PARACYCLIC COMPLEXES ARISING FROM α-DERIVATIONS

María Julia Redondo and Andrea Solotar

1.Introduction

Let A be a k-algebra with $1, \alpha: A \to A$ an automorphism of algebras. In [R-S(2)] we describe a construction of the graded α -differential algebra $\Omega_k^{\alpha}(A)$. Now we define Karoubi's operator κ for α -differential non-commutative forms, and study some of its properties.

This operator allow us to construct a parachain complex for $\Omega_k^{\alpha}(A)$. This may be the first step to get a mixed complex for $\Omega_k^{\alpha}(A)$, in order to define the α -cyclic homology of A.

2. PARACHAIN COMPLEXES.

Definition 2.1. A parachain complex (V, b, B) is a graded k-module $V = \bigoplus_{i \in N} V_i$ with two operators $b: V_i \to V_{i-1}$, $B: V_i \to V_{i+1}$ such that

- (1) $b^2 = B^2 = 0$
- (2) the operator T = 1 (bB + Bb) is invertible.

It may be easily checked that T commutes with b and B. When T is the identity, the two differentials b and B commute. Such a parachain complex is called a *mixed complex*.

Example 2.2.

Let $(\overline{C}_*(A), b)$ be the normalized Hochschild complex given by $\overline{C}_n(A) = A^{\otimes (n+1)}/D_n$, where D_n is spanned by the elements $a_0 \otimes \cdots \otimes a_n$ such that $a_i = 1$ for some i with $1 \leq i \leq n$, and

$$b(a_0 \otimes \cdots \otimes a_n) = \sum_{i=0}^{n-1} (-1)^i a_0 \otimes \cdots \otimes a_i a_{i+1} \otimes \cdots \otimes a_n + (-1)^n a_n a_0 \otimes \cdots \otimes a_{n-1}$$

Let $B: \overline{C}_n(A) \to \overline{C}_{n+1}(A)$ be the operator given by

$$B(a_0 \otimes \cdots \otimes a_n) = \sum_{i=0}^n (-1)^{in} 1 \otimes a_i \otimes \cdots \otimes a_n \otimes a_0 \otimes \cdots \otimes a_{i-1}$$

Now $(\overline{C}_*(A), b, B)$ is a mixed complex, and the cyclic homology of A is

$$HC_*(A) = H_*(Tot(\overline{C}_*(A), b, B))$$

Definition 2.3. A bi-parachain complex is a N^2 -graded k-module $\bigoplus_{(i,j)\in N^2} V_{i,j}$ with operators $b: V_{i,j} \to V_{i-1,j}$, $\overline{b}: V_{i,j} \to V_{i,j-1}$ $B: V_{i,j} \to V_{i+1,j}$, $\overline{B}: V_{i,j} \to V_{i,j+1}$ such that

- (1) $b^2 = \overline{b}^2 = B^2 = \overline{B}^2 = 0$
- (2) the operators T = 1 (bB + Bb) and $\overline{T} = 1 (\overline{bB} + \overline{Bb})$ are invertible
- (3) b and B commute in the graded sense with \overline{b} and \overline{B} .

Typeset by AMS-TEX

MARÍA JULIA REDONDO AND ANDREA SOLOTAR

Proposition 2.4. There is a functor $V \to Tot(V)$ from bi-parachain complexes to parachain complexes, where Tot(V) is:

$$Tol_n(V) = \sum_{i+j=n} V_{i,j}$$

$$Tol(b) = b + \overline{b}, \qquad Tol(B) = \overline{B} + \overline{T}B \qquad and \qquad Tol(T) = T\overline{T}$$

So, when Tot(T) = 1, (Tot(V), Tot(b), Tot(B)) is a mixed complex.

Proof. It follows immediately that $Tot(b)^2 = Tot(B)^2 = 0$. Now,

$$Tot(T) = 1 - (Tot(b)Tot(B) + Tot(B)Tot(b))$$

$$= 1 - (b + \overline{b})(\overline{B} + \overline{T}B) - (\overline{B} + \overline{T}B)(b + \overline{b})$$

$$= 1 - (bB + Bb)\overline{T} - (\overline{bB} + \overline{Bb})$$

$$= 1 - (1 - T)\overline{T} - (1 - \overline{T})$$

$$= T\overline{T}. \quad \Box$$

The definition and proposition above may be generalized, getting multi-parachain complexes, and a functor from multi-parachain complexes to parachain complexes.

So, as the above proposition shows, the construction of parachain complexes may be the first step to get mixed complexes.

Example 2.5.

Let A be a k-algebra, and G a finite group acting on A by automorphisms. Take $V_{p,q} = k[G^{p+1}] \otimes A^{\otimes q+1}$. Define the operators:

$$\begin{aligned} d_i: V_{p,q} &\to V_{p,q-1} \\ t: V_{p,q} &\to V_{p,q} \\ s: V_{p,q} &\to V_{p,q+1} \end{aligned} \qquad \begin{aligned} \overline{d}_i: V_{p,q} &\to V_{p-1,q} \\ \overline{t}: V_{p,q} &\to V_{p,q} \\ \overline{s}: V_{p,q} &\to V_{p+1,q} \end{aligned}$$

respectively by:

$$\begin{aligned} &d_{i}(g_{0},\ldots,g_{p};a_{0},\ldots,a_{q})=(g_{0},\ldots,g_{p};a_{0},\ldots,a_{i}a_{i+1},\ldots,a_{q}) \quad (0\leq i\leq q-1)\\ &d_{q}(g_{0},\ldots,g_{p};a_{0},\ldots,a_{q})=(g_{0},\ldots,g_{p};((g_{0}g_{1}\ldots g_{p})^{-1}a_{q})a_{0},\ldots,a_{q-1})\\ &\overline{d}_{i}(g_{0},\ldots,g_{p};a_{0},\ldots,a_{q})=(g_{0},\ldots,g_{i}g_{i+1},\ldots,g_{p};a_{0},\ldots,a_{q}) \quad (0\leq i\leq p-1)\\ &\overline{d}_{p}(g_{0},\ldots,g_{p};a_{0},\ldots,a_{q})=(g_{p}g_{0},\ldots,g_{p-1};g_{p}(a_{0}),\ldots,g_{p}(a_{q}))\\ &t(g_{0},\ldots,g_{p};a_{0},\ldots,a_{q})=(g_{0},\ldots,g_{p};(g_{0}g_{1}\ldots g_{p})^{-1}(a_{q}),a_{0},\ldots,a_{q-1})\\ &\overline{t}(g_{0},\ldots,g_{p};a_{0},\ldots,a_{q})=(g_{p},g_{0},\ldots,g_{p-1};g_{p}(a_{0}),\ldots,g_{p}(a_{q}))\\ &s(g_{0},\ldots,g_{p};a_{0},\ldots,a_{q})=(g_{0},\ldots,g_{p};1,a_{0},\ldots,a_{q})\\ &\overline{s}(g_{0},\ldots,g_{p};a_{0},\ldots,a_{q})=(1,g_{0},\ldots,g_{p};a_{0},\ldots,a_{q})\end{aligned}$$

Take $b = \sum_{i=0}^{q} d_i$, $\overline{b} = \sum_{i=0}^{p} \overline{d}_i$, $B = (1-t)s \sum_{i=0}^{q} (-1)^{iq} t^i$, $\overline{B} = (1-\overline{t}) \overline{s} \sum_{i=0}^{p} (-1)^{ip} \overline{t}^i$, $T = t^{p+1}$ and $\overline{T} = \overline{t}^{q+1}$.

Then $(V, b, B, \overline{b}, \overline{B})$ is a bi-parachain complex.

As $T\overline{T} = 1$, in this case we have that (Tot(V), Tot(b), Tot(B)) is a mixed complex.

PARACYCLIC COMPLEXES ARISING FROM α-DERIVATIONS

3. α -differential forms and the Karoubi operator κ .

Let A be an associative k-algebra with 1 and $\alpha: A \to A$ an automorphism of algebras. An α -derivation of A into an A-bimodule M is a k-linear map, $d_{\alpha}: A \to M$, such that

$$d_{\alpha}(ab) = \alpha(a)d_{\alpha}(b) + d_{\alpha}(a)b$$
 for $a, b \in A$.

In [R-S(2)] we describe the construction of $\Omega_k^{\alpha}(A)$. A and $A \otimes A^{op}$ are considered A-bimodules with the structures defined respectively by $a \circ x \circ b = ax\alpha(b)$, and $a \circ (x \otimes y) \circ b = ax \otimes yb$. Now $\Omega_k^{\alpha}(A) = I_{\alpha} = \text{Ker}(A \otimes A^{op} \xrightarrow{\mu_{\alpha}} A)$, where $\mu_{\alpha}(a \otimes b) = a\alpha(b)$, and $d_{\alpha}: A \to \Omega_k^{\alpha}(A)$ is defined by $d_{\alpha}(a) = 1 \otimes a - \alpha(a) \otimes 1$. $\Omega_k^{\alpha}(A)$ is an A-bimodule, and μ_{α} is a morphism of A-bimodules.

The pair $(d_{\alpha}, \Omega_k^{\alpha}(A))$ is characterized by the following universal property:

Let δ be an α -derivation of Λ with values in an Λ -bimodule M, then there exists a unique homomorphism of bimodules $i_{\delta} \colon \Omega_k^{\alpha}(\Lambda) \to M$ such that $\delta = i_{\delta} \circ d_{\alpha}$.

Setting $\Omega^{0,\alpha}(A) = A$, $\Omega^{1,\alpha}(A) = \Omega_k^{\alpha}(A)$, and $\Omega^{n,\alpha}(A) = \Omega^{1,\alpha}(A) \otimes_A \cdots \otimes_A \Omega^{1,\alpha}(A)$, $\Omega^{\alpha}(A) = \bigoplus \Omega^{n,\alpha}(A)$ is naturally a graded algebra, and there is a unique α -differential d_{α} on $\Omega^{\alpha}(A)$ extending the derivation $d_{\alpha}: \Omega^{0,\alpha}(A) \to \Omega^{1,\alpha}(A)$. The graded α -differential algebra $\Omega^{\alpha}(A)$ is characterized by the following universal property:

Let $\phi: A \to \Omega'$ be an homomorphism of algebras with units where Ω' is a graded α -differential algebra, then there is a unique homomorphism of graded α -differential algebras $\widehat{\phi}: \Omega^{\alpha}(A) \to \Omega'$ which extends ϕ .

Lemma 3.1. The map $x \otimes \overline{y} \to x \otimes y - x\alpha(y) \otimes 1$ is an isomorphism of left Λ -modules

$$A \otimes \overline{A} \xrightarrow{\cong} \Omega_k^{\alpha}(A)$$

Proof. One first remarks that $x \otimes y - x\alpha(y) \otimes 1$ depends only on the class of y in \overline{A} , so the map is well defined, and its image is in I_{α} . The quotient of $A \otimes A^{op}$ by the relations $x \otimes y - x\alpha(y) \otimes 1$ maps isomorphically to A (with inverse map given by $x \to \text{class of } x \otimes 1$). Therefore the kernel of this factor map is isomorphic to the kernel of μ_{α} . \square

Let us introduce the following usual notation: $x \otimes \overline{y}$ (or equivalently $x \otimes y - x\alpha(y) \otimes 1$) is written $xd_{\alpha}(y)$.

 I_{α} is an A-bimodule because it is a sub-A-bimodule of $A \otimes A^{op}$. So, by the isomorphism shown in the previous Lemma, $A \otimes \overline{A}$ becomes an A-bimodule. The left module structure is simply

$$a(xd_{\alpha}(y)) = axd_{\alpha}(y)$$

The right module structure is

$$(xd_{\alpha}(y))b = xd_{\alpha}(yb) - x\alpha(y)d_{\alpha}(b)$$

because, in I_{α} ,

$$(x \otimes y - x\alpha(y) \otimes 1)b = x \otimes yb - x\alpha(y) \otimes b$$

= $(x \otimes yb - x\alpha(yb) \otimes 1) - (x\alpha(y) \otimes b - x\alpha(yb) \otimes 1)$

So we have the classical formula

$$d_{\alpha}(yb) = \alpha(y)d_{\alpha}(b) + d_{\alpha}(y)b$$

Now,

$$\Omega^{n,\alpha}(A) = I_{\alpha} \otimes_{A} \cdots \otimes_{A} I_{\alpha} = A \otimes \overline{A}^{n}$$

MARÍA JULIA REDONDO AND ANDREA SOLOTAR

with the identification

$$a_0 d_{\alpha}(a_1) \dots d_{\alpha}(a_n) = a_0 \otimes \dots \otimes a_n$$

and the operator $d_{\alpha}: \Omega^{n,\alpha}(\Lambda) \to \Omega^{n+1,\alpha}(\Lambda)$ is given by

$$d_{\alpha}(a_0 \otimes \cdots \otimes a_n) = 1 \otimes a_0 \otimes \cdots \otimes a_n$$

At this time it is interesting to remark a difference with the case A commutative and $\alpha = id$, where the cohomology of the complex $\Omega^*(A), d$ is trivial (by Poincaré's Lemma). When $\alpha \neq id$ this fact not necessarily holds, take for example A = k[t] where k is a field, $\operatorname{car}(k) = 0$, q an n-root of 1.

The product in the α -differential graded algebra $(\Omega^{\alpha}(A), d_{\alpha})$ is performed by using the rules of d_{α} , for instance,

$$(1 \otimes x)(y \otimes z) = d_{\alpha}(x)(yd_{\alpha}(z)) = (d_{\alpha}(x)y)d_{\alpha}(z)$$
$$= (d_{\alpha}(xy) - \alpha(x)d_{\alpha}(y))d_{\alpha}(z)$$
$$= 1 \otimes xy \otimes z - \alpha(x) \otimes y \otimes z$$

Now we will use the identification $\Omega^{n,\alpha}(A) = A \otimes \overline{A}^n$, so the α -Hochschild homology $HH_{\alpha,*}(A) = HH_{\alpha,*}(A,A)$ is the homology of the complex

$$\ldots \longrightarrow \Omega^{2,\alpha}(A) \xrightarrow{b} \Omega^{1,\alpha}(A) \xrightarrow{b} A \longrightarrow 0$$

with

$$b(a_0 \otimes a_1 \otimes \cdots \otimes a_n)$$

$$= (a_0 a_1 \otimes a_2 \otimes \cdots \otimes a_n) + \sum_{i=1}^{n-1} (-1)^i (a_0 \otimes a_1 \otimes \cdots \otimes a_i a_{i+1} \otimes \cdots \otimes a_n)$$

$$+ (-1)^n (\alpha(a_n) a_0 \otimes a_1 \otimes \cdots \otimes a_{n-1})$$

Let the Karoubi operator $\kappa: \Omega^{\alpha}(A) \to \Omega^{\alpha}(A)$ be the degree zero operator given by

$$\kappa(\omega d_{\alpha}(a_{n})) = \kappa(a_{0}d_{\alpha}(a_{1}) \dots d_{\alpha}(a_{n}))
= (-1)^{|\omega|} (d_{\alpha}(a_{n})\omega + d_{\alpha} ((\alpha - id)(a_{n})a_{0}) d_{\alpha}(a_{1}) \dots d_{\alpha}(a_{n-1}))
= (-1)^{n+1} (d_{\alpha}(\alpha(a_{n})a_{0})d_{\alpha}(a_{1}) \dots d_{\alpha}(a_{n-1}) - \alpha(a_{n})d_{\alpha}(a_{0})d_{\alpha}(a_{1}) \dots d_{\alpha}(a_{n-1}))$$

Lemma 3.2.

- (1) $bd_{\alpha} + d_{\alpha}b = 1 \kappa$
- (2) $b\kappa = \kappa b$ and $d_{\alpha}\kappa = \kappa d_{\alpha}$

Proof. (1) follows easily by direct computation, and (2) follows immediately by (1). \Box

Let us define $\alpha: \Omega^{n,\alpha}(A) \to \Omega^{n,\alpha}(A)$ by

$$\alpha(a_0d_\alpha(a_1)\dots d_\alpha(a_n)) = \alpha(a_0)d_\alpha(\alpha(a_1))\dots d_\alpha(\alpha(a_n))$$

Lemma 3.3. On $\Omega^{n,\alpha}(A)$, we have the identities:

- (1) $\kappa^{n+1}d_{\alpha} = d_{\alpha} \alpha$
- (2) $\kappa^n = \alpha + b\kappa^n d_\alpha$ (3) $\kappa^{n+1} = \alpha d_\alpha b\alpha$
- (4) κ is invertible

Proof.

(1) Using the identification $\Omega^{n,\alpha}(A) = A \otimes \overline{A}^n$, we have

$$\kappa(a_0 \otimes \cdots \otimes a_{n+1}) = (-1)^{n+1} (\alpha(a_{n+1}) \otimes a_0 \otimes \cdots \otimes a_n)$$

$$+ (-1)^n (1 \otimes \alpha(a_{n+1}) a_0 \otimes a_1 \otimes \cdots \otimes a_n)$$

Now,

$$\kappa(1 \otimes a_0 \otimes \cdots \otimes a_n) = (-1)^n (1 \otimes \alpha(a_n) \otimes a_0 \otimes \cdots \otimes a_{n-1})$$

showing that $\kappa^{n+1}d_{\alpha}=d_{\alpha}$ on $\Omega^{n,\alpha}(A)$.

(2) A direct computation shows that

$$\kappa^n d_{\alpha}(a_0 \otimes \cdots \otimes a_n) = \kappa^n (1 \otimes a_0 \otimes \cdots \otimes a_n)$$
$$= (-1)^n (1 \otimes \alpha(a_1) \otimes \cdots \otimes \alpha(a_n) \otimes a_0)$$

and

$$\kappa^{n}(a_{0} \otimes \cdots \otimes a_{n}) = (-1)^{n} [(\alpha(a_{1}) \otimes \cdots \otimes \alpha(a_{n}) \otimes a_{0})$$

$$+ \sum_{i=1}^{n-1} (-1)^{i} (1 \otimes \alpha(a_{1}) \otimes \cdots \otimes \alpha(a_{i}a_{i+1}) \otimes \cdots \otimes \alpha(a_{n}) \otimes a_{0})$$

$$+ (-1)^{n} (1 \otimes \alpha(a_{1}) \otimes \cdots \otimes \alpha(a_{n})a_{0})]$$

Now, it is immediate that $\kappa^n = \alpha + b\kappa^n d_{\alpha}$.

(3) By (1) and (2), we have that

$$\kappa^{n+1} = \kappa \kappa^n = \kappa(\alpha + b\kappa^n d_\alpha)$$
$$= \kappa \alpha + b\kappa^{n+1} d_\alpha = (\kappa + bd_\alpha) \alpha$$
$$= (1 - d_\alpha b) \alpha$$

(4) The polynomial $(\kappa^n - \alpha)(\kappa^{n+1} - \alpha)$ has constant term α^2 , which is invertible, and

$$(\kappa^n - \alpha)(\kappa^{n+1} - \alpha) = (b\kappa^n d_\alpha)(-d_\alpha b \ \alpha) = 0$$

So κ is invertible.

We define the Connes operator B on $\Omega^{n,\alpha}(A)$ by

$$B = \sum_{i=0}^{n} \kappa^{i} d_{\alpha}$$

MARÍA JULIA REDONDO AND ANDREA SOLOTAR

Proposition 3.4. $(\Omega^{\alpha}(A), B, b)$ is a "parachain complex" (see [G-J]).

Proof. We can compute $\kappa^{n(n+1)}$ in two ways. First, using (2) and (1), we have

$$\kappa^{n(n+1)} - \alpha^{n+1} = \sum_{j=0}^{n} \alpha^{n-j} \kappa^{nj} (\kappa^n - \alpha) = \sum_{j=0}^{n} \alpha^{n-j} b \kappa^{nj+n} d_{\alpha}$$
$$= \alpha^n b B$$

On the other hand, using (3) and (1), we have

$$\kappa^{n(n+1)} - \alpha^n = \sum_{j=0}^{n-1} \alpha^{n-1-j} \kappa^{(n+1)j} (\kappa^{n+1} - \alpha) = -\sum_{j=0}^{n-1} \alpha^{n-1-j} \kappa^{(n+1)j} d_{\alpha} b \ \alpha$$
$$= -\alpha^n B b$$

Thus we obtain

$$\kappa^{n(n+1)} = \alpha^{n+1} + \alpha^n b B = \alpha^n - \alpha^n B b$$

So

$$bB + Bb = 1 - \alpha$$

Remark. The above proposition is a technical result. However, in some cases (for example if α is given by the action of a group on A), we'll have the possibility of constructing a bi-parachain complex V such that (Tot(V), Tot(b), Tot(B)) is a mixed complex.

REFERENCES

- 1. [C-Q] J.Cuntz-D.Quillen, Algebra extensions and nonsingularity, Journal AMS 8, 2 (1995), 251-289.
- [D-M] M.Dubois-Violette-P.W.Michor, Dérivation et calcul différentiel non commutatif II, C.R. Acad. Sci. Paris vol 319, 1 (1994), 927-931.
- 3. [G] D.Gong, Bivariant twisted cyclic theory and spectral sequences of crossed products, Journal of Pure and Applied Algebra 79 (1992), 225-254.
- [G-J] E.Getzler-J.D.S.Jones, The cyclic homology of crossed product algebras, J. Reine Angew. Math. 445 (1993), 161-174.
- 5. [N] V.Nistor, Group cohomology and the cyclic homology of crossed products, Inv.Math. 99 (1989), 411-424.
- 6. [R-S] M.J.Redondo-A.Solotar, α-Derivations, Can.Math.Bulletin 38(4) (1995), 481-489.
- 7. [R-S(2)] M.J.Redondo-A.Solotar, α-Derivations II: the non-commutative case, Preprint (1996).