}_{n+1,k}$, then the following conditions are equivalent:

- (i) A is simple,
- (ii) $B(A) \cap I(A) = \{0, 1\}.$

Proof. (i) \Rightarrow (ii): It follows from (C5).

(ii) \Rightarrow (i): Let N be a proper kernel of A and $x \in N$. As N is a Stone filter of A, there is $s \in N \cap B(A)$ such that $s \leq x$. If $b = s \wedge \tau(s) \wedge \ldots \wedge \tau^{k-1}(s)$, then $b \in B(A) \cap I(A) \cap N = \{1\}$ and so x = 1. Therefore, $N = \{1\}$.

Theorem 2.3 $C_{t+1,k}$ is simple, for all t, $1 \le t \le n$.

Proof. If $x \in B(C_{t+1,k}) \cap I(C_{t+1,k})$, then $\tau^{j}(x)(i) = x(i)$ for all $i, j, 1 \le i \le k, 1 \le j \le k$ k-1. Besides, $\tau^j(x)(k)=x(k-j)$, hence x(k)=x(k-j) for all $j, 1 \leq j \leq k-1$, that is, x(i) = x(j) for all $i, j \in \{1, ..., k\}$. Let $a \in C_{t+1}$ be such that x(i) = a, $1 \le i \le k$. Since $x \in B(C_{t+1,k})$ from Lemma 1.2 $x \land \sim x = 0$, then $a \land \sim a = 0$, that is $a \in B(C_{t+1}) = \{0,1\}$. Therefore, x = 0 o x = 1 and by Lemma 2.6, $C_{t+1,k}$ is simple.

From Lemma 2.6 it is immediate that any subalgebra of a simple algebra A is simple. Then, the subalgebras of $C_{t+1,k}$, $1 \le t \le n$ are simple.

Lemma 2.7 Any simple $W_{n+1,k}$ -algebra is finite.

Proof. Let $A \in W_{n+1,k}$ be a simple algebra. Then $\{1\}$ is a maximal kernels of A and there is $D \in \mathcal{E}(A)$ such that $\{1\} = D \cap \tau(D) \cap \ldots \cap \tau^{k-1}(D)$. If D is of period d, then from Remark 2.1 (ii) we have $\mathcal{E}(A) = \{D, \tau(D), \ldots, \tau^{d-1}(D)\}$ and by Theorem 1.3, A is finite.

Theorem 2.4 Let $A \in W_{n+1,k}$ be a simple algebra. Then $A \simeq C_{t+1,d}$, where $1 \le t \le n$ and d/k.

Proof. By Lemma 2.7 A is finite and $\mathcal{E}(A) = \{M, \tau(M), \dots, \tau^{d-1}(M)\}$ with d/k. From Theorem 1.1 we have that $\Pi(A)$ is the cardinal sum of chains with at most n elements. On the other hand all the chains of $\Pi(A)$ have the same cardinal number. Indeed, let C_r , $C_s \subseteq \Pi(A)$ be two chains such that $|C_r| = r$, $|C_s| = s$ and $r \neq s$. Let u_r and u_s be the last elements of C_r and C_s respectively. Hence, $u_r, u_s \in At(B(A))$ and $D = [u_r, 1]$ is a maximal d.s. of A. Let α_r be the least positive integer such that $\tau^{\alpha_r}(u_r) = u_r$. Then, α_r/k and $N = [(u_r \vee \tau(u_r) \vee \ldots \vee \tau^{\alpha_{r-1}}(u_r), 1]$ is a maximal kernel of A. Since A is simple, $u_r \vee \tau(u_r) \vee \ldots \vee \tau^{\alpha_{r-1}}(u_r) = 1$. Hence, there exist j, $0 \leq j \leq \alpha_r - 1$ such that $u_s \leq \tau^j(u_r)$, which is a contradiction.

Therefore, for all $D \in \mathcal{E}(A)$, we have that $A/D \simeq C_{t+1}$ for some $t, 1 \leq t \leq n$. By Theorem 1.3, $\varphi: A \to \prod_{D \in \mathcal{E}(A)} A/D$ defined by , $\varphi(x) = (q_M(x), q_{\tau(M)}(x), \dots, q_{\tau^{d-1}(M)}(x))$ for each $x \in A$, is a W-isomorphism. Identifying isomorphic algebras, we have that there is a W-isomorphism between A and $C_{t+1}^{\mathcal{E}(A)}$. Let us consider the automorphism τ defined on $C_{t+1}^{\mathcal{E}(A)}$ as in Example 2.1. To prove that φ is a $W_{n+1,k}$ -isomorphism, we need to show that for every $j, 0 \leq j \leq d-1$, $q_{\tau^j(M)}(x) = q_{\tau^{j+1}(M)(\tau(x))}$. Let $h: A/\tau^j(M) \to A/\tau^{j+1}(M)$ be defined by $h(q_{\tau^j(M)}(x)) = q_{\tau^{j+1}(M)}(\tau(x))$. As τ is a W-automorphism such that $\tau^d = Id$, it is easy to prove that h is an order-isomorphism and this completes the proof.

Let $A \in \mathbf{W}_{n+1,k}$. We will denote by $\mathcal{M}(A)$ the set of maximal kernels of A. Clearly $\{M_{i+1,d}\}_{1 \leq i \leq n,d/k}$, where $M_{i+1,d} = \{N \in \mathcal{M}(A) : A/N \simeq \mathcal{C}_{i+1,d}\}$, $1 \leq i \leq n$ and d/k, is a partition of $\mathcal{M}(A)$ and so $\mathcal{M}(A) = \bigcup_{i=1}^{n} \bigcup_{d/k} M_{i+1,d}$.

Then from Theorems 2.1 and 2.2 we have Theorem 2.5.

Theorem 2.5 If $A \in W_{n+1,k}$ has more than one element, then there is a monomorphism $\varphi: A \to \prod_{i=1}^n \prod_{d/k} (\mathcal{C}_{i+1,d})^{M_{i+1,d}}$. If A is finite, then φ is an isomorphism.

3 Free algebras

In this section, we describe the free $W_{n+1,k}$ -algebra with a finite set of generators. Throughout this section $\mathcal{L} = \mathcal{L}(n+1,k,r)$ denotes the $W_{n+1,k}$ -algebra with a set G of free generators, |G| = r, where r is a positive integer.

To prove the principal result of this section we need to describe the subalgebras of $C_{n+1,k}$.

We will denote by D(r) and M(r) the sets of positive divisors and maximal positive divisors of a positive integer r, respectively. As $C_{n+1,k}$ is polynomially equivalent to a Post algebra of order n+1 (see [6]), the subalgebras of $C_{n+1,k}$ are $S(A,d)=\{f\in C_{n+1,k}: f(i)\in A \text{ for every } i,1\leq i\leq k \text{ and } f(i)=f(j)\text{ if } n/(i-j)\}$ where A is a subalgebra of C_{n+1} and $d\in D(k)$ (see [1]). Besides, $S(A_1,d_1)\subseteq S(A_2,d_2)$ if and only if $A_1\subseteq A_2$ and d_1/d_2 . Hence, the subalgebras of $C_{n+1,k}$ are the algebras $C_{p+1,d}$ with $p\in D(n)$ and $d\in D(k)$. On the other hand, $C_{p_1+1,d_1}\subseteq C_{p_2+1,d_2}$ if and only if p_1/p_2 and d_1/d_2 . It is clear that C_{p_1+1,d_1} is proper subset of C_{p_2+1,d_2} if p_1 is a proper divisor of p_2 or p_2 or p_3 is a proper divisor of p_4 .

The maximal subalgebras of $C_{n+1,k}$ are the algebras $C_{p+1,k}$ with $p \in M(n)$ or $C_{n+1,d}$ with $d \in M(k)$. Therefore, the number of maximal subalgebras of $C_{n+1,k}$ is |M(n)| + |M(k)|.

We will denote by $\bigotimes_{i=1}^r b_i$ and $\bigodot_{i=1}^r b_i$ the greatest common divisor and the least common multiple of the numbers b_1, \ldots, b_r , respectively.

It is easy to see that
$$\bigcap_{i=1}^r C_{p_i+1;d_i} = S(A,d)$$
, where $A = \bigcap_{i=1}^r C_{p_i+1}$ and $d = \bigotimes_{i=1}^r d_i$.

Lemma 3.1
$$\bigcap_{i=1}^{r} C_{p_i+1} = C_{p+1}$$
, where $p = \bigotimes_{i=1}^{r} p_i$.

Proof. It is simple to see that $C_{p+1} \subseteq \bigcap_{i=1}^r C_{p_i+1}$. Let $p = \bigotimes_{i=1}^r p_i$ and $x \in \bigcap_{i=1}^r C_{p_i+1}$ such that $x = \frac{h_i}{p_i}$, $1 \le i \le r$, $0 \le h_i \le p_i$. Then $p \cdot x = p \cdot \frac{h_1}{p_1} = p \cdot \frac{h_2}{p_2} = \dots = p \cdot \frac{h_r}{p_r}$ and

$$p_1 \cdot p_2 \cdot \ldots \cdot p_r = p \cdot \bigodot_{i=1}^r p_i$$
. Hence, for each $j, 1 \leq j \leq r$ we have $p_j = p \cdot \cfrac{\bigodot_{i=1}^r p_i}{\prod\limits_{i \neq j} p_i}$. Therefore,

$$p \cdot x = \frac{\prod_{\substack{i \neq 1 \\ 0 \neq i}} p_i}{\bigcup_{\substack{i=1 \\ i \neq i}} p_i} = \dots = \frac{\prod_{\substack{i \neq r \\ i \neq r}} p_i}{\bigcup_{\substack{i=1 \\ i \neq i}} p_i}. \text{ Let } a = h_1 \cdot \prod_{\substack{i \neq 1 \\ i \neq i}} p_i = \dots = h_r \cdot \prod_{\substack{i \neq r \\ i \neq r}} p_r. \text{ As } p_i/a \text{ for each } i,$$

$$1 \le i \le r$$
, we have that $\bigodot_{i=1}^r p_i/a$ and so px is a integer, i.e. $x \in C_{p+1}$.

Corollary 3.1
$$\bigcap_{i=1}^{r} C_{p_i+1,d_i} = C_{a+1,b}$$
, where $a = \bigotimes_{i=1}^{r} p_i$ and $b = \bigotimes_{i=1}^{r} d_i$.

Let $(A, \tau) \in \mathbf{W}_{n+1,k}$ and $X \subseteq A$. We will denote by [X] the $W_{n+1,k}$ -subalgebra of A generated by X.

By [2], the number of elements of $\mathcal{L}(n+1,k,r)$ coincide with the numbers of elements

of the free W_{n+1} -algebra with kr generators. On the other hand, by [5] we have that $\mathbf{W_{n+1}}$ is locally finite and therefore $\mathcal{L}(n+1,k,r)$ is finite. Then by Theorem 2.5 we have

$$\mathcal{L} = \mathcal{L}(n+1, k, r) \simeq \prod_{i=1}^{n} \prod_{d \in D(k)} (\mathcal{C}_{i+1, d})^{M_{i+1, d}}.$$

In a similar way to [1] we prove that

$$|M_{i+1,d}| = \mu(i,d,r) = \frac{|Epi(\mathcal{L}, \mathcal{C}_{i+1,d})|}{d}.$$
 (1)

Now, let us consider

$$F(i,d,r) = C_{i+1,d}^G,$$

 $F'(i,d,r) = \{ f \in F(i,d,r) : f(G) \not\subseteq S \text{ for all maximal subalgebra } S \text{ of } C_{i+1,d} \},$

$$F''(i',d,r) = \{ f \in F(i,d,r) : f(G) \subseteq C_{i'+1,d}, \ i' \in M(i) \},$$

$$F''(i, d', r) = \{ f \in F(i, d, r) : f(G) \subseteq C_{i+1, d'}; d' \in M(d) \}.$$

Then,

$$|F(i,d,r)| = (i+1)^{dr}.$$
 (2)

Let $f: G \to C_{n+1,k}$ and $C_{i+1,d}$ a subalgebra of $C_{n+1,k}$. Then $[f(G)] = C_{i+1,d}$ if and only if $f(G) \subseteq C_{i+1,d}$ and $f(G) \not\subseteq S$ for all maximal subalgebra S of $C_{i+1,d}$. Hence, we have

$$\delta(i,d,r) = |F'(i,d,r)| = |Epi(\mathcal{L}, \mathcal{C}_{i+1,d})|. \tag{3}$$

On the other hand,

$$_{\mathcal{A}}F'(i,d,r) = F(i,d,r) \setminus \left(\bigcup_{i' \in M(i)} F''(i',d,r) \cup \bigcup_{d' \in M(d)} F''(i,d',r) \right),$$

therefore,

$$|F'(i,d,r)| = |F(i,d,r)| - \left| \bigcup_{i' \in M(i)} F''(i',d,r) \right| - \left| \bigcup_{d' \in M(d)} F''(i,d',r) \right| +$$

$$\left| \bigcup_{i' \in M(i)} F''(i',d,r) \cap \bigcup_{d' \in M(d)} F''(i,d',r) \right|.$$

$$(4)$$

Let

$$\alpha(i,d,r) = \left| \bigcup_{i' \in M(i)} F''(i',d,r) \right|,$$

$$\beta(i,d,r) = \left| \bigcup_{d' \in M(d)} F''(i,d',r) \right|,$$

$$\gamma(i,d,r) = \left| \bigcup_{i' \in M(i)} F''(i',d,r) \cap \bigcup_{d' \in M(d)} F''(i,d',r) \right|.$$

For all finite set \mathcal{J} , holds

$$\left| \bigcup_{j \in \mathcal{J}} A_j \right| = \sum_{X \subseteq \mathcal{J}, X \neq \emptyset} (-1)^{|X|-1} \left| \bigcap_{j \in X} A_j \right|. \tag{5}$$

Then, by (5) and Corllary 3.1, it follows that

$$\alpha(i,d,r) = \sum_{X \subseteq M(i),X \neq \emptyset} (-1)^{|X|-1} \left| \bigcap_{j \in X} F''(j,d,r) \right|,$$

$$\bigcap_{j \in X} F''(j,d,r) = \left\{ f \in F(i,d,r) : f(G) \subseteq C_{j'+1,d}; j' = \bigotimes_{j \in X} j \right\},$$

$$\beta(i,d,r) = \sum_{Y \subseteq M(d),Y \neq \emptyset} (-1)^{|Y|-1} \left| \bigcap_{j \in Y} F''(i,j,r) \right|,$$

$$\bigcap_{j \in Y} F''(i,j,r) = \left\{ f \in F(i,d,r) : f(G) \subseteq C_{i+1,j'}; j' = \bigotimes_{j \in Y} j \right\},$$

thus,

$$\left| \bigcap_{j \in X} F''(j, d, r) \right| = \left(\bigotimes_{j \in X} j + 1 \right)^{dr},$$

$$\alpha(i, d, r) = \sum_{X \subseteq M(i), X \neq \emptyset} (-1)^{|X| - 1} \left(\bigotimes_{j \in X} j + 1 \right)^{dr},$$

$$\left| \bigcap_{j \in Y} F''(i, j, r) \right| = (i + 1)^{\frac{r \cdot \bigotimes_{j \in Y} j}{j \in Y}},$$
(6)

$$\beta(i,d,r) = \sum_{Y \subseteq M(d), Y \neq \emptyset} (-1)^{|Y|-1} (i+1)^{r \cdot \bigotimes_{j \in Y} j}.$$
 (7)

To compute $\gamma(i, d, r)$ let us observe that

$$\bigcup_{i'\in M(i)}F''(i',d,r)\cap\bigcup_{d'\in M(d)}F''(i,d',r)=\bigcup_{i'\in M(i),d'\in M(d)}(F''(i',d,r)\cap F''(i,d',r)),$$

$$F''(i',d,r) \cap F''(i,d',r) = F''(i',d',r) = \{ f \in F(i,d,r) : f(G) \subseteq C_{i'+1,d'} \}.$$

Therefore,

$$\gamma(i,d,r) = \sum_{Z \subseteq M(i) \times M(d), Z \neq \emptyset} (-1)^{|Z|-1} \left| \bigcap_{Z \ni (i',d')} F''(i',d',r) \right|.$$

Let us consider

$$Z_1 = \{i' \in M(i) : (i', d') \in Z \text{ for some } d' \in M(d)\},\$$

$$Z_2 = \{d' \in M(d) : (i', d') \in Z \text{ for some } i' \in M(i)\}.$$

Then,

$$\bigcap_{(i',d')\in Z} F''(i',d',r) = \left\{ f \in F(i,d,r) : f(G) \subseteq C_{s+1,t}, s = \bigotimes_{i' \in Z_1} i', t = \bigotimes_{d' \in Z_2} d' \right\},$$

$$\left| \bigcap_{(i',d')\in Z} F''(i',d',r) \right| = \left(\bigotimes_{i'\in Z_1} i' + 1 \right)^{r \cdot \bigotimes_{d'\in Z_2} d'},$$

$$\gamma(i,d,r) = \sum_{Z\subseteq M(i)\times M(d), Z\neq\emptyset} (-1)^{|Z|-1} \left(\bigotimes_{i'\in Z_1} i' + 1 \right)^{r \cdot \bigotimes_{d'\in Z_2} d'}.$$
(8)

From (2), (4), (6), (7) and (8), we have

$$\delta(i,d,r) = (i+1)^{dr} - \alpha(i,d,r) - \beta(i,d,r) + \gamma(i,d,r).$$

So, we have proved the following theorem:

Theorem 3.1 $\mathcal{L}(n+1,k,r)$ is isomorphic to $\prod_{i=1}^n \prod_{d \in D(k)} C_{i+1,d}^{\mu}$, where

(i)
$$\mu = \frac{\delta}{d}$$
,

(ii)
$$\delta = (i+1)^{dr} - \alpha - \beta + \gamma$$
,

(iii)
$$\alpha = \sum_{X \subseteq M(i), X \neq \emptyset} (-1)^{|X|-1} \left(\bigotimes_{j \in X} j + 1 \right)^{dr}$$
,

(iv)
$$\beta = \sum_{Y \subseteq M(d), Y \neq \emptyset} (-1)^{|Y|-1} (i+1)^{r \cdot \bigotimes_{j \in Y} j}$$
,

(v)
$$\gamma = \sum_{Z \subseteq M(i) \times M(d), Z \neq \emptyset} (-1)^{|Z|-1} \left(\bigotimes_{i' \in Z_1} i' + 1 \right)^{r \cdot \bigotimes_{d' \in Z_2} d'}$$
.

Acknowledgement

The author would like to thank Dr. A. Figallo for his constant encouragement and valuable guide.

References

- [1] M. Abad, Estructuras Cíclica y Monádica de un álgebra de Lukasiewicz n-valente, Notas de Lógica Matemática 36 (1988), Univ. Nac. del Sur.
- [2] M. Abad y A. V. Figallo, Free k-cyclic algebras, Cuadernos del Instituto de Matemática Serie A Nro. 1–2 (1985), Facultad de Ciencias Exactas, Físicas y Naturales, Univ. Nac. de San Juan, Argentina.
- [3] A. V. Figallo, Algebras Implicativas de Lukasiewicz (n + 1)-valuadas con diversas operaciones adicionales, Tesis Doctoral, Univ. Nac. del Sur, 1990.
- [4] J. M. Font, A. J. Rodriguez and A. Torrens, Wajsberg algebras, Stochastica 8 (1984), Nro. 1, 5–31.
- [5] A. J. Rodríguez, Un estudio algebraico de los Cálculos Proposicionales de Lukasiewicz, Tesis Doctoral, Univ. de Barcelona (1980).
- [6] A. J. Rodríguez and A. Torrens, Wajsberg Algebras and Post Algebras, Studia Logica, 53(1994), 1–19.

Marina B. Lattanzi,

Facultad de Ciencias Exactas y Naturales,

Universidad Nacional de La Pampa,

Av. Uruguay 151 - 6300 Santa Rosa - Argentina.

e-mail: rmarinio@criba.edu.ar