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Introduction

The so-called Equiaffine Theorema Egregium establishes an important relation aniong the
main scalar invariants of Affine Hypersurface Geometry. It states, in abreviated terms, that : ” If L is
the unimodular affine mean curvature, J the Pick invariant, and R the Riemannian scalar

curvature, then these three quantities are related by the equation R = L + J ” ,[1,2,6,7].

The case where these three invariants are simultancously constant has been treated in full

generality, but only for 2-surfaces, by Dillen, Martinez, Milan, Garcia Santos and Vrancken in [2].

On the other hand, one can consider the problem of classiflying, both locally and globally, the
so-called Subclass of Hypersurfaces of Decomposable 'T'ype where those invariants are individually
constant. We started to do this in previous works [ 4, 5, 6 ] . Precisely in this last reference the

problem was set in terms of analyzing the solutions of differential equations of the following kinds :

yIV (y”’) 2

() )T i () T

= I = constant ,

where the constant values of r and s have a dimensional meauing , which vary according to the pro-

blem to be considered. The method of work was that of Qualitative Analysis, which was already used

alsoin[3].

Four cases of current geometrical interest were considered, regarding the constant values of r

and s:
. .
2n 43 o .
1)r=2,5= - :.2 y (vauishing unimodular affine mean curvalure);
—9 1 _2“+3 ) . ; ] .
2) r=2- e R e (constant nonvanishing unimodular affine mean cur vature});

—ay o . _Tn+10
3) r=2s=qy
—o__1 _Tn+10
=25 *Tim+2)

(vanishing scalar curvature);

(constant nonvanishing scalar curvature).
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These cases arose when applying a standard method for calculating a first integral of the equa-

tion considered: namely (y’)2=z, which led to get the further equation 1 ydz—[s z + K y* + 1] dy = 0.

2
A first integration of the latter, under the additional condition for y to satisfy y > 0, had
p=y (1+2s) as integrating factor, leading to
%y—‘Zs dz — [szy_(l+zs) + K yr"'QS] dy =0,

which is an exact equation.
In order to integrate the latter we had to separate Lwo analytical cases:

A ) Comprising the above geometrical cases 1), 2), 4), and 3 ) with n> 2.

( Observe that here r+1-2s > 0).

B ) Corresponding to the remaining, limiting case 3) with n = 2.

( Now, we have r+1—-2s = 0).

1 ) . v vttt L oL —28 1 - T+1=2s _ 1 ~
In the first case, the solution was written 5 Y e Ky =5 C, and

from this on the further analysis practiced in full detail [6].

It is the objective of the presen paper to treat the remaining case B), where we have r =2,

8 = % , and hence the solution can be written —l)— y 3, - K log y = % C . It follows that we get in

this case
y = y3? (c+ 9K log y )1/2 .

This is the equation to be analyzed {rom now on.

1. Qualitative analysis for the inverse function
Typel: C=0, K=0: 1t is easy to scee that this is the most simple of solutions, namely:
(LL) l'k( ik )= ( gk )2 , ( parabolic type ) .
Typell: C=0, K < 0: Iere the differential equation becomes
(L2) y = )’3/2(21(108;)’)1/2,

which requires, in order to be integrated, gqualitative analysis, to be performed ahead. Observe, loo,

that in this situation it also makes sense that the constant be strictly greater than zero, K > 0.
Typelll : C > 0, K =0: Here it is again possible to integrate explicitly. We obtain
(1.3) Rgky = — logtk,

For the remaining of cases, il is more leasible to look at x as a function of y . For this

purpose we consider the equation in its equivalent form
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. dx 1
(1.4) ax — _ 5.
dy y3/2(c + 2K log y /2
By fixing a point (x5 ,y, ), with y, > 0, asinitial condition, we can describe a solution

to the latter equation by
y

1t
(15) X = Xg + / wn < = .
3/2( , 91c 1/2
Vo t ((J + 2K logt)

We shall use the last expressions in order to accomplish our goal of analyzing the behavior of

solutions for the remaining of cases.

Let us observe, firstly, that the local behavior shall depend mainly on the first two derivatives
of x, with respect to y . So we now calculate the second one, and put together with the first, in the

following equations

dx _ ~3/2 ) DI Ty v —1/2

—dy—y (C + 2K log,y) ,
(1.6) L 3 .

(12x_ —3Klogy -5 - K

dy? /2 ((; + 2K logy )3/2

Secondly, we observe that the global behavior of the solutions shall also depend on the analysis
in the neighborhood of singular points, as well as on the questions of convergence, or divergeuce, of the

integral in (1.5). This is needed in order to determine when the surface is geometrically complete [6].

TypelV: C > 0, K > 0: We consider, then, equation ( 1.5 ) and observe that, since we must

also have C + 2Klogy > 0, it [ollows that Yo > Yo :i= c—_(’/(zh) > 0. lence, there exists

to ( > yo ) such that C + 2K logt > |, forevery L > Ly - It follows that we can write the

estimate

Y ¥
f dt < T di
o 32(C 4 2K log )2 i, 132

and since the last integral is couvergent, we get that there exists xyp (> x5) such that

(L7) }i_ll}xx(Y):xll'
On the other hand, by making the substitution 0 < v = C + 2K log t , we can write the
inequality
yo S0 So
dt 91 f dv 2 K - _dv
0< [ : — =2K | e < = f -

valid for every y such that ¥, < y < y,. Convergence of the last integral implies that there
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exists X;; ( < x5 ) such that

(1.8) lim x(y)=%Xy;-

Yo

Finally, it follows from ( 1.6 )}, that

2
dx dx -
(1.9) ——dy>0, ——dy‘)<0,‘v’y>y0.

TypeV: C > 0, K < 0: We consider again ( 1.5 ) and observe that, since 0 < y, < ¥,:=

e—C/‘ZK (> 1), weget, for y > y, the estimale

Yy Yy
/ dt < 1 / dt

3/2 o1c 1/2 1/2 - o1 1/2
yot/(C+21&logt)/ yo/ Yo L(C+21\10gt)/

The last integral is easily seen to be convergent. Hence, it follows that there exists x| >0 such that
( 1.10) lim x(y)=x
Y=o 21
On the other hand, given ¢ > 0, there exists t, such that (C4+2Klogt) < ¢ for
every t < t,. Hence, for y < t, we can write

t

Q

/ dt 5 1 /g_
v t'j/z(C—i—fll\'l()g;t-)l/‘3 cl/z y ¢

—_

'O

—

and since the last integral diverges to +oc as y converges to 0, it follows that

(1.11) lim x(y)=—-.

y=
With regards to the first two derivatives we obtain that
<0, in (0,¥) ;

2
1x d“x
(1.12) € 50, =5 = =0, at ;

Yo
> 0, in (510,?0);

1 C
-(3 +5) o= 1/3

where 0 < Jo:i= ¢ =7, < Vo

Type Vi: C < 0, K < 0: Let us consider again ( 1.5 ) and observe that, since 0 <y, <7, : =

e—-C/Zh ( < 1), we can proceed in a similar fashion as we did with Type V: C > 0; K < 0,

to obtain that there exists X1 > 0 such that

1.13 lim x(y)=xqq.
(1.13) i x(y)=xy
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Besides, as before

(1.14) Im x(y)=~o0,
y=0
and <0, i“(ovyo);
2,

(1.15) %>0, 373 :{:O,at Yo i

> 0, i“(i’ov?o);

1 C
y -(3+35r) _ _  —1/3 _ _

where 0 < j,:= e 3 2K =7, ¢ 1/ < Yo -

2. Qualitative analysis and further integration of the direct funclion

. . . . , . K . . 2
Let us consider the non-linear, ordinary differential equation y’ = ys/2 ( C+ 2K log y )1/ ?
set up in the Introduction, which we now rewrite as

(2.1) g_i:g’(x)-:[‘g(X)]g/‘z(C+2Klogg(x))1/2.

We shall use this expression in order to analyze the diverse cases .

TypeIV: C > 0, K > 0: We obtain, as a consequence of ( 1.7 ), ( 1.8 ) and ( 1.9 ) that the

function y =g (x), where g: (Xq1» xq1 ) = R, is characterized by the three following conditions

(2.2) xl_i:}\_l“g(x)=+oo.
(2.3) liw g(x)=75,:= e—‘("'/"“\.
XX
11
2
d d“g -

(2.4) £ >0, d—é>0,vxe(xn,xu).

A typical integral of the function g can be written

X

(25) G(x)::yo-l—/g(L)dt.,

X
for some point ( %, , ¥, ), with X, € (X7, X1 ) - °

By (2.1), we can write the latter as
X

- 2 () dt
(26)  G(x)=3o+ —E 5
){)[g(t)]l/“(('lf+2I\'logg(t.))l/“)

Integration by parts furnishes
’ X
, 1/2
G(X)=5’o+2( e (V)] 1/2) +
(c + 2Klogg(t))

75

Xo



(2.7)

X

+2K g (t)dt .
\;,/[g(ml”(c +2Klogg (1) P2

(o]

Hence, it follows that

(2.8) lim G(x)=+4occ.
1

X=X 1

Also, from (2.3 ) and (2.5)

(2.9) i G(x)=G;; € R,

X1

and, by using (2.4),

(2.10) G(x)=g(x)>0, G (x)=¢g(x)>0,V xe€ (Xy,x)-
We need one further integration and write

X
(2.11) F(x)=§'0+/G(t)dt,
5(()

With io e (ill,xll).
It is immediatle to obtain, fromn ( 2.8 ), (2.9) and ( 2.10 ) above, that the first two
derivatives of I behave as follows:
(212) F'(x)=G(x) ranges from Cll to +oo,
FP (x)=G(x) > 0, forevery x € (X ,xy)-

It is easy to see that

(2.13) im F(x)=F € R.

X—’Xll

In order to complete the study ou the global behavior of F we need to determine
limx_,xllF(x) , and to achieve this we have to analyze in more detail G ( x ) near that limit point.
We consider the second term in equation ( 2.7 ) and observe, too, the dilferential equation ( 2.1) in

order to write

X X
/ Lg(t) )/ a -] g () db
/(¢ +2Klogg (1)) [5(1)](C+2Klogg (L))

Xo Xo
= Tli( log ( C+2K log g(x) — log ( C+ 2K log g(%,) ) .
From this and ( 2.2 ) we get, finally,

(2.14) xli&l“r‘(x) = +o0.
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TypeV: C > 0, K < O: According to ( 1.10 ), ( 1.1l )and ( 1.12 ), we have for the direct

function y =g (x), with g:( oo, x9; ) R, the three characterizing conditions described next

(‘

5 i y —7 = e 2K
(2.15) x’ll;éu&(x)—yo e .
(2.16) x_lllgoog(x):(],

> 0 in (“Oo’v'o)v
- (1 (l2r .
(1.17) J%>(), d:; :{ =0 at X, =g~ (\0),
<0 in (g xyp )
) C
— (% 4 o o
where 0 < y,:= e (.5 5K ) 1/3

=¥, € <73, -
Again, a typical integral of the function g can be writien

X
(2.18) G(x)::y0+/g(t)dt, Xg € (—00,x9; )

Xo

By (2.1), we write

g (t)dt

2.19 G(x)=7,+ : .
(2.19) (x)=93 (g () 172(C + 2K logg (1) )/

Ox'\x

1t is obvious that
(2.20) Xlll}‘zzl G(x) =Gy € R,
and also that

(2.21) G(x)=g(x)>0, G"(x)=¢g (x)>0, V x € (—00,x9p ).

Next, we observe that there exisls t,; € ( —o0o, x4y ) such that C 4 2K logg(t) > 1

for every t < tgy . From this we obtain the estimate

21 (t)dt ‘24 (t)lt
g « g ¢
0 < < =
3{ L)]l/z(('—{-’l\log,g(t L/2 Z g(t)l/)

= 2([e(ty )1 - [g(x)]l/z) ,

and this implies that
(2.22) x—liu—]ooG(x):G“OOGR'
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We define now
X
(2.23) F(x)=50+ [ G(UdL, % € (=00, xy ).
o
It is immediate to obtain, from ( 2.20 ), ( 2.21 ) and ( 2.22 ) above, that the first two
derivatives of F behave as follows:
(2.24) F’ (x) =G (x) always increasing, ranges {rom G_qo to 621 ,
P (x)=G"(x) =g(x) >0, forevery x € (—00,Xg( ).

As it is again obvious that

(2.25) i F(x) =By € R

And once again, it is equally easy to compute limy_, _ o, F ( x) in the cases where

G_go is > 0 or < 0. In the remaining, limiting case G — oo = 0, we firstly write
b b () dt

(2.26) G(x):/g(t)(lt,: / 75 P’()( 73
~ oo ool )] “(U+‘~’Klogg(t-)>

and choose tgy such that C + 2K logg (t) < 3Klogg(t), forevery t < tyy.

Hence,

<
™
I

by
/ g (t)dt S 1 / g (t)dt _
e (D12 (0 +aktogg () )72 7 (=302 L (e ()12 (—1og g ()7

\2 Lo
= (;J,_Il')m{(z[g(t) 11/2(_1ogg(t))—1/2> 5 (2[g(t) ]1/2<_logg(t)>_3/2 .
_3K | \’

t()l’

&

. g (t)dt }
+'} « [ )
Z [g(t)]l/')(—logg(t ))”/“)

wliere the last equalily is oblained by integrating twice by parts .

[

Then we can write that, for every x < Ly, ,

(2271)  G(x)> (—“%—)—m[g(x) ]1/2<(_1ogg(x))—1/‘~’ —(—logg(x))“3/2>,

hence,
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b2 ) toa [ g (1) 1M/2 ((~logg(t))_l/2 —(—logg(t))_?’/z) g’ (t) dt
ZG(t)dt 7 3K Z [g(t-)]3/2(—1035-::(t))1/2 )

t29
‘2 l ( —log g (l) —(-—]ogg (L))_2>gé ((:)) di =

tyg

= — 3—%{—<-—log(~—log g(t.)) —(—log g(t))—.l) ,

and since this last diverges to +oco as x diverges to —oo, it follows that

(2.28) x_lilp_ool“(x):—oo.

Type VI: C < 0, K < 0: We treat consider here the function y =g(x), g:( —o0, x3; )= R,
characterized by the following conditions, which are easily obtained from ( 1.13 ), ( 1.14), and ( 1.15 ),
C
0 H — —_ e - R
(2.29) xl_l&lglg(x).—_\,o~c .

(2.30) X_li’xﬂoog(x):().

> 0 in (—o0, Xy ),

2
d d . L
(2'31) £>0, (—l——;gz-:{ :()dt XO:g l(yo)’
X
< 0 in (,‘?U,x.“),
1 C
- r_+;—. _ M
where 0 < y,:= e (J ‘”‘)zyoe 1/3 < T,

Again, a typical integral of the function g can be written

X
(2.32) G(x)::yo—i-/g(t)dt,,ioe(—oo,x3l).
By (2.1), we can write °
X

/ g (t)dt .
io[g(t)]1/2(c + 2Klogg (t) )1/‘—’

(233) G(x)=7,+

It is obvious that

(2.34) )gggglc:(x)=(;3len,

and also that
(2.35) G (x)=g(x)>0,G"(x)=¢g(x)>0, V x € (~o0,x3;).
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Next, we observe that there exists 13, € ( —o0, X3 ) such that C + 2K logg(t) > 1

for every t < tgy, from this we obtain the estimate
t31 t3

0 < g (t)dt < g (t)dt _
Z[g(t)ll/z(cumgg( & Zu)“z

—

= 2([%“31)]1/“ - [g(x)]l/Z)’

and the latter iinplies that
(2.36) x—lln—loo G(x)=G_o € R.

We define next
X

(2.37) F(x)=yo+/G(t)dt,ioe(*oo’x:ﬂ)'

Xo

It is immediate to obtain, from ( 2.34 ), ( 2.35) and ( 2.36 ) above, that the first two

derivatives of F behave as follows:

(2.38) F’(x)=G (x) always increasing, ranges [rom G —oo tO G31 ,
F” (x)=G"(x) = g(x) >0, forevery x € (—00, %3y ).

It is again obvious that

(2.39) Xl_ii}%:le(x):F:neR.

While it is equally easy to compute limyg_, _ o ' ( x ) in the cases where G_go s >0

or < 0. In the remaining, limiting case G — oo = 0, we firstly write
’ by V(L dt
(2.40) G(x):/ / £ )t 73
Yo Jole(t) (U+2I{logg(t)) 2
and observe that C + 2Klogg (t) < 2Klogg(t), forevery ¢ < xq).
Hence,
X31 *31

/ _ g () S 1 / () dt .
X [g(t)]1/2(0+21\’logg(t) )1/‘2 (2 )24 [g(t)]1/2(~10gg(t))l/“’

X31 X31

e 1/2{(2[“")]1/2("%!5(“))_1/2) —(Z[g(t)]1/2(-1ogg(t))'3/2> +

(-2K) . . x

+ 2 g (1) dt }
Z [g (1) 12 (~logg (1)
80




where the last equality is obtained by integrating twice by parts .

Then we can write that, for every x < Xa1,

‘ 2 T2 tom e )= 2 (o e () /2
G(x)>(__—;K_)1ﬁ[&’(‘\)] (( 10g5(1)> ( lég(h)) >v
and, hence,

x31 31 (g 1) ]'/* ((—logg(t))—'l/2 —(—logg(t))_3/2>g’ (t) dt

G(t)dt > —L _ ‘, _
b4 [g(t) ]‘3/2(—10gg(t))1/“)

X
*31 ‘)
- AR
:—-—I—I{—/ ((—logg(t)) . —(——logg(t,)) )g(t) dt =
x *31
= —%<~103(—10gg(t)) —(—logg(t))"z> ;
and since this last diverges to +oc as x diverges to —oo, it follows that x
(2.41) lim  F(x) = —-x.

X — OO

This finishes the analysis of the function I' in this case and, therefore, in @l of possible cases,

3. Lhe classiflying result,

Theorem. Let X : M2 » E3 be a nondegenerate surface of decomposable type with vanishing unimodular
affine scalar curvature . Then, each of ils two components I , [ , must be of one of the original types
I through VI, whose properties are enumerated below, or the corresponding three more kinds of types that
are obtained from those original types by suitable reflections in the x- and y-axis . All of the solutions
belonging to the original types share the common feature that their second derivatives, ( k )” =y > 0,

satisfy, in each case, the classifying, non-linear, ordinary differential equation
y’:y3/2((3 + 21{]ogy)l/2 .
Typel: C=0, K=90.
fk :R =R, given by ik ( (K )= ik )2 , ( parabolic type ) .
Typelll: C > 0, K=0.

. (—00,0)—= R, defined by ik ( tk )= — log ( _tk ) (logarithmic type ) .
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TypelV: C >0, K > 0.

fk defined on a finite open interval, i.e. fk : (Tll(l , tll{l )= R, such that

#l)=Th e r, Jim 5 (F) = too,

lim
Jim oy Ry =ik e vy i (R () = qee,
-l l\l { ——oll\l

C—J(,'/‘.Zl\ fn ( (I\' )” ( (,k ) = 4oo ,

k  k
L——»t,u

Jim (Fy (k)= ,
L—»tll
(fk) (Lk) > 0, (fk)w(tk) > 0, for every ik ¢ (fll{l,tlfl).

TypeV: C >0, K< 0.

k. (=20, 1k )=+ R, such that

{K defined on a semi-infinite interval , 91

too, if (TR) o <0,
lim Kk = lim (&) =6 e R,
Vst

V=0 —o0, if (TX) o 20,

. v ok Tk
lin f. t")Y=(I*)y; € R,
K o 1\) ( )= ( )31

im  (F)y (Ky=(T*)_, e r,
oty

th— — oo
c—(J/zl\’

(fy(iky=o, lim (Ey (k=

lim
{ —?L()l

£t = — 00

3

()7 (&) > 0, forevery % € (~oo, i),
() (kY > 0 for K e (—o0, k),

()Y (K)=0,

k

(fk)lv(tk)<() for G(Eg’l‘gl)’

1, C
where T = (& ),,>—1<e*(§+m))_
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TypeVI: C < 0, K < 0.

£ ( —o0, tl{;l ) = R, with the following properties

oo, il (TK)_ . < 0,

lim rk(Lk)={ i K (k) =15 e R,
b oo, il (TX) o >0, Loty
lim ( ['k )7 ( t,k ) - (Tl\ ):—OO = R, lin ( rk ), ( tk ) — ('F!;I )a c R,
th~ — 00 tk—.t!(.
31
lim () (ky=o, (K (B = (o e o~ C/2K
Voo Loty

(fk )”’(Lk) > 0, for every Lk € (—oo,bgl)’
(Y (k) > 0 for ik e (oo, 1K),
R =0,

(Y (k) <0 for Lke(Ig,(‘gl),

1, C
ol . - 5+5iF
where lb):(( {l\ )w)—l(e (j 21\))
Typell: C=0, K < 0.

The component function K salisfies in this instance the condilions corresponding to Types V
and/or VI above, as limiling case, by taking in either or those C = 0 . Moreover, it also makes
sense now to consider a second Typell: C=0, K > 0. For this laller lype the properties of the
component funclion K are described by Type 1V, by taking again C = 0.

Proof: it is to be to be applied here the analysis performed in §§ 1 and 2, with regards to equation (%)
mentioned in the Introduction , geometrical case 3 ) for dimension n =2, ie. r = 2, s = 3/2 .
The equations that apply in this limiting case are : ( 1.1') for typel; ( 1.3) for type I ; (2.2),
(23), (24), (28), (29), (210), (2.12), (2.13), (2.14), for type IV ; (2.15),
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(2.16), (217), (2.20), (221), (222), (224), (225), (228), for type V; and
(229), (230), (231), (234), (235), (236), (238 ), (239), and (2.41) for
type VI Finally, the observation concerning type II follows from equation ( 1.2 ) and the corres-

ponding analysis for types IV, V, and VI.
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