ON COMPLEX BASES FOR NUMBER SYSTEMS
WITH THE DIGIT SET {0,1}

Agnes Benedek and Rafael Panzone

ABSTRACT. Onc of the purposcs of this paper is 1o prove an csscentially known result: the family of

complex numbers cntitled to be cligible as bascs for C with 0 and 1 as (he admissiblc digits has five
clements: iw/i , 21/2+(/ 2)\/'7 ,E1+4, if we ignore conjugates (§4). However it is shown (Th.

10) that only four arc truly eligible as bascs for C: iAf2 . +1/2+ (i/ 2)\/7 , —1+1i. We describe the

fractionary scts of thesc bascs among which the twindragon and the tame dragon arc found. Other
results of more genceral nature precede the fundamental theorem (§2 and §3). They arc interesting in
themsclves and some generalize partial contents of the main proposition. A final notc refcrs the different

scctions of the papcer to the items of the Bibliography.

I. INTRODUCTION,
1. POSITIONAL REPRESENTATION. Let R (C), |6>1, D={0,d,,d,,....d, }

CR (C). ais said representable in base b with ciphers D if there exists { a ; €D =M,

M
M-1,..} suchthat @ = ) a b’ . Wewrite a@ =a,,...a,.a_,a,..=(ef), and call (¢) the
integral part of & and () the fractional part of & . Denote G the set of all representable
numbers and define the set F of fractional numbers as those numbers in G with a
representation such that (¢)=0 and the set W of inregers of the system as those with a

representation such that (f)=0. A number r will be called a rational of the numerical

system (5,D) if it has a finite positional representation, i.e., with a, =0 for j < Jr). U will
denote the set of rationals of the system.

If b=10, D={0,1,...,9} then F=[0,1], W=N, G=[0,0). Observe that UcQ and U=Q.
Assume b=m, m a positive integer, D={0,1,...m-1}. In this case we obtain: F=[0,1],
W=N, G=[0,%0). In both cases we need a prefix to represent the negative numbers.

However a negative base fits to represent R without prefixes.
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THEOREM 1. Let b be a negative integer, m= | b | >1 and D={0,1,...,m-1}. Then, W=Z
and if e W then

¢ t=ab +a b7+ +ab+a, a, €D

where the a; are the non negative remainders of the divisions by . Besides, ¢ is uniquely
represented as

) t=(a,a,,..a,), =(a).(0) inbase b e

(_ denotes a period). The proof'is left to the reader (cf. Th. 3).

1.1. THE BASE —m. It is well known and generally true that if the base bR (C) and
D= {O, d.d,,..d, } < R(C) and | 5]>1 then not every number of R (C) belongs to G or
there are numbers with more than one positional representation (cf. §2 and Th. 4). We

want to characterize the multirepresentable numbers of R in case b=-. Now

D={0,1,...,m—1} and by Th. 1, W=Z. Since
3 —m/(m+1)= (m=1)/ (=m)"" 1 (m+1)=" (mn—1)/(~m)"
- 0 1

we have FCF’:=[-m/(m+1),1/(m+1)]. If z’€F’ and z:=m/(m+1)+z’ then zel:=[0,1].

Developing z in base m and same D and using (3) we get
Z=-m/(m+)+z= (m=-1)/(=m)""" + > (~a_, /(-m)’ €F.
0 I

Then F=F’. It follows that G=R since R=U {g+F.geW}. Recalling that ... denotes a

period, we have:

00— =1.(n=1)0 = 0.m—1)0 = 1(m—1).0(m—1)
m+1 ‘ m+1

)

THEOREM 2. If x has two representations in base -m, x = (n).aa,.=(m).b b,..

with 2, >n,, then n,-n,=1 and x = (12).0(m—1)= (0 +1).(m=1)0, n=n, o

PROOF. Observe that n,-n,=0.b_b,..-0.a ,a,..= f, - f,, f; eF=[ - , ! },
m+1 m+1

—m ,
and f = . These numbers have unique
m+1 m+1

can only be a positive integer for f, =

representations with zero integral part given in (4), QED.
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COROLLARY 1. A number x can not have three representations e

PROOF. Suppose there are three different representations of x. Then there is a j such
that b’x has three rebresentations with integral parts: #, <n, <n,. But then n,—n, >1,
absurd, QED.

COROLLARY 2. The set B of numbers with two representations are those finally
periodic of period 0(m-1) or (m-1)0.. R\B consists of points uniquely representable o

1.2. THE GRAPH ASSOCIATED TO B. Let x be equal to p=a,...a,.a_,... and to

q=¢,...c,.c_,.... The state k of the representations is the pair p(k), (k) (c£.[G2]):
L L

pR)=Y"a,(-my™, qlk)= D¢ (=m)"™"  Therefore, o(k):= p(k)~ q(k) is an integer
k k

GRAPH A

equal to the sum of a series like that

m @,d) defining »n, —n, in Th. 2. Thus, o(k)

0] belongs to  S:={-1,0,1}. We call o(k)

@,d+1) @1d) the fype of the state k& and denote the
types -1, 0, 1 symbolically and
respectively as plq , | pqg |, qlp.

(n-1,0) THEOREM 3. The succesive states of
qlp

-~

Plq

a number in B are obtained following
(0,m-1)

an infinite string in the graph A e
PROOQF. Observe that the following relation holds:

(5) otk-D)=o(k).b+(a, , —c, )

The vectors (a,,c;) in the graph A near an arrow are the succesive ciphers of the
representations p, ¢ since a, , — ¢, , € {——(m— 1),..,0,...,m— 1} and o(k~1)e{-1,0,1}.
1.3. THE UNITARY SET F. The set F is the invariant set of the contractions

© O©,(2)=z/b+jlb, j=0,.,(m-1).

_(m+D)j+1 m—(m+1)j
m(m+1) ~ m(m+1)

In fact, ® J.(F):[ } is the set of numbers that can be

represented as 0. ... .
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23 By we Ty 1.4. THE BASE b=-2.

¥ F F F F The diagram shows the set F in case
.10 11 00 01
. g - rnz s
23  s1z 16 v , m=2. Here
0.10... 0.11.. 0.00... 0.01... .
Ly a = {x,x = (O.a*l...a_“...)_z}

The graph A takes now the form:
1.5. THE BASE b =—+/2 . Let D={0,1}. In this
o m W case we have W= {m— nv2:mn eN}. In fact, a

g number w € W can be written as

2 R —
©,1) (1,0) Mw=>"u,2’ —JZZa'IZJ =m—~2.n,mneN.
720 j=0
Because of the irrationality of V2, m and n are
1,0

plg < gp uniquely determined, that is, w is uniquely

) representable as an integer of the system. Moreover,

W is dense in R. In fact, it holds that

N2-p,/a.|<1/q), 4,10 pol g <N2 <poa! G

for the consecutive convergents to the continued fraction whose value is V2 and

consequently, {k.(p =4, fi):k eN,j= 1,2,...} is dense in R. Furthermore, a number «
. belongs to F if and only if it can be written as |

-1 1
(8) a=Zaj2f—\/§Za'j2f =x—-~2y, x,y e[o,1]

Then, F=[ —v/2 ,1]. Moreover, each number in (—x/i ,1) has infinite representations of

the form (8). Since R=|_J{w+I":w eW}, the next proposition 1 follows.

PROPOSITION 1. A real number has infinite representations in the numerical system

(2. o)
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2. BASIC RESULTS. RESTRICTIVE ASSUMPTIONS. Given a complex number b,

|b|>1, the base, and a set of numbers D= {d(,,...,dk}, k>0, d,=0, the ciphers, we write

AM

a, €D, instead of x =>"a b’ We have DcW. Besides, F is a

X = (aM...ao.a_lawz...)b, ,

compact set since D is finite. Let us consider the following hypothesis:

HO) 0 has a unique positional representation in (b,D).

THEOREM of equivalence. HO) is equivalent to

HB) for any M there is a v=v(M)eNsuch that if weW and |w| <M then

w=>Y ab',a, eD e

0
PROOF. If 0=(w. f), then 0=6"(w.f), =(w,.f,),. {w,} is a bounded set and this
contradicts HB) if w.f has a non null cipher. Assume HO). If g, = (ava)...af,N))b isa
bounded sequence with ai”’ = 0, {N} an increasing sequence of integers, then a

. - (V) (V)
subsequence verifies: &y, = (Cl...C,.aNi_,-...ao ), N, T 0, ¢, #0,

Then, 0=/im b‘N’_lgNi =0.¢,¢,..., a contradiction.

THEOREM on the boundary. If HO) holds then any number in OF that is a limit of

numbers in G\F has two representations e
PROOF. If {gj = czf\,’,'zj)‘..cq(,"),a,(_']’)...} aj;)  #0 converges then {A4(j)} must be a
bounded set. Therefore {gj} has a convergent subsequence to a number x = (w. f),,

w # 0 and the theorem follows.

THEOREM on the closure. Assume HO). 1f { g, }cG and g, — r thenreG

COROLLARY 3. Assume HO). Then U=G o
THEOREM on the ciphers. Assume HO). If d,,d; €D d,#d, implies that

d;—d; # b.r, r eW, then the following proposition holds:

HD) The ciphers have a unique representation as integers of the number system (b,D) o

21



PROOF. Assume d, :(aM...a,dj)b. Then, d,-d, = b(a,,..a), = 0. Because of HO),

a,, = 0, and the theorem follows.

THEOREM of uniqueness. (i) Assume HO). If W is a Z-module then it is uniquely
representable in (b,D). '

(ii) Assume that HD) and HW) hold:

HW) If r and s belong to W then r~s or s—r eW.

Then, every number of W has a unique representation as an integer of (,D) e

PROOF. (i) If w, =w,.f then (w2 - w,).f = 0. Because of HO), f=0=w,—w,.

(i) Assume w = (a,,...a,)=(cy...c,). Then, a,~c, = b[(cN )= (ay ...a,)] =

= b(r - s)‘. If 0 r—seW then a, =c, +b(r-s) and a, has two representations, QED

COROLLARY 4. Let W be a Z-module. If the ciphers have a unique representation in
(,D), or they have a unique representation as integers of the number system, then the
same holds for any number in W o

We introduce in §3 a new set of restrictive conditions on a number system. In what

follows K will denote the field C or R and DcK will be assumed. The base b, |b|>l, will

be real if and only if K=R. H° or int(H) will denote the open interior of the set H. The
next theorem is of a very general nature

THEOREM 4. (i) 0 eint(/") = K=G

(ii) K=G=> there are points with more than one representation e

PROOF. (i) If zeK then x =zb™’ eint(/") for a certain j. Therefore x = 0.a_,... implies
z=a,..a_;a_,.. . (i) Assume that G=K. Because of the Baire category theorem,
int(#) = . Therefore, if W is discrete then every point in OF has two representations and

if not, there are two tiles, w+F, w’+F, with interior points in common, QED.

3. POINT-LATTICES. Let us define: L={m+nb:mn €Z}. We want L to be a point-

lattice ((HW1). It surely is if b C\R. But if K=R we have to requiere that Q. In fact,

if b is an irrational number there exist pairs of integers such that the sequence p; —¢,b

tends to zero (this can be seen as in the proof of proposition 1 using the convergents of
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the continued fraction of h). Assume b=p/q, a reduced fraction. Call r=1/g. Then,

mA nb=(mq '\ npyr kr and L= {krk cZ}.

The following statements are the hypotheses mentioned in the preceding paragraph:

HC) ZoD>{0,1} and for d,,d, D, |d, - d | <|b* , C=dim K

HL) WcL and L is a point-lattice.

THEOREM 5. Assume HL). Then, -

(i) W=L = K=G

(ii) If K=R then b €Z and L'CZ

(iif) If K=C then b satisfies a quadratic equation: &> —mb+K = 0 where m=2Re(b)
and K =|b|" are integers with 4K > m’* e

PROOF. HL) implies b,b* €L. Then b*> = mb— K with m,K integers and (iii) follows. If
K=R and b=p/q, a reduced fraction, then b*> =(mp— gK)/ ¢ . This implies (ii), (cf. §1.4,
§1.5 and also [HW], T.206).

@. U=Us’w= | {mb'j +nb 7 mn eZ} is densc in K. Thus, for zeK there is a

}is

J
sequence of rationals such that u, —z. Let u, =(w,.f,),. Since F is compact, {[w"
bounded and w, =w for an infinite number of indices. Suppose then u, = (w. f,,)b .There

is a subsequence such that, for any j, the ciphers of { f,,} of index j are constant from
some moment on. In consequence, u, — z=(w.f),, QED. .
THEOREM 6. Assume HL). Then, K=G = 0 € ini(F) o

PROOF. There is only a finite number of w, e, j=1,...,n, such that !wjl <2diam(l").

Then, V:= U{w ; +F} is a neighborhood of 0. In consequence, there is an m such that
bV < F, QED.

COROLLARY 5. If HL) holds then K=G <> 0 € in(F) o

THEOREM 7. Assume HC) and HL). Then, any number in W is uniquely representable

as an integer of the numerical system
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PROOF. Assume w = bw, +d, = bw, --d, . In consequence
9) d—-d,= b(w2 - wl) = 1)(1/[) + v) uver.
Because of HC), if b is real, w, =w,, andifnot, d,—~d, = —uK + b(mu+v). Thus,

mu+v=0 and Ia’l —~d2|:|u|.‘b|2 Then, #=0 and v=0." In both cases, d, =d, and the

theorem follows.

THEOREM 8. HC) and HL) = HO) e

PROOF. If 0 had more than one representation it would exist a o eD\{O} such that
0=(0.d...),. Multiplying by b*,k=1.2,..., we would have 0=(w,.f,), and necessarily
some w € W will have more than one representation as an integer, a contradiction, QED.
COROLLARY 6. HC) and HL) = HO), HB) and HD) e

The theorem of uniqueness and theorem 8 imply the following result, (cf. Th. 5).
COROLLARY 7. Assume HC) and HL). Then, W =L = Fn(L\{0}) = J e

3.1. EXAMPLES. (i) Let 6=3, D={0,1}. Then K=R, F=T/2 where T is the ordinary

Cantor set, NAWcN, HO) holds and any number of G is non negative and has a unique

representation. Moreover, L=Z and 0 is not an interior point of F.
(i) b=1+i, D={0,1}. b satisfies thc equation b*-2b+2=0 and this implies that
WcL=the set of Gaussian integers. Neither i=ib+1 (cf. Th. 7 and [G3]) nor —1=ih* +1

(see next Lemma 1) nor —i=ib*+b-+1 is representable as an integer of the systen.

However, —i:(.i)b €F. Since F is contained in the rectangle [-2/3,2/3]x[-4/3,1/3],

(c£[BPY]), it follows that i ¢F. But i=b? +(~i)= (I oo.I)b . Thus i €(GAL)(WUF).

Observe that if p+ig €L then b(p+ iq) =(p- q)+ i(1)+q) has its real and imaginary
parts simultaneously odd or even. This yields,

LEMMA I. If @ € L\W then b and b +1 also belong to L\W e

Because of -1,/ € L\W, the numbers in ¥ = {~1—i,~i,1—i,—1—2i,-2i,~2i+1} belong to
L\W. Applying three times the lemma and beginning with V, one obtains a set V' that
contains a point f such that dist (3,W) > J5 >2. Since 2> diam F (cf. [BP)), it follows

that B is a not representable number : BeL\G.
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3.2. CIPHERS AND POINT-LATTICES. We say that /, has 1) as a complete set of
residues, or more precisely, 1) is a complete set of residues of b7, with respect to 1, if for
any /el thercarean 'el. and a d 1) such that /= bl"td . The next theorem is a sort
of converse of Corollary 7.

THEOREM 9. Assume that HL) holds and L has D as a complelc set of residues. Then,
WL = (LM0}DAF2 T e

PROOF. Let [, e/\W I, =bl+d, d,elD). Then I el \WW. We define recursively

: f CHll_c ¢ CH|
[,=bl,,+d, Let C= max{ldj ’} We get ![mls !/,ll zl < m+|_[)1_2+"-+ |b|,~|,;,0| -
< ——|b’C 1+ [/I)|l;)'|' . Therefore, {/,} c L\W is a bounded sequence. In consequence, there

exist j and k, j<k, such that [, =1,. Without loss of generality we may assume that j=0.
Then, I, =d, +bl, =d, +bd, +b*l,=...=d, +bd, +. 40", +b*], and

M-1
M1, + Zb’“(d(, +bd, +.. +b* dk_l) =1,. This yields ~/, = 0.d,_,..d, eI, QED.

s=0

I1. FOUNDATION.

4. COMPLEX BASES WITH DIGITS 0,1. Let h €C\R, |4|>1, D={0,1}. We ask for
conditions on b which ensure that for the unitary  set F=F(b).:=
={z =0a,a,..= Z;naﬂ.b"':a__i el)} there cxists a point-lattice L:=[u, v],

[, v}= {I = mu+nv:m,n €Z}, u and v being linearly independent véctors, such that the
sets {/+F:/ e L} tessellate the planc in the sense of the following definition.
DEFINITION 1. A4 tessellation of a set in the plane is a locally finite covering by
bounded subsets which intersect pairwise in sets of Lebesgue measure zero.
With m(.) we denote the Lebesgue measure in R? and <w,v>  will stand for the

parallelogram with sides # and v. We state next two useful propositions.
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PROPOSITION 2. Let L=[u,v] and F be a compact set. Assume that U{l +F°:1 eL} is
a disjoint union. Then
@) m(F°)<nm(<u,v>)
(ii) if m(I7°)=n{<u,v>) then U{/+ 1l €L}= R* and m(I*)=m(l") o
PROOF. Cf. [HW], §3.11.
PROPOSITION 2'. Let L=[,v] and F be a compact set. Suppose that. U{{+F:leL}=
=R? Then
(a) F has nonvoid interior and m(F) > m{<u,v >)
(b)if {I/+F:l €L} is a tessellation of the plane then m(F) = m(< u,v >)=m(F°)
(c) conversely, if m(I")=m(<u,v>) then {/+ [/ €L} is a tessellation of the plane e

PROOF. 1t follows the lines of the preceding proposition and is left to the reader.
4.1. THE CONTEXT. Since

(10) bF = {z =a,.a.,a,..aq, ED} = FU(F +1)
one gets b*F = FU(F +1)U(F + )U(F7 +1+ b) and also

(11) b"F:U{F+g:g:(a,,,l...a(,)EW} a, eD.

Observe that from m(bI) = 8" m(1*) = m(1* U (1" +1)) it follows that |b|2 =2 by simply
assuming that I'° =&, m(I'~(I7+1))=0. In this situation the union of the sets
F+g,g €W, contains balls of radii as great as we please.
In many examples W is part of a point-lattice [1,v] which necessarily contains L:=[1,5].
. We shall see in §4.4 that this implies LOW. Accordingly, we assume that hypothesis HL)
holds with the lattice L=[1,b]. From (iii) of theorem 5 we have,

12) b*=mb-K mK eZ

(13) B =k >m* /4.

If {F+L1eL} is a tessellation of R? then /**«@ and m(I* ~(I"+1))=0. It follows
that {bF + 1:1 e A} A:= bl is also a tessellation of R*. Using (10), we obtain that
{F+r:rel’} L= AU{A+1} is also a tessellation of the plane. Now, the fact that
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L'c L implies L=1'. Thatis,

(14) L=AUA+]) An(A+D)=0.

This means that {0,1} is a complete set of residues of A with respect to L. Since K=2
from formula (13) we obtain 8> m’. Therefore, m €{0,+1,+2} . We have proved
PROPOSITION 3. Letbh €eC\R, [b]>1, D={0,1}. If W < L:=[1,b] then the following
assertion i) implies ii):

i) {F+/1€eL} tessellates R

ii) |6] > =2 and & satisfies a quadratic equation: 6> —mb+2=0 me {0,+1,42} o
REMARK. Observe that it may be proved with a point-lattice argument that K=2:

A=ab+fel'cl is of the form /l:pbz+ql)+§:—Kp+5+(mp+q)b where

o e{O,l} ,ie, a=mp+q,f=56-Kp. To ensure that L=1", B must take any integer

value. Therefore, we must have K=2 since K = |b|2>'l. (Then a,f may take any integer
value).

42. DEFINITION 2. For ¢ eC\R, L(q)):t[l,q)]. We call pu=-1/2+il7/2,
I'=-1+i and

(15) S:={ii\/5, 1/2+i7/2, —1/2+i772, -1+, 1¢1}, B=S\{1%4}.

S is the set of numbers & that satisfy ii) of proposition 3. The point-lattices associated to
each pair of numbers in § are L(i\/i ) L), L), 1(I) = 1.(i),1.(I"), respectively. In fact,

PROPOSITION 4. Letb €C\R, [b[>1, D={0,1}. Then, /(~b) = 1(h)—b/(b* -1)
F8)=F(8)  L(-B)=1(8)  L(b)=L(k) »
PROOF. Notice that b/(b2 - l):ib"z“' . Thus, if z €l’(b) then z= iajb“’ and
1 1
z— b/(b2 —1) = ch (=b)” where ¢,, =a,,,c,,,, =1-a,,,. In consequence, c,eD
i

and z- b/ (b2 - 1) belongs to /(—b). The proposition follows.
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IIL. FUNDAMENTAL RESULT.
4.3. We shall prove that i) and ii) of proposition 3 are in fact equivalent. We shall say

that beS is a binary basis if G=C, that is, if any ze C can be written in the form
Moo .
(16) z=(aya,., . .a,a.a,.), =y.ab  a, e{0]l}

PROPOSITION 5. /(i+/2) :[—2/3,‘1./3]x[—\/§ 13,4213]; W(iv2) = L(iW2)

PROOF. [(iv2)= {z =X a, (iﬁ)’ a, e {O,l}} =

J<u

={z =x+iyN2x =Y a,(-2),y=a,, l(—2)’}

<0 J<0

It follows from §1.4 that x,y € [/(-2)=[-2/3,1/3] and from theorem 1 the equality
[ j
W(iv2)= iZaj(i\/i) a, €{0,1} > = {x+ iyV2:x,y eZ} = L(iﬁ) , QED.
J=0

THEOREM 10. i) It b &S then {/-+ &£ e L(b)} tesscllates R? .

ii) If b €B then W(b)=L(b).

iti) beS is a binary basis if and only if beB.

iv) If beS then m(7(b)) = | Im(b)|, m(d1(b)) = 0.

v) If €S then the unitary set /*=/(b) is disk-like e

PROOF. iii), ii)=1i): Suppose b B. Then b is a binary basis and R*= U{F+w:w eW} .
Using (11), we get

(17 2"m{) =m(b"1«") = m(U{/"+ w,ij=12,.,2" }) < Zm(lﬂ'- wj) =2"m(I7)
and the inequality in (17) must be an equality. Therefore, if w,w'el are different then
m((F +w)N(I + w')) = 0. In consequence, {/<+/:/ €L =W} tesscllates R* and i) holds

for beB. By proposition 4, {17(=0)+ ./ € L(—b)= L(b)}, bel, also tessellates the plane.
Thus i) holds for any b €S = BU(-B).
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ii) Because of proposition 4, it is enough to prove W(b)=I(b) for beB,Im(h)>0.

The case 6H=T is treated in [KS] and h=iv2 in proposition 5. However in any case

one can use the following result. ;
PROPOSITION 6. If beC\R satislies b* —mb+k =0 where nk €Z , k>1, D:=
{0,1,....k-1}, then W(b)Y=L(b) ift the critical set @b, D)= {g eL(b)|g|<1+k } is
contained in W(b) e

PROOF. L is the disjoint union Z(h)=U{A+8:5 €D} where A:={b&EelL}. Thus
Vz el there is a (unique) z, €/ and a del such that z=bz,+5. Now
[z,|s(k—1+|z|),/\[lz. Therefore, lt |:|>JE+1:(/«-1)/(\//?_1) then |z,|<|z|. Then,

any number in L may be wrilten as z=b"z, +b"'S, +.+b5, +35, with 0, €D and

n-1
z, €A(b,D). In consequence, z el if z, e, QED.

To finish the proof of ii) we simply exhibit for each b eB,if2 2 b =T, Im(6)> 0, the
positional representation of the numbers in &b,I)\{0,1,b,h+1}. The expresions that

follow can be verified by using in each casc the equation 6> =mb—2 with the

corresponding m: m= -1, m=-+1.

b=pu: —2=(110) —I=(111) 2=(1010)  b—1=(111001) b+2=(11100)
1-6=(1111)  -b=(1110)  -b-1=(101)  —b-2=(100)

b=—pu: ~1=(1011) -2=(1010) 2=(101110)  b-1=(101)  b-2=(100)
—6-1=(1001)  —6=(10110)  1-6=(10111)  2-b=(101100)

i) 1t is sufficient to prove iii) for b €S,Im(bh)>0. b=1+/ is not a binary basis since in
this case there is a f€/L\G as is shown in §3.1, Example (ii). Theorem 5 (i) and ii) of
this theorem 10 yield C=G for b=T",i/2, 11,z .

iv) follows from proposition 2°.
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v) It is enough to prove, again by proposition 4, that the three sets: /* (iﬁ), (),
F(u)are disk-like. The first is a rectangle (see proposition 5) and the second is shown to
be disk-like in [BP]. We shall prove elsewhere the next result.

THEOREM 11. T'= F(,u) is disk-like, i.e., 7' is the union of a Jordan curve /=J/' and

its intertor domain 7° e

Fig. 1

e

T

° represents the origin. Fig.1 : F(iN2)  Fig.2 : F(=+iN7/2) Fig.3 : F(/2+iN7/2)
Fig.4 : F(-1+i) Fig.5 : F(1-+i).

REMARK 2. Proposition 4 also implies that dim(OF(—1+)) = dim(OF(1+i)) and
‘ dim(OF(=Ya+iN7/2)) = dim(OF (4 +iN7/2)), improving iv) of theorem 10.

4.4. INTEGERS AND POINT-LATTICES. We assume that & and v are complex non-
real numbers, b of modulus greater than one, D={d, =0,d, = 1,....d, } ©Z and £:=[1 v].
W denotes, as before, the set of integers of the numerical system (b,D) and L the lattice

[1,6]; P:={b"; j=0,1,2,...}. A greek letter denotes an ordinary integer.
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THEOREM 12. /) If £ > P then b* €L
i L > Wimplies LOW e
PROOF. i) Letb"/=m ,v+n,, m,,n; €Z Then,

I+j __ J = 2 —
(18) b™/=bb’=m m, v +(myn, tngm; Jv+n,n, =m;v+n,

Taking j=1 in (18) we obtain,

(19) myv’=(m,-2m,n,)v+(n,-nl)

whence (b-n, )’ =m,v.[(m, /m )-2n o1+ (n,-n2). If m, /m,is an ordinary integer
then we shall have (b-n,,)* = A(b-n, ) + p and therefore b* = ab+p € L. Thus, to finish
the proof of i) it is enough to show that m |m -

We obtain from (18), using (19), the next equality,

(20) m; =(m,/m,-n,)m, +m,n,,
Then,
21) m,=m}/m +am,+Bm, m, Imf

Assume, as an inductive hypothesis, that for k such that 2<k<j-1, it holds,

. k
k-t k _ h h-1 _
(22) m, lml m,= E a,m|/m; a, =1
h=0

Because of (20) and the second set of relations in (22),
J

(23) m,=>» f, mi/m}’ B, =1
h=0

and from (23) and the first set of relations in (22): m ;=m{/m]" +¢. In consequence

m/" |m? . Then, for anyj> 0, m | m{  From this, using the decomposition in prime
factors, we obtainm |ml :

ii) Assume £ DW. Since WP, i) implies that b* L. This is equivalent to L:)W, QED.
NOTES. In relation to section 1 we refer the reader to [K], [G2], [E] and [KS]; for
section 2 we refer to [G1] and [G2]; for §3, cf. [BG]; for §3.1, cf. [GD] and [G3]; for

§4, cf. [HW] and [B]; for §4.1, cf. [BG]; for §4.3 and specifically for Th. 10, cf. [IKR]
and [BG] and also [K], [BP].
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