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ABSTRACT. In this paper we give the ruin probabilities for a diffusion with jumps. As
a related problem, we are able to give closed forim solution of some optimal stopping
problems for the same processes.
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1. Introduction.

Let be given on a stochastic basis (2, F,F, P) a Wiener process W = (W;)(>0, a
Poisson process N = (N;)>0 with intensity A > 0, and a sequence of independent
nonnegative random variables Y = (Yj)x>y, with identical distribution F. We will
denote F' ~ exp(«a) when Fis exponential with parameter o > 0. Assume that the
processes W, N and Y are independent, and that the filtration F = (F;);>0 is the
minimal filtration satisfying the usual conditions (see Jacod and Shiryaev (1987),
page 2) such that the process X = (X;);>0 given by

N,
Xe=z+oW,+) Yi—at, >0, (1.1)

k=1

is adapted to F. Here z, o, and a are real constants with ¢ and a positive.
T is a stopping time (or stopping rule) relative to F, if

7:80 = [0,400] and {r<t}eF, forall t>0.
Denote by M the class of all stopping times.
The first question faced in this paper is the computation of the following ruin
probabilities (see Feller (1966)):
Rt(z) = P(A: X, < 0), (1.2)

and
R™(z) = P(3t: X, > 0). (1.3)
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The exact solution to (1.2) is well known even for general process with stationary
independcnt increments, sce for instance Prablu (1980), but the solution to (1.3)
seems to be new (sce anyway Skorohod (1991)).

The second problem is the following : given a Borel function g : R = R find a
real function s : R — R and a stopping rule 7*, such that

s(z) = sup E(g(X7)) = E(g(X+))- (1.4)
- TeEM

Here s is called the cost function, and 7* (the stopping time that realizes the
supremum) the optimal stopping rule.

In the present paper we give the closed form solution to the problem (1.4) when
the function g is given either by

g(:l,‘) = (.’IJ - I()+,

or
9(@) = (K — )",
with I a real constant.
The results on optimal stopping presented are related to those in Mordecki
(1997), where different functions g (used in stochastic finance) were considered.

For similar results see Mc Kean (1965), Zhang (1995), Mordecki (1996), and
Shiryaev (1978) for general reference on the subject.

The paper is organized as follows. In section 2 we present the main results. The
proofs, given in scction 4 are based on some preliminary results, given in section 3.
2. Main Results.

2.1. Ruin Probabilities.

Theorem 1. Let X be given by (1.1) with p = j:oo ydF(y) and a < Ap. Then
the ruin probability (1.2) 1s given by

e af x>0,
ww={] (21)
1 if ¢ <0,
for n the negative root of the equation
a? . oo
—é—r/z —an + /\/ (e"¥ —1)dI'(y) = 0. (2.2)
0

Theorem 2. Let X be given by (1.1) with F ~ exp(a), and A < aa. Then the
ruin probability (1.3) 1s given by

A% 4 Be™P2*) af 1 <0,
1 if z > 0.

R (z) = { (2.3)
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with py and py the roots of

2 2
Qp) = 57* + (- +ap+aa—A=0, (2.4)

and A, B given by
a=bita) o pipta)

a(l’z *1)1)’ a(Pl —Pz).

Remark: From Theorem 2 we obtain the distribution of the supremum of the
process X, when F' ~ exp(a). Denote by S = supy>o X¢. Let y > z, then

N,
P(S2y)=P3tz+oW,+» Yi—at>y)=
k=1

N,
Pty —z+ oW, + ZYk ~at >20) =R (z - y).
k=1
In the proof of Theorem 3, we use the fact that
-p1z —p2z
E(S)=-AS  _ B¢
b1 P2
For further reference (Mordecki (1977)), it is easy to compute that

e Nz _B e P22 <
»+1 p2+1
(Observe that the result is finite because p; + 1 < —1 for ¢ = 1,2).

E(e®)=-A

+00.

2.2. Optimal Stopping.

Theorem 3. Let X be given by (1.1), and g(z) = (z — K)*. Assume that F ~
exp(a), and \ < aa. Denote

2 2
; /\+ a2<7

Then, the solution to the optimal stopping problem (1.4) is

™ =inf{t > 0: X, > 2o},
Aeri(zo=2) 4 Bera(sa=a) if 4 < g
s(z) = ’ . (2.6)
¢ — K, if € > zo.

where p; < py < 0 are the roots of the equation (2.4), and the coefficients A and B
are

Asz(wO —[()‘}‘1, B:pl((b‘()*.[()‘i-l.
P2 —p1 P —p2
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Theorem 4. Let X be given by (1.1) and g(z) = (K — z)t. Assume that F' is
arbitrary. Denote by m = f0+°° ydF(y), and suppose

a < Am. (2.8)

Let 1 < 0 be the unique root of the equation (2.2). Denote

1
$o=I{+—.
n

Then, the solution to the optimal stopping problem (1.4) is
* =inf{t > 0: Xy < o},

s(z) = { K —z, if ¢ < o, (2.9)

(K — zo) exp{n(z — z0)}, ¢ > zo.

3. Some preliminary results.

. 3.1. In order to prove Theorems 1 and 2 we have to apply It6’s formula to
the process X defined in (1.1) and the functions R, defined in (2.1) and (2.3)
respectively (for simplicity, we drop the superindex + and — when not neccesary).

As the function R is not C*(R) we will apply Meyer-1t6 formula (Theorem IV.51
of Protter (1992)). The second derivative of R in the sense of distributions when
restricted to compacts is

p(da) = R"(a)da + Rodo(da)

with R" the second derivative of R if a # 0, Ro = R'(0%) — R'(07), is the difference
between the lateral limits of the first derivative, and ¢ is the point mass at 0.
So, Meyer-It6 formula gives

R(X,) — R(z) = /t R'(X,_)dX,+

+ Y (R(X) - R(X,-) — R(Xa)AX,)
0<s<t

3 [ @ utde) =

t
= / R(X,_)dX,+
0

+ Y (R(X,) - R(X,-) - R'(X,_)AX,)
0<s<t

t
l/ R'(X,-)d(X,X), + éRolX(O,t).

0

[\
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where [%(a,t) is the local time of the process X at level a and time ¢. If
1o = inf{t > 0: X, <0},

we have [X(0,79) = 0 because X; > 0 on [0,70). Then

ToAl 1 ToAt
R(Xroat) — R(z) = / RI(X,_)dX, + 5/ R”(Xs_)d(X,X)s '
0

+ Y (R(X) - R(X,-) = BI(X,-)AX,).

0<s<TgAL

Furthermore, denoting X© = (X{)i»0, X! = (X$)iz0, with

N,
X{=gz+oWi+at, and X/=) 2,
i=1

we have:

TOMR’(XS_)dXs + Y (R(X,) - R(X,2) — RI(X,-)AX,) =

0 0<s<roAt

TD/\t
/ R/(X,_)dXc+
0

/Oro /“;[R(Xs— + ) — R(Xs-)] * (u(w, dz,ds) — v(dz,ds))+

/OTOM /R[R(Xs— +a) = R(X,-)] * v(dz,ds),

where pu = p(w, dz,ds) is the jump measure corresponding to X¢, and
v = v(dz,dt) = MdtF(dz)

its compensatcr. Resuming, It6’s formula in our case reads

R(Xryn) = Ra) = [ (¥R s 4 M()ro (3.1)
with
(LXR)(z) = 50°B'(z) + ak(a) + X /R (R(z +v) - R@))dF(z)  (3.2)

Il

the infinitesimal generator of the process X, and the local martingale M(R)
(M(R)¢)i>0 given by

M(R); = a/: R(X,_)dW, + jﬁ /R(R(Xs_ + o) = R(X.2))* (u—v).  (3.3)
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3.2. In order to apply Itd’s formula to the process X defined in (1.1) and the
functions s defined by (2.6) and (2.9) it is enough to observe that, although s
is not C*(R), s"(z) is continuous for = # zo, and has finite lateral limits. This
gives, denoting p(da) the signed measure (when restricted to compacts) which is
the second derivative of s in the generalized sense,

p(da) = " (a)da.

So Meyer-It6 formula applies, and a minor modifications in Corollary 1 to the same
formula, necessary because s is only bounded on compacts, gives

s(X:) — s(z) = /0 §'(Xs-)dX, + %/0 s"( X, )d (X, X),

+ 30 (5(Xa) = s(Xen) = 8/ (X )AKS).
0<s<t

In this case, following the notation introduced in 3.1 we have

[)s'(Xs_)dX3+ T (5(Xs) - s(Xoo) = 8'(Xo_)AK,) =

0<s<t

/Ot s/ (Xoo)dX S+
/Ot /R[S(XQ_ +2) — 8(Xoo )] * (u(w, dz, ds) — v(dz,ds))+
/0‘ /R[S(XS‘ +2) = s(X,-)] » v(dz, ds).

So, 1td’s formula reads

s(Xy) —s(z) = /0 (Ls)(Xs-)ds + M(s);. (3.4)

with LX and M(-) defined in (3.2) and (3.3).

In order to prove Theorems 3 and 4, we need the following Lemma (see Mordecki
(1997)), that we include for the sake of completeness.

Lemma 3.1. Let X = (X{)i>0 be given by (1.1). Let s and g be real Borel func-
tions, such that s is convex with s’ continuous for & # zo, for some zo € R, and
has finite lateral limits. C*, the continuation region is an open halfline of the form
(—00,z0) or (zg,+00). Let

™ =inf{t >0: X, ¢ C*}.
Assume that the following five conditions hold:
(1) (Ls)(z) =0  VzeC*.

44



(2) (Ls)(z) <0 Va # xo.
(3) 0 <g(z) < s() Vz € R.

(4) s(XrenTAt) < Z P-as for all T € M and for allt € RY, with Z an
integrable random variable, that is E|Z| < 4o00.

(5) s(Xp)=g(Xr») P-as.

Then, under this assumptions, the pair (7*,s) is the solution for the optimal
stopping problem (1.4) for the function g and the process X, that is:

s(z) = sup E(g(X,)) = E(g(X:)).
TEM

Proof. By (3.4)
s(Xy) —s(z) = /0 (Ls)(Xs=)ds + M(s);.

We have to prove assertions (a) and (b):
(a) s(z) = Eg(X-),
(b) s(z) 2 Eg(X,) Voe M.
By conditions (5) and (3) in our hypothesis this is equivalent to proving
(a') s(z) = Es(Xr.),
(b’) s(z) 2 Es(X,) Vo e M.

Taking into account that A, = — _];:(Ls)(Xs_)ds is increasing (by condition (2))
and A,+« =0 (by condition (1)) we have to verify

(@) E(M) =0,
(b”) E(M,) <0 Vo€ M.

As M(s) = (M(s)t)r>0 is a local martingale with M(s)g = 0, for a localizing
sequence (7,,) we have

E(M(8)inr+ ar,) = E(M(s)y) = 0.

As
—s(x) < M(s)inr ar, < s(Xiarear, ) < 2

(a”) follows by dominated convergence.
As M(s); =2 —s(z), by Fatou’s Lemma the local martingale M(s) is in fact a
supermartingale with EM(s)o = 0 and (b”) follows.

4, Proof of the theorems.

Proof of Theorem 1. Taking into account (3.2), for z > 0
1 oo
LX e = 7° [5(770)2 ~an+ /\/ (e" —1)dF(y)] = 0.
0
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When 0 < s < 79 At we have X,_ > 0, and in consequence L*X (X,_-) = 0. Also
1X(0,m) = 0, so (3.1) reads

R(Xront) — R(z) = M(R)ron
As R is a bounded function, taking expected values and limit as ¢ goes to infinity
R(z) = E(R(X+,)) = B(R(Xr,)[(ry<o0)) + B(R(Xro)l(ro=00)) = P(70 < 00).
Proof of Theorem 2. As A+ B =1, defining
Ri(z) = Tiz>0)e"" + Lizcoy, ©=1,2.

we have R = AR| + BR,. For x < O:

LXRi(z) = p;ePi® i+/\pi=>\pi>
(z) = pie’*Q(p;) oA = AT

S0

A[)[ a/\ BI)Q

LXR(z) = a) =
(@) =« P11+ A p2 + A

0

by (2.5), and the proof goes as in Theorein 1.

In view of Lemma 3.1, the proofs of Theorems 3 and 4 reduces to the verification
of conditions (1) to (5) in each case.

Proof of Theorem 8.
(1) For z < 2o and s(z) as in (2.6) we have

+ oo
(TF5)(@) = 307"(2) = as'(@) + A [ s+ 9) = s(aoe Ny =

1
AeP1(zo—2) [iazpf + ap; — )\p p—;— a]—|—
1

1
BeP2(%0—2) [5021)3 + aps — )\p I;Z— a]—
2

K+ 1 A B ]
w J— —_— —_— =
° « apl +a apz +a

” - P2 _
A eP1(zo ) + B eP2(zo—1z) _
P Q(p1) P Q(p2)

1 A
Ae~(#o—2) [a:o K+ ——a - B
a P+ a P2 t+a

)\e-—a(xo—x) [

We know Q(p1) = Q(pz) = 0.

T K—I—l A B
— ——a —
0 « P11+« aP2+a

=0
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is verified taking into account that

2\
(01 + )2+ @) = =53,
2(ac — X)
Pipz = T2

PLA+pB = —1,

and (2.5).
(2) We have to see that for @ > zg, LY s(z) < 0:

" Foo A
(L~ s}(z) = —a + /\/ ydF(y) = —a + = <0
0
by hipothesis.
(3) First, we verify that
A>0 and DB >0. (4.1)

We know A+ B = zo — I{ > 0. On the other side,

—1 . ] o — I¢
AB = m [])2(:1,0 - IX) + 1] [pl(fl,() I ) + 1]

-2 ~1
a%(p1 — p2)?(zo — K)?2 " e -~ K7

Now, Q(FO:ZIT) < 0 by (2.5) and (4.1) is proved.

(4) Take Z = s(X;+) + zo. Then, s(Xye axa) < Z follows from the fact that on
the set {7* < 400} we have X,eapnr < X,v and the function s is increasing. On
the set {7* = +o00} we have X + aprar < 20.

Observe now, that

$(Xpe) < (Xpe —IO)T < sup X,
0<t<4-00

and by Remark to Theorem 2 we have E({supy<i<ioo Xi}) < 00
(5) We have
lin_ s(z) = lim g(z) =0
r—+—00 r——00

50 $(X7+) = g(Xr+) =0 on {7* = +00} because limy_y 400 X, = —c0 P — a.s., and
s(z) = g(z) if £ > 20, so s(X;+) = g(Xe) on {r* < +o0}.

Proof of Theorem 4.

(1) If s(z) = (K ~ z0)e™=%0) for z > 2

on)? +o0
(LXs)(z) = (K — zp)e"®=%0) [(—277)— —an+ /\/0 (e" —1)dF(y)] =0
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by (2.2).

(2) In this case, for z < zg

o0
(LXs)(z) = —a + /\/ ydF(y) = —a+ Am <0
0

by (2.8).

(3) For z > K, g(z) = 0. When 29 < & < I, we have s > 0, with ¢" > 0,
g(zo) = s(xo) and g'(zg) = s'(x0).

(4) is inmediate, because in this case we have

0< S(Xg) < zo.

(5) In this case we have X+ = xg on the set {7* < 400}, and in consequence
9(Xre) = 8(Xpe) = s(xo) on {7* < +o0}. As limgypo0g(z) = limgyyoos(z) =0
the result follows.
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