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Abstract

In this paper, the construction of the lattice of subvarieties of lincar symmetric
Heyting algebras is given and equational bases for each subvariety are obtained.

1 Introduction

A symunetric Heyling algebra is an algebra (LA, V, =, ~, 0, L)y of type (2,2,2,1,0,0) such
that (L,A,V,=,0,1) is a Heyting algebra and (LA, V,~,0,1) is a De Morgan algebra
(see [9)).

The study of the varicty of symmetric Heyting algebras was pioncered by A. Monteiro.
It was pursued by, among others, H. Sankappanavar [10] and L. Iturrioz [6]. Tu [6],
L. Iturrioz gave a complete description of the variety Q:} of three-valued symmeltric Heyting
algebras. Later on, A. Monteiro compreliensively investigated tle variety of symmetric
Heyting algebras and several of its subvaricties in his very important work “Sur les al gebres
de Heyting symétrigues” [9]. Particularly, he studied the stubvaricty of lincar synunetric
Heyting algebras, that is, symmetric Heyting algebras satisfying the identity

(x=y)V(y=u)=1.

These algebras rvellect, algebraically the properties of modal syminetric propositional
calculus in the same way as Heyting algebras are algebraic structures imposed by the
study of intuitiounistic proposicional calculus.

Linear symmetric Heyting algebras form an equational class £. In this paper we
cousider the lattice of subvarictics of this variety. We describe the structure of the posel
of its join-irreducible elements and we find equational bases for cach subvaricty of L.

We draw heavily on Mouteiro’s paper [9].

Linear symmetric Heyting algebras can be characterized by the condition that the
poset of filters containing a prime filter is a chain [9].
The importance of the following examples of linear symmetric Heyting algebras will

be clear later.
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Let C,, n > 2, be the Heyting algebra of all fractions — 1=0,1,...,n—1
([9], p- 136), with ~ @ = 1 —a, and let D, be the Heyting algebra C,, x C,, with
~ (z,9) = (1-y,1 —x). C, and D, are linear symmetric Heyting algebras.

An I,-algebra is a symmetric Heyting algebra satisfying the Ivo Thomas identity:

(70, Ty« oy Tn) = Puca = (Pu—z = (... = (Bo=> w0) ... ) =1,
where §; = (2, = xi4,) = wp for i =0,1,...,n—2 (sec [9], p. 136, and [12]).

The algebras C, and D,, are examples of symmetric Heyting algebras that satisly the
identity v, = 1.

The following result is a characterization of the I,-algebras.

Lema 1.1 [9] For a linear Heyting algebra A, the following are equivalent:
1. The identity v, = 1 holds.

2. The poset of proper prime filters containing a prime filter P is a chain of length at
most n — 1.

A. Monteiro proved ([9], p. 138, Th.1.6) that the variety [,, of I,,-algebras is generated
in L by Dn X Dn—l-

It is clear that a finite lincar symmetric algebra is an [,,-algebra for some n. Then we
have the following Theorem:

Theorem 1.2 If A is a finite algebra in L, then A is subdirectly irreducible if and only
if there exists n such that either A is isomorphic to D, or A s isomorphic to C,,.

If G is a finite subset of an algebra A € L, then the subalgebra gencrated by G
is the Heyting subalgebra generated by G U ~ G. Since the variety of linear Heyting
algebras is locally finite [1], it follows that L is locally finite. In addition, £ has the
congruence-distributive property, being that the lattice of congruences in an algebra A
is a sublattice of the lattice of congruences of the Heyting algebra A, and the latter is
congruence-distributive.

We conclude this section by recalling the characterization of subalgebras of the algebras

C, and D, [11].

Let n > 2. If » is even, then the subalgebras of C, arc the algebras Cyp, A < n/2. 1f
n is odd, then C} is a subalgebra of C, for cvery k& < n.

Let Sy = C, =Y, where Y C C, — {0, 1}. Let Sy be the set of Heyting subalgebras of
Cp. Then Sy = {Sy : Y C C, —{0,1}}. For every 7,2 < j < n, let Y € Sy be such that
Y| =n—j. Then A = Sy x S.y is a subalgebra of D, isomorphic to D;. In addition,
D; C D; if and only if i < 7. If A is a subalgebra of D,, and A is not isomorphic to Dy,
for any k, then A ~ C}, for t < n. We have that A = {(z,a(z)),z € p1(A)}, where « is
an isomorphism from p;(A) onto p2(A), py, po the projections in D,, = C, x C,,.
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2 Subvarieties

Given a class IC of algebras, el Si(4) and Sig, () cousist of one representative from each
isomorphism class of subdirectly irreducible and finite subdirectly irreducible, respectively,
algebras in K.

Since £ is congruence-distributive, we can apply a theorem of Jénsson. (8] and its
generalization (see Davey [5]) to find the lattice A(L) of subvarieties of £. Jénsson’s
Theorem may be stated as follows:

Theorem 2.1 [8] LetV = V(K ) a congruence-distributive variety that is generated by
a finite set K of finite algebras and order Si(V') by:

A< B AcH(S(B)).

Theri the lattice A(V') of subvarieties of V is a finite distributive lattice which is wsomorphic
to O(Si(V)), the lattice of down-sets (order-ideals) of the ordered set Si(V). Moreover,
a subvariety X € A(V) is join-irreducible if and only if X = V(A), for some subdirectly
irreducible algebra A.

Davey proved the following generalization:

Theorem 2.2 (5] Let V a locally finile congruence-distributive variety. Then. AV)isa
completely distributive latlice and 4s isomorphic 1o O(Sig,(V)).

The order in Si(£) (and in Sig,(£)) is the following:
A< Bifand only if A€ S(B)
being that if A € Si(L) then A is simple, that Is, the unique homomorphic images are the

trivial ones.

Let D, and C, denote the varieties generated by D,, and C,, respectively, that is,
Dn = V(D,) and C, = V(C,), and for a distributive lattice R, J(R) denotes the ordered

set of all join-irreducible elements of the distributive lattice R.

Let [{=V(U,»2C,). This is the variety called by A. Monteiro the variety of totally
linear symmetric Heyting algebras.

Let ,B:V(UnZ] C?n,) .

It is clear that PCJC. Furthermore, P# I Indeed, for A € Sig, (P), A is isomorphic
to Con, and then, for odd ¢, there isn’t A Siga (L), such that C; € S(A). Thus, PCK.
Therefore, J(A(L)) is the poset indicated in fig. 1.

Theorem 2.3 K, P and L are join-irreducible in A(L).
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Proof. Suppose K = ViV Vo and let [; = {i:Cupr € Vi} and I = {i: Coiy1 € Vo}. If
both I; and I are finite then there exists m such that Cop,pi ¢ V; and Comys ¢ Va, which
is impossible. So cither 1) is infinite or [, is iufinite. Suppose without loss of generality
that I, is infinite; then Chipy € V4 for all i > 1. Since Cy; is a subalgebra ol Coir1, then
Cy € Vi for all i > 1. Then C; € V) for all j > 1. Consequently, [y € Vi. Then K=V,
and [ is join-irreducible.

A similar argument shows that, 2 and £ are join-irreducible. O
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Fig. 1

Observe that from the definitions of I, P and L, it follows that they are not completely
join-irreducible. Furthermore, they are not finitely gencrated.

Theorem 2.4 I, P and L are the unique join-irreducible varieties that are not finitely
~ A 1 . ./
generaled.

Proof. Let V be a join-irreducible not finitely gencrated variety, V C £. Consider the
following sets:

L={n:D,eV}, L={n:Cy €V}, I1={n:Cy €V},
and consider

Un,=V{Dn:nel}), U,=V({Cog1:n€L}), Uy,=V{Co :ne€l})
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If I, I3 and I3 are finite, then V is finitely generated, which is a contradiction.

If I, is infinite, then D,, € V for all n, and consequently C,, € V for all n. Hence, V = L.
Suppose therefore that [y is linite, and let my be the greatest element in I;. If 7, is infinite,
then Cy,p1 € V for all n, and Cy,, € V for all n. Then [=Up,and V = IV V (UL, D).
Since V' is join-irreducible infinitely generated, then V = K.

If I is finite, let my be the greatest element in I. Then necessarily I3 is infinite, and hence
£ C V. Therefore V = PVV (Ui23 Coiq)VV (U4 D;). Again, since V is join-irreducible
mﬁmtely gencrated, V = P, and the proof is complete. O

The following Theorem will.be important in the determination of equational bases for
join-irreducible varieties.

Theorem 2.5 Lvery variety V' € A(L) is a join of finitely many varieties in J(A(L)).

Proof.  Let V € A(L) and let [,, I, I3 be defined as in the proof of the previous
Theorem. If 7, [, and [y arc all finite, then V = Dm] \Y Q2nu+1 \ ’Q2ma’ wlhiere my, my
and mg are the greatest clements in 7, I, and Iy respectively.

If 7; is infinite, then V = L.

Suppose that f) is linite. 1 [y is finite, then V = D V [, I 1y is [inite and 7y is infinite,

then V=D vC V P, as 1eqmrod O

~my ~2mag+1

So we can conclude that if V' € A(L), then V is of one of the following forins:

(a) L, I D, C ,Q‘,, for V' join-irreducible.

b
’r\/ g ~ona-1?

(b) V= ,\DJml v ,Qz — C' S for V finitely generated, join-reducible
and V = D ng llVP V=D VK, V=D ve V=C “VP,
N ey Ny g ~ang ~

for V infinitely generated, join-reducible.

3 Equational bases

In this section we will find equational bases for each subvariety of L.

A. Mouteiro ([9], p.125) proved that the equation VI (#) = 1w =~ 2 = 1 determines

the equational class [y.
On the other hand, let vp () be the equation
Yp@) =~ (~va =)=~ (4=~ ) = 1,
Ifze Gy and & >~ 2, then & =~ 2 =~ 7, and ~ 22 = 2 = 1. Thus

Tpr)=—~1l= s~ =1 =

. Since x # 0, »—x = 1, and then fyp(:z,) = 1. If @ < ~ 2 we also have 7]3( ) =1
So the equation yp(z) = 1 holds in all algebras Cy,.
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Now, for the algebras Cy,41, choose the element ¢ € Canyy such that ~ ¢ = ¢. Then
vp(c) =0, and therefore the equation yp(x) = 1 fails in the algebras Cong1-

Then we have the following Theorem: '

Theorem 3.1 (A. Monteiro): The equations vy (x) = 1 and yp(z) = 1 characterize

the variety P within L.

As we pointed out in Section 1, the variety I, is generated by D, x D,_;. Nevertheless,
we proved that D,_; is a subalgebra of D, thus I, is the variety generated by D,
that is, the variety I, is the variely 1 , and consequently, the Ivo Thomas identity
YulZo, - .., Tn_t) = 1 determines the variety D, fornz=2.

The variety that A. Monteiro called [ I is defined as the subvariety of £ characterized
by the identities v, (%o, ..., T,—1) = 1 and ypc(2) = 1. Monteiro proved ([9], p. 152, Th.
1.1) thatJ I{=V(Cy)=C , fornodd, and [ [ = V(C, % Ch_1), for n even. Then

we have:

Theorem 3.2 The equations v, (xo, ..., 1) = 1 and vy (2) = 1 determine the variety
Qn for n odd, and the equations v,(zo,...,Tu_1) = 1, i (x) = 1 and yp(z) = 1

determine the variety C  for n. even.
n

The above results have given us equational bases for all join-irreducible algebras in the
lattice A(L). Our next objective is to find equational bases for the rest of the varieties,
that is, the join-reducible varictics.

Let V € A(L) and assume that V is finitely generated. Suppose that V = DV ng \Y%

C , where 2t > 2s+ 1 > r. Observe that if 2¢t < r then ,QW C Qr, and if 2t < 2s 41 then

~~ot’ ; ’
c CcC o In both cases V = Qr Y stH. Finally, if 2s + 1 < r, then gst - Qr and

N2t T ~NY2s

then V =D Vv

~ op'

Consider the following identity:
W0y e oy Ty Y0y« - o s Ydsb Ly 20y -« + 5 Z2Up1) =

71'('770» <o ,-’lir_l)V <’72a+1 (1/0, cen ,.7/2.9) A 71((yzs+1)>v<'72:.(20, e ,er,—l) A ’7]((221,) A 7P(22c+1)>

If A € Si;,(V), then A € Qr or Ae gst or A e ng.'
Hence, for any xo, ..., % —1,%0,. -+, Y2541, 20, - - - , Z2e41 € A, one of the identities v, = 1 or
Yos+i AN Y = 1 or yoe Aype Avp = 1 holds. So 7y = 1 holds in A, and consequently,
v =1 h&ds in V. -

Let A € Sig,(£) such that A ¢ V. Then we have the following cases:

. A=(
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1. leven, I > 2t (in particular, I > 2s+1,1>r ).
Then A does not satisfy the identities Yr =1, vos+1 = 1 and 79 = 1. In other
words, there exist elements 2, ..., %1, Yo, .. ., Yos, 20, - - -, 2001 € A such that
71‘("1:0> s )mr—l) =4a '—/'é 1) ’723+l(y0a s ’y28) =0 ?é 1 and 72(.(207 ey ZZ:‘.—I) =cC ?é
1. Then ’7\/(”"01 s T Y0y - -5 Y255 Y5415 205 - - - 21, 22t z?t-}-l) < aVbVe 7é 1)
since A= Cjisachain,a# 1,041, c#1,a,b c€ A

2. Lodd, I >2s41 (in particular, [ > ).
Then A does not satisfy the identities Yp =1, 12541 =1 and 7, = 1.
A similar argument shows that A does not satisfy vy .

I. A=D=CxC, 1>
Then the identity v, = 1 fails in A, that is, there exist To,...,Tr—1 € A such that

’)’.,.(.’II(), e ,-Tr—l) = # 1, a < C’l X C’[. Put a = ([)_1,1)2), bl) ()2 S C[, (1)1,[)2) ;é (l, 1)
Suppose by # 1. Then choose 49,41 = (0,1) = zy. Then Y (Y2s1) = Yic(z2) =

=(0,1) =~ (0,1) = (0=0,1=0) = (1-1,1-0) = (1,0) = (0,1) = (0, 1). Thus
T < (bl,b2) V (O, 1) = (1)17 1) ?é (1, l)-
If by # 1, we choose oy, = 29 = (1,0).

So we have proved that the identity vy = 1 determines the variety V.,

In a quite similar way, it can be proved thal:

1. IfV = L VQQH], 284+ 1 > 7, then vy =4, V (70,41 A 7o) =1L

~t’

2. fV = Qr v 2t > r, then ’7\/ =7V (’)’2,5 A Y AN ’)’P) =1,
3. V= ngH ngt, 26> 25+ 1, then vy = (79,41 A ’y;jg) V (v A VI A 7£) =1.
Therefore, we have given equational bases for every finitely generated subvariety of £.

Now, if V' is an infinitely generated subvariety of £, we lave seen that P CVor
KCVo V=L

Suppose that V = Qr \Y; sz V £ We can assume that 24 4+ 1 > 7. Then the identity
W =%V (Yo A YV (vp A Vrc) = 1 determines the variety V.

For V = QT V I, an equational basis for V is given by vy =7, v (YpAvE) =1

For V = QWH VLI = (Va1 A ’)r]\\J) \ (’Y£ A ’U\\,) =1L

For V = QTVL\', Ww=7Vyg =1
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