W,+1—algebras with an additional operation

Marina B. Lattanzi

Abstract
In this paper, we investigate the (n+ 1)-bounded Wajsberg algebras (or W, -
algebras) with an additional operation which is an automorphism of period k. 'We
characterize the congruences aud the subdirectly irreducible algebras. Finally, we
determine the structure of the frec algebra over a finite set of generators.

1 Preliminaries

Iu this section, we define and give propertics of Wajsherg algebras. Properties of
Wajsberg algebras can be found iu [3, 4, 5, ¢).

Definition 1.1 An algebra A = (A=, ~ 1) of type (2,1,0) is a Wagsherg algebra (or
W-algebra) if the following identities are verificd:

We shall denote by W the variety of W-algehras.

It is well known that in any W-algebra the following operations are delined:

v) O0-a=0,(n+1) a=un-a+a lor all positive integer 1.
) 1 g
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Lemma 1.1 ([4, 5]) For any A € W it holds:
r—x =1,

r—(y—a) =1,

o <y amplies z—w < z—vy,
r<y—zaampliesy < a—z,

(xVy)—z=(r—>2)A(y— z).

Let [0, 1] be the unitarian interval of the totally ordered additive group of real numbers,
then R[1] = ([0, 1},—,~, 1) is a W-algebra where the operations — and ~ are defined by
the formulas

r—y=min{l,l—x+y}and~a2=1—a.

It is known (sce [/1]) that Wois gencerated by 22[1]. On the other hand, for every positive
integer n, Chyq = {0, 2,2, =L 1} is a subalgebra of R[1] and Cyy is a subalgebra of
Cingy if and only if n (hwdos m, (()1 for short, n/m).

It A e W, B(A) denotes the set of Boolean clements of A and if A is finite, AL(B(A))
denotes the set of atows of B(A).

Lemma 1.2 ([4, 5]) Let A e W. For all a € A, the following condilions are equivalent:
(i) o e B(A),

(if) oA ~a =0,

(iii) 2-

(iv) a—b=~aVb, foralbe A.

Delinition 1.2 Let A€ W. A subset D C A is a deductive sysiem (d.s.) if il verifics:
(D1) 1 e D,

(D2) a,a—be D imply b e D.

In every finite W-algebra, the d.s. are principal filters generated by the clements of
B(A) and the maximal d.s. ave principal filters generated by the elaments of Al(B(A)).

Let A€ W and a,b € A, [0,D] denotes theset {1 € A a <z < b}.



Theorem 1.1 ([5]) Let A € W e finite. Then A ~ T 10,a], where [0,a] =~ C\ryy
a€ AL(B(A))
if [[0,a}l =7+ 1. (D~ IZ denotes isomorphic algebras)

Definition 1.3 A W-algebra A is a W, .1 —algebra, if the [ollowing identity holds:
(W12) ~aVn-a=1.
We shall denote by W, the variety of W, j-algebras.
Theorem 1.2 ([0]) Let A € W, . The following condilions are equivalent:
(i) A is simple,
(ii) A~ Coyq, for somer, | <r <.

Let A€ Wand D C A D is a Stone [ilter il it is a lattice filter and for all d € D
there is . € DN B(A) such thal a < . For any A € W, ., D C A s ads. il and only
il it is a Stone [ilter. Besides, the sets of completly irreducible, irreducible, prime and
maximal d.s. of A coincide, and we will denole them as E(A).

Theorem 1.3 ([5)) If A € W has more than one element, then A is a subdivect product
of {A/M }pree(ay, where AJ/M = Ciyy for any i, | <4 < n. Furthermore, if A is finile,
then A is a direct product of{C,”;f' i<i<n, where gy = M| and M, = {D € £(A) :
|A/D| =i+ 1}.

If A is finite, Theorem 1.3 and Theorem 1.1 coincide.

2  k—cyclic W, ,—algebras

In this section, we introduce the definition of k-cyclic W, —algebras, and we give
properties of these algebras. We determine the simple k-cyclic W, ~algebras and we
prove that these algebras coiucide with the subdirectly irreducible ones.

Definition 2.1 Leta and k be positive integers. An algebra (A, — ~ 7, 1) of type (2,1,1,0)
s a le-cyclic W, algebra (o0 W0 g alyebra) if A = (A, =~ 1) dis a W, ~algebra and
T A — Ads an automorphisim such that 7™ () = @ for all 2 € A.

The variety of A-cyclic W, j-algebras will be denoted by Wirik As usual the
elements of Wy, will be denoted simply by A o by (A4,7) in case we wanl to specify
the automorphism. In what follows, 7(A) will be the set of the elements of A invariant
by 7.
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Example 2.1 Let n and k be positive integers. For each integer #, such that 1 <t <n,
let Coy1x = (Cryrp, 7), where Cpyy s the product of k copies of C4q, and 7 is defined by

o fali-), il
T(2)(i) = { ax(k), ifi=1

It is easy to see that Cipr e € Wiga k. I j > K, then

PE@ =700 ={ L T L

i—r4+k), ifi<r’
where j = gk 4+ r, 0 <r < k.
Definition 2.2 Let (A,7) € W11 k. A kernel of A is a subset N C A such that:
(i) N is a d.s.,
(ii) N verifies (D3): if € N then 7(v) € N.

We shall denote by AM(A) and Con(A) the sets of kernels and congruences of A re-
spectively.

Lemma 2.1 If (A,7) € Wy 1k, then Con(A) = {R(N) C Ax A: N € N(A)}, where
RIN)={(v,y) EAxA:x -y, y—a €N} :

If A is an algebra with more than oue element, the family of proper kernels of A is a
upper inductive, therefore every proper kernel of A is contained in a maximal one.

Lemma 2.2 Let (A, 7) € Wy k. For any N € N(A) it holds:
(C3) 7(N) =N,

(C4) If X is a subset of A such that N C X, then N C 7(X).
Lemma 2.3 In any (A, 7) € W1 x il holds:

(i) if D if a mazimal d.s. of A, then N = DNr(D)N.. NTE=YD) ds a mavimal kernel
of A,

(ii) if N is a mazimal kernel of A, then theve dis a maximaol d.s. D of A such that
N=Dnr(D)n...n74(D).
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Proof. (i): Cleary N is a d.s. of A. Besides, if # € N, then 2 € T3(D) for every j,
0<j<k-1 Heucer(x) € r7*(D) for every j,0< j < k—1andso N € N(A). Now,
suppose that there is M € N(A) such that N € M and M # A. Let D' € E(A) be such
that M C D'. As D' is prime, there is 7, 0 < j < k — 1, such thal 79(D) C D' and so
D C 773(D'). Siuce D is maximal, it follows that D = T+=3(D"). Then, M C D' = 79(D)
and by (C4) we have M C N.

(ii): As N is a ds. of 4, there is D € E£(A) such that N € D. TFrom (C4) N C
DNr(D)n...Nn7Y(D) and taking into account that both are maximal kernels, the
cquality holds. O

We will say that a maximal d.s. D is of period d, i d is the least, positive iuteger such
that 77(D) = D. Iu this case, we will say that the maximal kernel N = D A r(D)n...N
D) ds of period d (or d-kernel for short).

Remark 2.1 [t is easy to check thai:

(1) if D ds @ maximal d.s. of perviod d, then d/k,

(i) f N=Dnr(D)yn...0n7""YD) is a d-kernel of A, then D, (D), ..,7YD) are

the unique mazimal d.s. which contains N .

Lemma 2.4 If A ¢ Wik has more than one element, then the intersection of all
mazximal kernels of A is {1}.

Proof. Let {N;}ier be the family of all maximal kernels of A, For cach i € I there
is a waximal d.s. D, of period f; such that N; © D;. I follows al once [rom Lemna
2.3 and Remark 2.1 (i) thal E(A) = { l),;,T(D,;),...,T""""(D,;)}iel. Heuee, QN,; =
NDinT(D)N...0r=N D) =N{D:D e &(A)} = {1}. O

el

Theorem 2.1 Any A€ W, 1ac with more than one clement is o subdirect product of the
Jamily {A/N : N is a mazimal Lernel of A},

Proof. It follows from Lemma 2.4 and from a well - known result of wniversal algebra. O
Lemma 2.5 If A€ W, 1, then the following pr()])r:/‘/.-/f(%s-(1.1'(% salisfied:

(C5) [a,1] 1s a kernel if and only if a € B(A)YNI(A).

(C6) [a,1] is a mazimal kernel if only if a is an alom of the Boolean algebra B{A)YNT(A).

(C7) If a € AH(B(A)), then a v m(a)V ...V 757} () is an alom of B(A)NI(A).
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It is clear that if (A, 7) is alinite algebra, every kernel is o principal {ilter. Besides, if
IT(A) is the poset of prime elements of A and €' C H(A) is a connected component of A,
then 7(C) so is.

Theorem 2.2 Let A € W,k be finite non trivial and {N;} <<, be the set of mazimal
kernels of A. Then A is a direct product of the family {A/N;}1<i<r.

Proof. By Theorem 2.1 there is monomorphism @ A — H A/N; such that for each

a € A, hia) = (gn,(a))1<i<r, Where gy, © A — A/N; is the LcLll()lllC(Ll homomorphisi.
Let y € H A/N;, from (CO) for each 7, 1 <4 <7 there is b; € At(B(A) N I(A)) such
that (1) (1,, lj( )) € R(N;), where N; = [b;, 1] and a; = y(i) A b;.

I

Lel x \/ v, then a; — = 1€ N;. By (W11) it follows that @@ — x; = /\ 1y = ).

= i=1

Irom (\V‘d) ( 79) and Lewnma 1.2 for cach ) /-I we lnwe a; < by <o b < b o

=

and by (W10) 2, — a; € N,. Therefore, (2) (o, 1) € R(N,), so (1) and (2) we oblain
y = h(x). O
Lemma 2.6 If A € W, 1k, then the following condilions are equivalent:

(i) A 1s simple,

(ii) B(A)YNI(A)={0,1}.
Proof. (i) = (ii): It follows [rom (CB).
(i1) => (i): Let N be a proper keruel of A and 2 € N. As N is a Stone filter of A, there is

s € NNB(A) such that s < a. 11b = sAT()A. . ATETNS), then b € B(A)NI(ANN = {1}
and so 2 = 1. Thercfore, N = {1}. O

Theorem 2.3 C\yyy is simple, for all 1, 1 <1 <.

Proof. If v € B(Cy 1) N I(Crpyn), then 77/ (0)() = a(i) for all4,j, 1 <i <k, 1 <5 <
k — 1. Besides, 77(2)(k) = x(k — j), hence w(k) = ok — ) for all j, 1 < 4§ < k=1,
that is, (1) = «(y) lor all 4,7 € {l,...,k}. Let @ € Cryy be such that «(i) = «,
< <k Since € B(Chrpu) lrom Lenmma 1.2 an ~ = 0, thew oA ~ a = 0, thal is
a € B(Cpyy) = {0,1}. Therelore, =0 0 2 = 1 and by Lemuma 2.6, Cyyy g is siuple. O

IFrom Lemma 2.6 it is innnediate that any subalgebra ol o simple algebra A is simple.
Then, the subalgebras of Crp o, 1 <6 < are simple.
) ) -1,

Lemma 2.7 Any sinple W, oy —algebra is finite.
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Proof. Let A € W, 11k be a simple algebra. Then {1} is a maximal kerncls of A and
there is D € E(A) such that {1} = Dnr(D)n...0 7 (D). If D is of period d, then
from Remark 2.1 (ii) we have E(A) = {D,7(D),...,7*'(D)} and by Theorem 1.3, A is
{inite. 0

Theorem 2.4 Let A € W1k be a simple alyebra. Then A ~ Ciprd, where 1 <t < n
and d/k.

Prool. By Lenuna 2.7 A is finite and E(A) = {M,7(M), ..., 7 (M)} with d/k. From
Theorem 1.1 we have that TI(A) is the cardinal sum of chains witli at most 7 clements.
On the other hand all the chains of IT(A) have the sawe cardinal munber. Indeed, let C,,
Cs C I(A) be two chains such that [C] = v, |C] = s and » # 5. Let w, and 1w, be the
last clements of €, and Cj respectively. Hence, u,, u, € ALB(A)) and D = [u,, 1] is a
maximal d.s. of A. Let «n,. be the least positive integer such that 7 (1) = u,. Then,
ap/hand N = [(0, V7 (u,) V. Vo= ), 1 s amaximal kernel of A, Since A is simiple,
VT () Vo VT ) = 1L Henee, there exist §, 0 < j < a, — 1§ such that < 7 (u),
which is a contradiction.

Therelore, for all D € £(A), we have thal A/D =~ C), for some £, 1 < &t < n. By

Theorem 1.3, ¢+ A —  [[  A/D delined by | ¢(x) = (qar (), Gran )y« gracany (1)
DEE(A)

for (‘ach 2 € A, is a W-isomorphisui. ld(‘utllsm;, isomorplic algebras, we have that there
is a W-isomorphism between A and L,(, Let us consider the awtonorphism 7 defined on
C’,i(_'f) as i Example 2.1, To prove that ¢ is o 1, A'f~1s'mu()rplnsm. we need Lo show that
forevery j, 0 < j <d =1, ¢grn(®) = sy, Let b AJTI(M) — AT (MY be
defined by h(griary () = g (T(2)). As T is a H “attomorphism such that 74 = Id,
it is casy to prove that s an order-isomorphism and this completes the prool. O

Let A€ Wi We will denote by M(A) the set of maximal kernels of /.
Clearly {M;y14}1<icnam, where M4 = {N C M(A) t A/N = Coa), 1 <0 <n

and d/k, is a partition of M(A) and so M(A) = U U AMiyra
i=1d/k
Then from Theorems 2.1 and 2.2 we have Theorewr 2.5

s

Theorem 5 If A€ W, 1k has more than one clement, then there is a monomorphism

p:A— H TT(Cipra)Merva If Ais finite, hen @ is an isomorphisim.,
i= J(I/I\

3 TFree algebras
In this section, we describe the {ree W algebra with a finite set of generators.

Throughout this section £ = L(n + 1, k,7) denotes the Wi a—algebra with a set &
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of free generators, |G| = r, where r is a positive integer.

To prove the principal result of this section we need to describe the subalgebras of
Cn—l-l,l\:- '

We will denote by D(r) and M (r) the sets of positive divisors and maximal positive
divisors of a positive integer 7, respectively. As C,.p1 . is polynomially equivalent to a
Post algebra of order n+1 (see [6]), the subalgebras of Cpyy . are S(A,d) = {f € Cryi
f(@) € Afor every i,1 < i < kand f(i) = [(j) il n/(G = )} where A s a subalgebra
of Cpyy and d € D(k) (see [1]). Besides, S(Ay,di) € S(Ag,dy) if and only il A, C Ay
and dy/dy. Hence, the subalgebras of G, p are the algebras Chyra with p € D(n) and
d € D(k). On the other hand, C 114, C Chpu1,4 il and only if p;/py and dy/dy. 1t is
clear that C,, 41,4, is proper subset of Cp,414, if p1 is a proper divisor of p, or dy is a
proper divisor of ds.

The maximal subalgebras of C,, 4 are the algebras Cypy o with p € M(n) or Chyya
with d € M(k). Therefore, the munber of maximai subalgebras of Cyqqp is [M(n)] +
| M (K)].

, ,
We will denote by &) 0; and (O b; the greatest common divisor and the least conumnon

i=] in=]
multiple of the munbers by, ..., 0, , respectively.

' r 7 r
It is casy to see that () C, 10 = S(A,d), where A= [ C),,4; and d = Q) d;.
i=1 i=1

=1

. ,
Lemma 3.1 () C).q1 = Cpy1, where p = Q@ pi.
i=1 =)

7

T r
Proof. It is simple to see that Cpyy C () Cpigr. Let p = @ pi aud 2 € () €41 such
i ' i=

=1 i=1 =
that 2 = 2 1 <i<r, 0<h; <p. Thenp-z=p-2 =p. 2= = Loy
]l{’ - - ' - i 12 '
7 O ™
a oy P2 N o e a . ,.__,‘1:1 e [P o
PLoP2c-Dr=Dp- @ pi. Hence, for each j, 1 < j < we have pj = p i Iherefore,
i=l i
hi- 11 m hy=T[1 pi
pa=—2 = = Leta=h-[[pi=...=h ] p. Aspi/a for cach i,
q Pi O, P il iy
-
1 <14 <r. we have that () p;/a and so px is a integer, i.c. @ € Cpyp1. O
i=]

r T T
Corollary 3.1 () Chip1,a; = Cagrp, where a = @ pi and b = Q d;.
i=1 i=1 i=1

Let (A,7) € W1k and X € A We will denote by [X] the W, j—subalgebra of A
generated by X.

By [2], the number of elements of L(n+4 1, k,7) coincide with the numbers of elements
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~of the free W4 —algebra with kr gencrators. On the other hand, by [5] we have that
W, 41 is locally finite and therclore L{n+1,k,r) is linite. Then by Theorem 2.5 we have

L= [1(’1% + 1,k r) H H (CH_“[)M::H,A_

i=1 deD(k)
In a similar way to [1] we prove that
. Ej)l/ C’C, J(l)
|Mir1al = (i, dyr) = S d il (1)

Now, let us consider

Fliyd,r) = Ch

(i, d,r)y ={f € F(i,d,»): [(G)Z S lor all maxinal subalgebra S ol Ciyy 4},
FU(ildyr) = {f € F(iyd,r) [(G)C oy i € M)

/iy d1) = (f € Fliydy) < [(C) € Cryaid € M(d)}.

Then,
[7(i,dy )] = (i 1) (2)
Let f: G — Chy1y and Ciyy 4 a subalgebra of Corige Then [f(G)] = Ciyy 4 if and only if
S(G) C Cipr0 and f(G) Z S lor all maximal subalgebra S of Cjy 4. Hence, we have
O(iydyr) = [ I (i d,v)| = |Epi(L, Cipr ). (3)

On the other hand,

,F’(i,d,v‘)=F(vJ,d,7')\( U i dru U 1""("""1/"")>’
,4 ()

e (i) gy,

therefore,

(i, d,r)] = [ (i, d, 7)) — U 0 dor) | — U (i, d' )| -+ (4)

ireM (i) A e M (d)

U 6 dnn U F G, )

ieM(i) A’ €N (o)

Let
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a(i,d,r) =1 U F"{#, d,r),
i'e M (i)

B, d,r)=| U F"(z,d,7r)

d'eM(d)

3

NG dr)=| U P doyn U F"(i,(.l','r)l.

HeM(i) d'en(d)

For all finite set J, holds

U4

JjeJ

_— Z (_l)h\’l—l

XCT X#D

(A

JjexX

: (9)

Then, by (5) and Corllary 3.1, it follows that

(X(’l:,d,’l') = Z (—_l)ll\"_l mj;‘”(.jad"’.)

bl

XCM@E),X#0 JEX
) F'G.d,r) = {f € I(i,d,7) : f(G) C Cyami = ®j} ,
JjeXx v JjEX
Bli,dr) = Y (=DMN) FGL G|
YCM(d),Y #D jey
mF”(’[;aj’?‘) = {.[e F(Ii)dall.) f(G) _C.C’i+l,j’;j’=®j}a
JjeY JjEeY

thus,

ﬂ F"(4,d,7)

jex

= <®_,-+1>4,
ali,d,r) = > (—pEH (@jﬂ) : (6)

XCM(3i),X#D jex

7 ® .
m F”(Z’aj,"‘) = (1 + 1) je)‘J:

JEY
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Bldr) = Y (oMt E (7)

Y CM(d),Y #0

To compute v(¢,d,7) let us observe that

U F@,dryn U FGdy)= U (P, dr) 0BG d, ),

'eM(i) d' €Al (d) vEM(),d'eMi(d)
F'"i',d,v) N F'(i,d,r) = F"(¢,d,v) = {f € F(i,d,7) : f(G) C Ciryra}

Therefore,

~(1, d, r) = Z (__1)1Zl—l ﬂ 1‘!//([/ d' ») |

ZCM(i)x M (d), 25D ETRD)
Let us consider
Zy={'e M@u): (I, d'ye Z forsomed € M(d)},
Zy={d € M(d) : (¢',d') € Z for some i' € M(z)}.
Then,

n WW&ﬂzheﬂWM%ﬂmgﬁwﬁ=®fJ=®d}

(i ez =y A€ 2y

r @ d
ﬂ F”(i’,dl,'l') — <®i’+l> a'ezy ,

(" d")ez PEZ)

r &
v, d,7) = 3 (—1)l21-1 (@z’n) R ®)
) AAD

ZCM(iyx M(d), 7 ez,

From (2), (4), (6), (7) and (8), we have

6(i,d,r) = (i + 1) — a(i, d,v) = Bli,dy7) + (i, d 7).

So, we have proved the following theorem:

Theorem 3.1 L(n+ 1,k, 1) is isomorphic to ﬂ [T Ci 1,00 where
i=1 e D(k)
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D) op=20
(1) /1‘_ d;

(i) 6=(G+1)"—a=B+7,

dr
(i) a= 3 (-~ (®J+1> :

XCM(3),X#D jEX

W) f= ¥ (oS

Y CAL(d),Y £
@ d
(v) v= (=17 ( & i - 1> verr
ZCM(iyx M(d),Z#D i€ Z)
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