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AN INTRODUCTION TO TILTED ALGEBRAS

FLAVIO ULHOA COELHO

The main objective in representation theory of algebras is the study of categories of
modules over algebras. A possible general strategy is to consider a class of well-known
algebras and from there to construct another class where it is possible to transport
informations from the former class to the new one.

For a given algebra A, let modA denote the category of the finitely generated right
A-modules and ind A be the subcategory of mod A with one representative of each iso-
morphism class of indecomposable A-module. In general, if A is an algebra and M €
modA, then B =(End4M) is also an algebra. Depending on the hypothesis imposed
on A and on M, we will have some control over the algebra B constructed as above
(or equivalently, over the category modB). For instance, if M is a projective progen-
erator of modA, and B =(End, M) = A, then the functor Hom (M, —): mod4A —
mod B°? gives an equivalence of the categories modA and mod B°? in this case.

Another interesting situation is the following. Let A be a representation-finite
algebra, that is, an algebra such that indA has only finitely many objects. Let M
be the sum of one copy of each module of indA. The algebra B =(EndsM) is called
the Auslander algebra of A and it has well-known good homological properties (see
[4] or [20] for details). In this case, the category modA is equivalent to the category
of projective B-modules.

The situation we shall discuss here is roughly speaking the following. We start
with an algebra A and a module T' with some special homological properties (T will
be called tilting module) and look at B =EndT'. In general, the categories modA and
modB will not be equivalent but we will still have a control over some subcategories
of them. Again, depending on extra conditions on A and T, the relations between
such subcategories of modA and modB will enable us to get important informations
on B from A. In a sense, the better situation one can think of is when one starts with
a hereditary algebra A. In this situation, for a given tilting A-module, the algebra
B =EndT will be called tilted algebra and each module in modB can be seen as the
image of a module in modA by some convenient functors.

The idea behind tilting algebras goes back to the work of Bernstein-Gelfand-
Ponomarev [12], where the so-called Coxeter functors were used to give another
proof for Gabriel’s theorem (see [21]). A generalization of this procedure was given
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by Auslander-Platzeck-Reiten in [5]. The modules considered by them is nowadays
called APR-tilting modules (examples will be given in section 3).

A further generalization were considered by Brenner-Butler in [11]. Finally, a
general procedure was given by Happel-Ringel in [24], where the so-called tilting
modules and tilted algebras were defined. Since then, much work has been done in
the study of tilted algebras and possible generalizations. The literature on tilting
theory is nowadays very extensive and the interested reader will have no difficulties
to find out more on this subject. A good initial reference is the survey article 1. In
the books [23, 35], the authors discuss some aspects on tilting theory which we shall
not consider here. At the end of these notes we give a list of references concerning
only the aspects discussed in these notes. We believe it is just the start point for
someone interested in knowing more on tilting theory.

These notes is divided into five sections. The first two sections contains standard
notions in representation theory of algebras and we shall quickly recall them in order
to establish some notations. Section one contains the characterization of algebras
as quotients of path algebras while section two contains the basic Auslander-Reiten
theory. General references for this part are 7, 20]. Sections three is devoted to
the definition of tilting modules and the relation between them and torsion theories.
Section four contains a discussion on tilted algebras and some informations on the
so-called Auslander-Reiten quivers of them. Section five follows very closely a joint
work with I. Assem [2], where some homological properties of tilted algebras were
discussed.

By an algebra we shall mean an associative, with unity, basic and indecomposable
finite dimensional algebra over a fixed algebraically closed field k. Modules are always
finitely generated and for a given algebra A we keep the notations modA and indA
established above. We shall use basic notions on module theory and homological
algebra which can be easily found in textbooks on algebras.

These notes were written based in a series of talks given during the /1] Congresso
Dr. Antonio A. R. Monteiro held in Bahia Blanca in April, 1995. The author is very
grateful to the organizers, in special to Maria Inés Platzeck, for the kind invitation to
participate in such a meeting, and the hospitality given during his stay in Argentina.

1. ALGEBRAS GIVEN BY QUIVERS WITH RELATIONS

1.1. In this section we are mainly interested in describing the finite dimensional
basic k-algebras, where k is an algebraically closed field. We shall see that such
an algebra is isomorphic to a quotient of a path algebra of a suitable quiver (see
definitions below). This construction is nowadays very standard in representation
theory of finite dimensional algebras and provide us a handful of examples. We shall
only indicate the main steps of this construction, since the details can be found for
instance in [7, 13].
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1.2. A quiver A is given by two sets Ay and A;, together with two maps s, e from
A, to Ag. The elements of Ag are called vertices of A, while the elements of A; are
called arrows of A. For a given arrow a € A, the vertices given by s(a) and e(a)
are called, respectively, the start vertez and the end vertez of o, and we denote it
by a: s(a) — e(a). For simplicity, we normally draw the quivers as shown by the
following example.

Example. A. o — 0 . d

1 g 2 3 4

For this quiver, &g = {1,2,3,4}, Ay = {a,4,7,6} and s(a) = e(B) =1, s(B) =
e(a) = s(y) =e(r) =2.s(6) =3 and ¢(4) = 4.

Let A = (Ao, Ay, s,¢) be aquiver. A pethyin Ais 29 —5 27 —» -+ —s Typog —r
z;, where foreach 2 = 1,---{, a; € A;. We also denote it by v = oy - - - a;. The length
of a path is the number of arrows in it; in the above case the length of v is t. By
convention, to each vertex a of A, it is assigned a path of length zero ¢, (also called
trivial path). An oriented cycle is a path of length greater or equal to one from a
vertex = to itself. A loop is an oriented cycle of length one.

Let z,y € Ag. We denote by & — y in case there exists either an arrow z — y or
an arrow y — . A walk between z and y is given by r = zg — 2y — -+ — 2, = v.
The quiver A is called connected if, for any given two vertices in Ay, there is always
a walk between them.

1.3. Let A be a finite quiver, and k be a (fixed) field. We shall now assign to
this pair an algebra kA, called the path algebra of A, in the following way. As a
k-vector space, we consider as basis the set of all paths in A of length greater or
equal to zero (that is, including the trivial paths). To give it an algebra structure,

we shall define now a multiplication in this basis. Let v,: £; — -+ — z,. and
Y2: Y1 — -+ — y, be two paths in A. If z, = y;, then we define the product
71 - 72 to be the path @) - - — 2, =y — -+ — y, and il z, # y,, then we

define the product 4, - v; to be zero. With such a multiplication on the elements of
its basis, kA is indeed a k-algebra.

Example. Let A be the following quiver

1o
Ki}’y 4 6*‘5

B/’ -

e
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The set of paths in A is {¢1, €, €3, €4, €5, @, 8,7, 6, fa, ya, §v,6va}. Therefore, kA
has dimension 13 as a vector space. As an ilustration, observe that a-¢; = ¢3-a = a,
vya-6=0and é - vya = dya.

1.4. The following proposition is straightforward from the above considerations and
we leave the proof for the reader. For details we refer to [13].

Proposition. Let A be a finite quiver, k be a field and A = kA be the path algebra
of A as defined above. Then

(a) A is an associative basic k-algebra, not necessarily commutative (sec ezample

above).
(b) Denote by €, , €, the set of all trivial paths (one for each vertez). Then
{e1, -+ ,€n} is a complete set of primitive orthogonal idempotents of A, and

1= i €; 1s the identity of A.

1=1
(c) The algebra A is finite-dimensional if and only if A has no oriented cycles,
and in this case, radA is generated by the set of arrows.
(d) The algebra A is indecomposable (as a ring) if and only if A s connected.

1.5. Let A be a finite quiver and k be a field. An ideal I of kA is called admissible
if there exists an n such that J2 C [ C J", where J is the ideal gencrated by
all the arrows of A. Observe that if / is an admissible ideal of kA, then kA/T is
always a finite dimensional algebra. The next result (due to Gabriel [21]) gives a
characterization of basic finite dimensional k-algebra in case k is algebraically closed.

Theorem. Let A be a finite dimensional basic k-algebra, where k is an algebraically
closed field. Then there exists a quiver Ay such that A = kAy/lI, for some admissible
ideal I.

Sketch of the proof. We shall only indicate how the proof goes and leave the details
for the reader (complete proof can be found in [13]). Let A be as in the statement
and let {e;, -+ ,e,} be a complete set of orthogonal and primitive idempotents of A.
First, define the quiver Ay as follows: A4 has n vertices ¢;,- -+, ¢, In a one-to-one
correspondence with the e/s. Then for each pair ¢, ¢,, the number of arrows from «,
to ¢; if defined to be the dimension

. rad A
dlmke] m [

Here, the reader has to be convinced that the above quiver is well-defined (up to, of
course, some reordering of the vertices).
Choose now {z, € radA : @ € (A4)} such that for each pair 1, j, the set of classes

Si; = {z,+rad’A : s(a) = ¢ and e(a) = j} gives a k-basis for %J{‘;. Define now a

148



TILTED ALGEBRAS

morphism ¢: kA, — A as follows: ¢(¢;) = e;, ¢(a) = z,, for each a € (Ay)1, and,
for each path v: o —5 27 — + -+ — Ty —5 T4, $(Y) = Ta, - Ta,. This defines
a morphism of algebras which is indeed an epimorphism (for the later, the hypothesis
of basic and k algebraically closed are essential). Moreover, it is not difficult to see
that ker¢ is an admissible ideal of kA4, and hence the result follows because then
A = kA, [kerg.

The quiver A, is called the ordinary quiver of A.

1.6. An important class of algebras we are going to consider is the class of hered-
itary algebras. Recall that an algebra A is hereditary if the radical of A, radA, is
a projective A-module. It is not difficult to see that A = kA/I is hereditary if
and only if I = 0. Moreover, P. Gabriel [22] has shown that a hereditary algebra
A = kA is representation-finite (that is, ind A has only finitely many indecomposable
nonisomorphic modules) if and only if A is a Dynkin quiver.

1.7. Let A = kA/I be an algebra, where A is a quiver and I is an admissible ideal
of kA. As a k-vector space, I has clearly a finite basis, whose elements we shall call
relations: they are linear combinations of paths of length at least two. Therefore, the
algebra A is given by a quiver A together with some relations (which generates 7).
We give an example.

Example. Let A be the algebra given by the quiver A
e’
AN
N A

This means that A = % where R is the ideal of kA generated by the relations fa—dy
and ng.

with fa = évy and n3 =0

1.8. The advantage of describing the algebras as quivers with relations is that this
allow us to describe also their finitely generated modules in terms of representations
of the corresponding quivers.

Let (A, R) be a quiver A together with a set of relations R, that is, R consists of
linear combinations of paths of length at least two. A (A, R)-representation is given
by V = ((Vi)icao, (fa)aca, ), where for each i € Ao, V; is a finite dimensional k-vector
space, and for each @ € Ay, f, is a linear transformation from Vj(a) to Vo). Moreover,
the linear transformations f.s have to satisfy the relations of R in the following sense.

. 3 o .
Clearly, for a given path v: 2 = 29 —> 2 — -+ — Z;_; — Z; = ¥ in A, one can
assign a linear transformation f,: V; — V,, as the composition f, = fa, - fo,. Now
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we say that V = (V))icao, (fa)aca, ) satisfies a relation 37 € R if the corresponding
su

m Y f,. is zero, and V satisfies R if it satisfies each relation of R.

Let now V = ((Vi)ieao, (fa)aca,) and W = ((Wi)ieao: (9a)aca,) be two (A, R)-
representations. A (A, R)-morphism ¢: V — W is given by ¢ = (¢:)ica, such that
for each a: 1 — j, the following diagram commutes:

v 150
d)il © ld’] that iS, ¢jfor = ga¢i-
W, 2% W;.

The category (A, R)-mod is now defined as follows. The objects of (A, R)-mod are
the (A, R)-representations and the morphisms are as defined as above. We leave to
the reader the formulation of the notion of direct sum of two objects in (A, R)-mod as
well as the notion of indecomposability. Also, a morphism ¢ = (¢i)iea,: V — W in
(A, R)-mod is a monomorphism (respectively, an epimorphism, or an isomorphism)
if and only if each @; is a monomorphism (respectively, an epimorphism or an isomor-
phism). Observe that the category (A, R)-mod satisfies the Krull-Schmidt theorem,
and hence each object of (A, R)-mod can be written as a (finite) direct sum of inde-
composable objects in a uniquely determined way, up to isomorphism. We have the
following result.

Theorem. Let A be an algebra given by a quiver A with relations R (that 1s,
A = kA/I, where I is the ideal generated by R). Then the categorics (A, R)-mod

and A-mod are equivalent

1.9. Example. Let (A,R) be given by« . e with fa=0.
1 3

The following are examples of (A, R)-representations: Vi = (k 2,0 - 0),

Vo= (0 -5k -250), V3= (k- k -5 0), Vs = (0 = k — k) and

Vs = (k — k — k) (in fact these correspond to all indecomposable modules over
the algebra given by (A, R)). We have that Hom,(V, V3) =Homy(V3,V2) = 0 but
Homy(Va, Vi) =Homy(Ve, V3) = k. Observe. that k L k- kis not a (A, R)-

representation because the composition of the linear transformations is nonzero.
2. AUSLANDER-REITEN THEORY

2.1. We shall recall in this section the basic notions on the so-called Auslander-
Reiten theory. The basis for such a theory is the notion of almost split maps and
sequences. Besides of course their theoretical importance, these sequences can be
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used to define the Auslander-Reiten quiver of an algebra A, which records many
informations one has in the category indA. Much of the recent investigations on
representation theory of algebras is based in the study and description of such quivers.
We shall state the main results here without proof, wnich can be easily found in [5, 6].
Along this section A is an algebra.

2.2. We start with the following definition.

Definition. Let f: X — Y be a map in modA.
(a) We say that f is a minimal left almost split map of X if

(i) f is not a split monomorphism;
(ii) for each map ¢g: X — M which is not a split monomorphism, there exists
g: Y — M such that gf = g;
(i) if hf = f for some h € EndY’, then A is an automorphism.
(b) We say that f is a minimal right almost split map of Y if
(1) f is not a split epimorphism;
(i1) for each map g: M — Y which is not a split epimorphism, there exists
g: M — X such that fg = g;
(iii) if fh = f for some h € EndX, then A is an automorphism.

Remarks. (i) If P is an indecomposable projective A-module, then the natural
inclusion ¢: radP — P is a minimal right almost split map. Dually, if [ is an
indecomposable injective A-module, then the natural projection 7: I — [/socl is
a minimal left almost split map

(i) If f: X — Y is a minimal left (or right) almost split map, then X (respectively,
Y) is indecomposable.

2.3. The following result is essential in representation theory.

Theorem (Auslander-Reiten). Let X be an indecomposable module.

(a) If X is not a simple projective, then there exists a unique (up to isomorphism)
minimal right almost split map g: E — X of X. Moreover, if X 1s not projective,
then such a g is an epimorphism and the inclusion map ¢: kerg — E is a minimal
left almost split map of kerg.

(a) If X is not a simple injective, then there exists a unique (up to isomorphism)
minimal left almost split map f: X — E of X. Moreover, if X is not injective,
then such an f is a monomorphism and the projection map m: E — Cokerg is a
minimal right almost split map of Cokerf.

2.4. Let now X € indA. Suppose that X is not projective and consider the short
exact sequence
0 —> kerg = E 2 X — 0 (%)
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where g is a minimal right almost split map. This sequence is unique up to isomor-
phism and it is called the almost split sequence ending at X. By (2.2), kerg is an
indecomposable module and clearly it is uniquely determined (up to isomorphism)
from the choice of X. We shall denote by 7X the kerg, where g is an minimal right
almost split map of X, and call it the Auslander-Reiten translate of X. We stress
the fact that the maps ¢ and g of the above sequence () have the lifting properties
of maps.
Dually, if X is not injective, the (unique up to isomorphism) sequence

0 — X -1s E 7 Cokerf — 0 (%)

where f: X — E is a minimal left almost split map, is called the almost split
sequence starting at X, and we shall denote Coker f by 71 X. Therefore, 7 induces
a bijection between the set of all indecomposable modules which are not projective
and the set of all indecomposable modules which are not injective. Moreover, if X is
an indecomposable module which is not projective, then 717X = X and if X is not
injective, then 7771 X = X.

2.5. The following relation is very useful in the calculations of Exth(—,7).

Theorem (Auslander-Reiten formulae.) Let X, Y € A-mod. Then there exist
isomorphisms

Ezty(X,Y) = DHom(r7'Y, X) = DHomu(Y,7X)

where Hom 4,(M, N) and Hom4(M, N) denote the set of homomorphisms from M to
N which factor through projective and injective, respectively.

Remarks. For a given indecomposable nonprojective module X, 7.X 1s isomorphic
to DTX, where D = Homy(—k) is the usual duality and Tr is the transpose. Recall
that the transpose Tr of a module X is defined as follows. Consider first

P2 P2 X — 0

the minimal projective presentation of X and apply Homa(—, A) = (=)' to it. The
transpose of X, TrX, is defined to be Coker(p}). Dually, if X is an indecomposable
noninjective module, then 77! X is isomorphic to TrDX..

2.6. Another important type of maps are the so-called irreducible maps. We shall
recall their definition and relate it to the previous notions.

Definition. A morphism f: X — Y is called irreducible if

(i) f does not split;
(ii) if f = gh, then either g is a split monomorphism or h is a split epimorphism.
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Remark. If f: X — Y is an irreducible map, then f is either a monomorphism or
an epimorphism. In fact, just consider the decomposition f = gh, where h: X —
Imf is the natural projection and ¢: Imf — Y is the natural inclusion. Since f is
irreducible, then either g is a split epimorphism, and therefore f is an epimorphism,
or h is a split monomorphism and then f is a monomorphism.

2.7. The next result relates almost split maps and irreducible maps.

Proposition. Let f: X — Y be a morphism in modA.

(a) IfY is indecomposable, then f is an irreducible map if and only if there exists
fle X' — Y such that (f,f): X & X' — Y is a minimal right almost split
map.

(b) If X is indecomposable, then f is an irreducible map if and only if there exists
f': X — Y such that (f,f)': X — Y @Y’ is a minimal left almost split
map.

Remark. Let f: X — Y be a map in indA. It is not difficult to see that f is
irreducible if and only if f € rad(X,Y)\ rad*(X,Y).

2.8. We shall now define the important notion of Auslander-Reiten quiver I'4 of an
algebra A. The vertices (I'4)o of I'4 are in a one-to-one correspondence with the iso-
morphism classes of indecomposable A-modules. For each X € indA, let [X] denote
the corresponding vertex in (I'4)o. Now, for X, Y € indA, the number of arrows from
[X] to [Y] is defined to be the dimension of the vector space rad(X,Y)/rad*(X,Y).

It follows from the discussion above that the structure of I'4 1s intimately related
with the almost split sequences and the Auslander-Reiten translations. Observe in
particular that:

(a) I'4 has no loops. Otherwise, there would exist an irreducible map from a vertex
to itself, which is not possible.

(b) T'4 is locally finite, that is, for each vertex [X|], there exist only finitely many
vertices linked with [X] by an arrow.

(c) The Auslander-Reiten translations induce a bijection, also denoted by 7, be-
tween a subset I of (I'4)o (formed by all vertices corresponding to nonprojective
modules) and I" of (I'4)o (formed by all vertices corresponding to noninjective mod-
ules) such that for each [X] € T, the number of arrows from a vertex [Y] to [X] equals
the number of arrows from 7[X] to [Y]. A such a bijection is called translation in
T4

A quiver A is called a translation quiverif it satisfies conditions (a) and (b), and it
has a translation defined on it. Therefore, the Auslander-Reiten quiver of an algebra
is a translation quiver. In general, I'4 is not a connected quiver. In fact, it has been
conjectured that I'4 is connected if and only if A is representation-finite. A sectional
path in 'y is a path 2y — z; — - -+ — z, where for each 1 = 2,- -+ |t, 72; # z;_1.
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2.9. Examples. (a) Let kA, where A is the quiver Dg with the following orienta-
tion

le

|

2.—»0‘—-—’05

|

3.

We shall indicate each A-module by the dimension vector, that is, by the dimension
of the vector spaces at each vertex. With this notation I'4 is the following quiver

OO

0
10 %00 11

N N NN
N NN AN

111 —> 111 —> 221 —> 110 —> 210 —> 100 — 100

/(1 \1 /l \\0 /1 \1 /0 \
0 0 1 0 ]
000 111 110 100 000
1 0 1 0 0

It is not difficult to read from the above quiver the almost split sequences and the
translations. For instance

is an almost split sequence and clearly T(% 10) = :22 1.

(b) Let A = kA be a hereditary algebra, where A is a connected quiver without
oriented cycles. The structure of the Auslander-Reiten quiver of A is by now well-
understrood (see [7]). There exists a component P containing all the indecomposable
projective A-modules, called postprojective component, satisfying the following: (i) if
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X € P, then 7" X is projective, for some positive integer n; and (ii) P has no oriented
cycles. :

Dually, all the indecomposable injective A-modules lie in a preinjective component
Z, that is, a component satisfying (i) if X € Z, then 7~"X is injective, for some
positive integer n; and (ii) Z has no oriented cycles.

If A is representation-finite (or equivalently, if A is a Dynkin quiver), then the
postprojective and the preinjective components coincide and it is the unique compo-
nent of 'y (see the example (a) above). In case A is representation-infinite, then P
and 7 are distinct and there are infinitely many other components (all of them with
neither projective nor injective). These components can be of two types:

- either of the form ,, that is,

(infinite in three directions)

- or of type o /(77), for some r, that is 7 X = X for each X in this component.
Such a component is called a tube of rank r. If I'4 contains tubes, then all but finitely
many of them have rank 1.

(c) Let A be given by the quiver

1-\?/1.4
3-/ \\5.5

with fa =0

Observe that A is not hereditary. The Auslander-Reiten quiver of A is
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We shall agree to identify indecomposable A-modules with the corresponding ver-
tices in I'4.

3. TILTING MODULES AND TORSION THEORY

3.1. Let A be an algebra. In this section we shall discuss the notion of tilting A-
module T4 and see how the categories mod A and mod(End(7,)) are related. Such
a module will induce a torsion theory in modA which, by the important theorem of
Brenner-Butler, is related to a torsion theory in mod(End(T4)).

3.2. We start with the following definition.

Definition. Let A be an algebra. An A-module T'4 is called a tilting module provided:
(T1) pdaT < 1;
(T2) ExtY(T,T) = 0;
(T3) There exists a short exact sequence 0 — A4 — Ty — T\ — 0, where T}

and T belong to addT.

Remarks. (a) Under hypothesis (T1) and (T2), the condition (T3) is equivalent to:

(T3') The number of nonisomorphic indecomposable summands of T equals the
number of nonisomorphic simple A-modules (= rank of the Grothendieck
group Ko(A) of A).
(b) If A is hereditary, then the condition (T1) is satisfied naturally. We shall concen-
trate in this situation in the next section.

3.3. Examples. Let A be an algebra and A4 = P[" @- - -@®P;* beits decomposition
into indecomposable modules. Since we are assuming that A is basic, then n; = 1,
foreach:=1,--. |t.

(1) The module T = P, @ - - - @ P, is clearly a tilting module.

(2) Suppose now that A is hereditary and let T= DA = Hom(A, k). Then, T is
the sum of the indecomposable injective A-modules. Therefore, Ext (T, T) = 0.
Consider now the following short exact sequence

0 — Ay — Ty — Coker(:) — 0
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where ¢ is the injective envelope of A. Then Ty € addT, and since Cokert is a quotient
of T1, it also belongs to addT. Therefore, T is a tilting module.

(3) Let A be an algebra and suppose there exists a simple projective noninjective
module S;. Let A= S,®P, @ --® P, be the decomposition of A into indecomposable
projective modules and consider the module

TW = 7718, @ (B, P))

We shall show that 7() is a tilting module. Consider the almost split sequence
starting at S,

0— 5 — F— 71715 —0

It is not difficult to see that E is a projective A-module (in fact the summands of E
are those indecomposable projective modules a,» whenever there is an arrow ¢ — 1).
The above sequence shows (T1) and (T3). To show (T2), just observe, using (2.5),
that

Exty(T™, T") 2 DHom, (70, 77M) = DHom (T, S1) =0
because S) is a simple projective. The tilting module constructed above is called
APR-tilting because its construction is due to Auslander-Platzeck-Reiten [5]. It gen-
eralizes the reflection functors of Bernstein-Gelfand-Ponomarev [12].
(4) The APR-tilting modules were generalized by Brenner-Butler [11] in the following
way. Let A be an algebra and S; be a simple A-module such that pdr='S, < 1 and
Ext}(S1,S1) = 0. Then the module T = 7-15, @ (B;21P;) is a tilting module (where
Py is the projective cover of S;). Conditions (T1) and (T3') are clearly satisfied. The
claim follows from the following:

ExtL(T“]Sl,Pj) = DHomu(F;,S51) =0 ifj #1
and  Exty(r7'S,,7718)) & DHomy (7718, 51) = 0.

3.4. Before we go on, let us show that a module M satisfying conditions (T1) and
(T2) (called a partial tilting module) can be completed to a tilting module. This
result is due to Bongartz [9].

Lemma (Bongartz). Let M be a module over the algebra A satisfying properties
(T1) and (T2) of definition (3.2). Then there exists an A-module X such that M ® X

is a tilting module.

Proof. Let ai,- -+ ,a, be a k-basis of Extl, (M, A), and consider the short exact se-
quence

0 —A—0 X —5 M —90 (*)

defined as the pushout of the exact sequence ®;_, o along the diagonal map A° — A.
We shall show that M & X is a tilting module. For this, we shall only prove that
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ExtLl(M®X,M®X) = 0and pdsX < 1, the sequence (*) above giving the condition
(T3). Observe that pd4X < 1 because pd4M <1 (see [10]). Apply Hom4(M, —) to
(*):
- Homu(M, M*) -5 Extl (M, A) — Ext} (M, X) — 0
Since, by construction, ¢ is an epimorphism, we infer that Ext}; (M, X) = 0. Applying
Homy(—, M) and Hom4(—, X)) to (*), we get, respectively
0 = Extl(M*, M) — Exty(X,M) — Ext}(A,T)=0

and
0 = Exty(M?, X) — Ext!y(X, X) — Ext} (A, X) =0
Hence, ExtY(M & X,M @ X) =0 and M & X is a tilting module. O

3.5. From now on, let A be an algebra and T4 be a tilting module. We shall see
now that T4 induces a torsion theory in modA. We start by recalling such a notion.

Definition. A torsion theory in modA is a pair (7,F) of classes of modules such
that (i) Homs(M,N)=0forall M € T and N € F.

(ii) If Hom4(M,X) =0 for all X € F, then M € 7.

(iti) If Homy(X,N) =0 for all X € T, then M € F.
The class T is called the torsion class of this theory and its elements are called
torsion modules, while F is called the torsion-free class and its elements are called
torsion-free modules.

Let (7,F) be a torsion theory in modA. For each M € modA, define tM as the
sum of all submodules of M which belong to 7. The submodule tM is called the
trace of T in M. Clearly, t(t(M)) € T and M/tM € F.

Remarks. (i) Each of 7, F, and t uniquely determines the others (see [18]).
(ii) Each simple A-module is either torsion or torsion-free.

3.6. Define now T(T4) to be the set
Gen(T4) = {X € modA : there exists an epimorphism T? — X for some d}

and

F(T4) = {M4 : Homy(T, M) = 0}

Proposition. The pair (T(Ta),F(T4)) is a torsion theory in modA.

Proof. We shall show that Gen(T4) is a torsion theory class. It is not difficult to
see that this will imply that (7(T,),F(T4)) is a torsion theory in modA. By [18], a
class of modules X is a torsion class if (and only if) X is closed under images, direct
sums and extensions. Clearly, Gen(T,) is closed under images and direct sums. To

158



TILTED ALGEBRAS

show that it is also closed under extensions, we shall first show that Ext} (T, M) =0
for each M € Gen(T4). In fact, if M € Gen(Ty), then, by definition, there exists an
epimorphism 7™ — M, for some m. By (T1), it induces an epimorphism

Exty (T, T™) — Ext4(T, M) — 0

Since Exty(T,T™) = 0 (by (T2)), we conclude that Ext! (T, M) = 0 as required.
Let now 0 — M’ — M — M" — 0 be a short exact sequence with M’ and M"
in Gen(T'), and apply Homy4(7T, —) to it

0 — Homy(T, M") — Homu(T, M) — Hom (T, M"") — Ext} (T, M') = 0

Let B = EndT and apply —®p T to obtain the following exact commutative diagram

Hom (T, M") ®5 T Hom (T, M) @5 T Hom (T, M") @5 T —~ 0

EprY ENM EpIY ‘

0 M’ M M 0

where ex is the evaluation map of X. We leave as exercise to show that en and ey
are surjective. Thus, €y is also surjective by the Five Lemma. Clearly now, M €
Gen(T4) and the result is proven. [J

3.7. The next result gives another description of 7(T).

Lemma. For a tilting module T,

T(T) = Gen(Tx) = {M : Exty(T,M) =0}

Proof. We have seen in the proof of (3.6) that Ext} (7, M) = 0 for each M € Gen(TY).
Therefore,

T(T) = Gen(T4) C {M : ExtY(T, M) = 0}.
Let now M such that Ext} (7, M) = 0, and consider the short exact sequence

Applying Homyu(T', —) to it, and using (T1), we conclude that there exists an epi-
morphism

__>0

M
1 E 1
Ext (T, M) — Ext,(T, _tM)
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and so ExtL(T, &) = 0 because Ext}(T, M) = 0.

VtMm
Applying now Homy4(—, %—) to the sequence given by (T3), we get
, M M ., M
0 = Hom, (7", W) — Homa(A, W) — Extl (T ’W) =0

By above, we conclude that 0 =Hom4(A, tMﬁ) = {% Therefore, M =tM € T(T)
and the lemma is proven. [

3.8. We shall keep from now on the following convention. For a given tilting module
T, the torsion theory induced by T is the pair (7(T4), F(Ta)) «s defined above.

Remark. Any injective A-module belongs to T(T}4).

Example. Let A be an algebra such that there exists a simple projective noninjective
module S; and let T(!) = 7715, @ (@!_, P;) be an APR-tilting module (3.3). Observe
that M € T(T) if and only if

0 = Ext) (T, M) = DHom(M,rT) = DHom4(M, S))

Then ind7 (T) = indA \ {S:}. It is not difficult to see that indF(7T') = {5} (in the
terminology of (4.4), we would say that (7(74),F(T4)) is a splliting torsion theory).

3.9. We shall now state the important Brenner-Butler theorem. However, we shall
not prove it here and refer to {11, 24] for a proof.

Theorem. Let A be an algebra, T4 be a tilting module, and B= EndsT. Then

(i) T is a tilting B-module and A= EndpT.
(i1) The categories

T(T4) = {My : Exti(T,M) =0} and Y(Ta) = {Ng: TorP(N,T) =0}

are equivalent, the equivalences giving by the functors Hom, (T, —) and —®@gT.
(111) The categories

F(Ty) = {My: Homy(T,M) =0} and X(T4)={Np: N®sgT =0}
are equivalent, the equivalences giving by the functors Ext, (T, —) and Tor?(—,T").
3.10. Example. Let A be the algebra given in example (2.9)(a) and let

T=000321001:1P111®010
0 EB1 EBo @0 69o

be a tilting module. We leave to the reader to check that it is really a tilting module
(use (2.5) and the fact that for a representation-finite algebra, each morphism, which
is not an isomorphism, is a sum of composite of irreducible maps). We indicate below

the classes 7(T') and F(T).
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Consider now B =End(T). It is not difficult to see that B is the algebra given by
the example (2.9)(c). Therefore I'p is

)

1 0

where X(T') and Y(T') are indicated .

3.11. Remarks. There is a generalization of the notion of tilting modules due to
Miyashita [32]. An A-module T is called a generalized tilting module provided:

(i) pdT < oo

(i1) Exty,(T,T) = 0 for all ¢ > 0.

(iii) There exists a long exact sequence

0_)AA—*T0__")T1_—"""‘“")T‘111—"’0

with T; €add(T), for all : = 0,1,--- ,m

Let T be a generalized tilting module. In general, the relations between modA
and mod(End4T')° are not as good as in the situation when pdT < 1, which is the
situation we have been considering. We also observe that the Bongartz’s lemma (3.4)
does not hold in this generalization as observed by Rickard-Schofield in (33]. We refer
also to [14, 16, 27] for more on this problem.

4. TILTED ALGEBRAS

4.1. As we saw in the last section, a tilting module T over an algebra A induces an
equivalence between subcategories of modA and mod(End4T) given by the Brenner-
Butler theorem. In this section we shall study a particular case where the union of
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the subcategories X and Y (in the notation of the Brenner-Butler theorem) gives the
whole category mod(EndT). This will occur, for instance, when A is hereditary. In
fact, we shall concentrate in this last situation.

Definition. Let A = kA be a hereditary algebra and T be a tilting module over
A. The algebra B =(End4T) is called tilted algebra. The type of B is the underlying
graph A of A. Recall that the underlying graph of a quiver A is a graph with the
same set of vertices of A and where the arrows are changed by edges.

Example. Let A be the algebra given in example(2.9)(c). We have seen at the end
of last section that A is tilted of type Ds.

4.2. We shall first investigate some homological properties of tilted algebras. We
start with the following result.

Proposition. Let T be a tilting module over a hereditary algebra A = kA, B =Fnda(T),
and M be an A-module.

(a) If M € T(T), then pdgHoms(T, M) < 1.
(b) If M € F(T), then idgExty (T, M) < 1.

Proof. We shall prove only (a) since the proof of (b) is similar.
(a) If pd4M = 0, then M is a projective and since it belongs to T(T) we infer that
M € add(T). Hence Homyu(T', M) is projective (or equivalently, pdgHomu (T, M) =
0). Assume now that pdgM = 1. Observe that there exists a short exact sequence
0 — K —>Tp—M-—90 (*)
with T, € addT and K € T(T). Applying Hom4(T, —) to (*), we get
0 — Homy (T, K) — Homu(T, To) — Homu(T, M) — Exty(T,K) =0

It suffices to show that Homy4(T, K) is projective, or equivalently, that K € addT.
Let now N € T(T) and apply Homy(—, N) to (*).

0 = Ext}(To, N) — Ext4(K,N) — Ext}(M,N) =0

Therefore, Exty (K, —)|r) = 0, that is, K is Ext-projective in T(T) and so K €
addT. Hence pdgHomu4(T, M) < 1, as required. O

Corollary. Let B be a tilted algebra. Then for each X € indB either pdg X < 1 or
dpX < 1.
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4.3. Theorem. The global dimension of a tilted algebra is at most two.

Proof. Let A = kA be a hereditary algebra, T be a tilting A-module and B =EndT.
We shall prove that gl.dim B < 2. Let Ng € B-mod and consider the short exact
sequence
0— 22— P(N)-S5 N —0

where m: P(N) — N is the projective cover of N. Since P(N) € Y(T), we infer
that Z € Y(T'). By the Brenner-Butler theorem, there exists a module M4 € 7(7T)
such that Z =Homy (T, M), and by the above, pdgZ < 1. Therefore, pdgN < 2 and
the theorem is proven. [

4.4. Let B =EndT be a tilted algebra. The next result will show that each B-
module belongs to one of the subcategories X(T') or Y(T). We say that a tilt-
ing module T over an (arbitrary) algebra A is splitiing provided the torsion theory
(X(T),Y(T)) splits, that is, each X € ind(End4T) belongs either to X(7) or to
Y(T).

Proposition. Any tilting module over a hereditary algebra is splitting.

Proof. By [23](I11.4.12), a tilting module splits if and only if for each M € F(T),
idgM < 1. Clearly, this last condition is satisfied for hereditary algebras, giving the
desired result. [

This result has as consequence that the representation type of a tilted algebra is
not more complicated than the representation type of the hereditary algebra it came
from. In fact, it can be much simplier. For instance, let A = kA be a hereditary
algebra, where A is an Euclidean quiver. Therefore, A is representation-infinite
and I'y is described in (2.9)(b). Let now T be a tilting module with summands in
both the postprojective and the preinjective components of I'y. Then B =End7 is
representation-finite (see [25]).

4.5. We shall now investigate some facts concerning the Auslander-Reiten quiver of
a tilted algebra. For this, we shall see how is the behavior of the almost split sequences
under the tilting process. Also, we shall see how the type of a tilted algebra can be
read of from its Auslander-Reiten quiver through the notion of complete slices.

In order to study the relation between almost split sequences in A and in B, we
need the following lemma.

Lemma (Connecting lemma). Let T be a tilting module over a hereditary algebra
A = kA and B = EndsT. Let Ps and Is be respectively the indecomposable projective
and the indecomposable injective A-modules associated with the simple S. Then

" Homu(T, I) = Ezty (T, P).
In particular, Ps € add(T) if and only if Hom4(T, Is) is an injective B-module.
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Proof. Consider the short exact sequence
0— Py —To-> T —0

with Ty, Ty € add (T) (from (T3)). Apply Homy(—T) to (*) to get

0 — Homa(Ty, T) @5 Homa(To, T) — Hom,(P,T) — Exty(Ty,T) =0

which is clearly a projective resolution for Homu (P, T') Applying now Homu (T, —)
to (*) yields

0 —— Hom (T, P) — Hom (T, To) — Homa (T, T1) @) Extl, (T, P) — 0

By the definition of the transpose, we infer that TrHomu(P,T) = Ext} (T, P) (sce
(2.5)). However, Homa (P, T) >DHomu(T, I). Then Exty(T, P) = TrDHomu (P, T) =
7~ Homu(T, I) as required. [J

4.6. Theorem. Let B = End,T be a tilted algebra. Then every almost split

sequence in modB either lies completely in X(T), or lies completely in Y(T'), or 1s of
the form

0 — Homu(T,I) — Homu(T,1/5)® Exty (T, radP) — et (T,P) — 0

where P is an indecomposable projective A-module not in addl’, S is ils simple lop
and I the injective envelope of S.

Proof. Let 0 — 7X — E — X —— 0 be an almost split sequence in modf3.
By (4.4) we know that the torsion theory (X(T),Y(T)) splits. We shall analise the
following possibilties:

(i) If X € X(T), then the sequence lies entirely in X(7T').

(i1) If X € Y(T), then the sequence lies entirely in Y(T).

(ii1) Suppose X € Y(T) and X € X(T), and let M = 1X @p 1. Denote by [ the
injective envelope of M. Therefore,

Extl (1/M, M) = Exty(Homa(T, [/M), Homu(T, M)) =

~ Exth(Homu(T,I/M),7X) =D Homg (77X, Homua(1,1/M)) =0

because M € T(T) and Homa(T,1/M) € Y(T). Hence, M is a direct summand of
I,in fact I = M. Then [ is indecomposable and Hom4(T, 1) = 7X. By the lemma
above, X & ExtL (T, P), where P is the projective cover of socl. Observe that P ¢
add(T). Therefore, the almost split sequence above is of the form

0 — Homu(T,I) — E — Exty(T,P) — 0
and by (4.5) the canonical sequence for £ in (X(T),Y(T)) 1s
0 — Ext)(T,radP) — E — Hom (T, I(M)/S) — 0
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Since the torsion theory splits, we infer that E = Homu(T, I(M)/S)® ExtL(7T, rad P)
and this proves the result. [

4.7. We shall see now that the fact that an algebra is tilted can be read of from its
Auslander-Reiten quiver. In fact, if B is a tilted algebra of type A, then I's contain
a connected sectional subquiver whose underlying graph is isomorphic to A. We call
such a subquiver a complete slice. Let us define it more formally.

Definition. A class ¥ of modules in indA is called a complete slice if:

(i) The sum X = @pexM is sincere, that is Homy (P, X) # 0 for any projective
A-module P.

(ii) If Xo — X; — --- — X, is a sequence of nonisomorphisms in modA, with
Xo,X: € X, then X; € L for all 0 < 2 < m.

(ili) Let 0 — 7Y — E — Y — 0 be an almost split sequence. Then at most
one of Y and 7Y lies in X. Moreover, if an indecomposable summand of E lies in ¥,
then either Y or 7Y lie in X

The module X is called the slice module in ¥.

4.8. The next result relates complete slices and tilted algebras. For a proof we refer
to [24, 35].

Theorem. Let A be a hereditary algebra, T € modA a tilting module and B = End,T
the corresponding tilted algebra.

(i) The class {Homu(T,1) : I is an indecomposable injective A-module } is a
complete slice in modB.

(ii) If ¥ is a complete slice in modB, then X5 = ®uesM is a tilting module and
A= EndyX (and ¥ is isomorphic to a complete slice of the previous form).

(iii) There exists at most two connected components of I'g containing complete
slices. Moreover, I'y has ezactly two connected components containing com-
plete slices if and only if either all summands of T are postprojective or all
summands of T' are preinjective.

Let B be a tilted algebra. A connected component of I'g containing a complete
slice is called connecting component (it contains the connecting sequences of (4.5)).
Also, a tilted algebra with two distinct connecting components is called concealed.
Concealed algebras have been extensively studied and play an important role in the
theory nowadays. We refer to [35] for more details.
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4.9. Example. Let B be the algebra given by

1-\%'/0-4
3-/ \E-S

with Ba = 0

We have seen in (4.1) that B is a tilted algebra of type Ds. It is not difficult to find
a complete slice in I'g. Take the one marked below

Also, we can recover the tilting module 7" used to get B using (1.8) above. Indeed,
we have

Homu(T,I1) = °1}  Homu(T, 1) =}z, Homa(T,I) = [1 g

Homu(T, Ia) = 2| Homa(T, Is) = 1]

and then

Observe that the above T is the one we used in example (3.9). If one choose another
complete slice, one gets a different module. Observe that one can find, in this example,
complete slices in any possible orientation of Ds. We observe that this in not a
general fact: the algebra C of (1.9) is a tilted algebra of type Aj and there is only
one complete slice in T'c.
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The structure of the Auslander-Reiten quiver of a tilted algebra is by now well
known. We refer to [19, 28, 29, 30, 34, 35] for details.

4.10. Remarks. (1) We have seen that if A is a tilted algebra then gl.dimA < 2
and for each X € indA, pdX < 1oridX < 1. These properties does not characterize
tilted algebras. In [26], Happel-Reiten-Smalg introduced the notion of quasttilted
algebra, that is an algebra A with gl.dimA < 2 and for each X € indA4, pdX <1
or :1dX < 1 and have shown several examples of quasitilted algebras which are not
tilted. We also mention (15, 17] for more information on the Auslander-Reiten quiver
of a quasitilted algebra.

(2) The tilting procedure can be iterated to get others interesting classes of alge-
bras. We refer to [1] for an account on this.

5. COMPLETE SLICES AND HOMOLOGICAL PROPERTIES

5.1.  The contents of this section follows very closely the paper [3], where in a joint
work with I. Assem we have considered the study of some homological properties in
relation to the position of a complete slice in the Auslander-Reiten quiver of a tilted
algebra.

Let now A be a tilted algebra. We define the left type of A as follows. If A has a
complete slice in a postprojective component, then the left type of A is defined to be
the empty graph. Otherwise, A has a unique connecting component I' which is not
postprojective. If I' contains no projective module (so that every module in T is left
stable, that is 7" M # 0 for all n > 0 and all M € TI'), we define the left type of A to
be the type of the tilted algebra A, as defined above. Suppose I contains a projective
module. Let ¥ be the subsection of I consisting of the left stable modules M in T
such that there exists a path in T of length at least one from M to some projective,
and any such path is sectional. Since ¥ is generally not connected, we can write it
as Xy U---UX,, where each ¥, is a connected component of £. Then ¥ = Y, U---u

gma, will be called the left extremal subsection of A, and its underlying graph
will be called the left type of A. Observe that, since I contains a complete slice, no
injective module is a predecessor of .

Dually, we define the right type of A as follows. If A has a complete slice in
a preinjective component, the right type of A is defined to be the empty graph.
Otherwise, A has a unique connecting component I' which is not preinjective. If
I' contains no injective module (so that every module in T is right stable, that is
"M # 0 for all n < 0 and all M € T), we define the right type of A to be the type
of the tilted algebra A. If ' contains an injective module, let ¥ be the subsection of
I' consisting of the right stable modules M in T such that there exists a path in T
of length at least one from some injective to M, and any such path is sectional. Let
Y =¥,U---UX,, where each ¥; is a connected component of ¥. Then ¥ = ¥ U---UX,
will be called the right extremal subsection of A, and its underlying graph ¥ will
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be called the r ht type of A. Observe that, since ' contains a complete slice, no
projective mod :is a successor of .

Example. We borrow this examplc from [28](5). Let A be given by the quiver

VAV
AN

bound by a1 8 = 0 = apy; for i = 1,2,3 and a3f; = 0 = aq7; for j =2,3,4. Then A
is tilted, and its type is the underlying graph of the following representing slice

- N

NSNS

SN N
N

The left type of A equals the disjoint union of two copies of Dy, and the left extremal
subsection equals the disjoint union of two copies of the quiver

T

-\é«%

The right type of A is equal to A, and the right extremal subsection is given by the
quiver
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AN
NS

5.2. The following lemma records the most immediate properties of the left and
right types of a tilted algebra.

Lemma. Let A be a tilted algebra.

(a) The left and the right types of A are empty graphs if and only if A is representation-
finite or concealed.
(b) The left (or right) type of A equals the type of A if and only if A has a unique

connecting component containing no projective (or no injective, respectively).

Proof. (a) The left type of A is empty if and only if A has a complete slice in a
postprojective component I', and the right type of A is empty if and only if A has
a complete slice in a preinjective component V. If ' = I, then A is representation-
finite. If I" # I, then A is concealed. The converse is obvious.

(b) Follows directly from the definition. O

5.3. Of more immediate concern to us, however, is the relation between the left
and right types and the left and right end algebras as defined in [28]. We record it
in the following lemma.

Lemma. Let A be a representation-infinite algebra which is tilted but not concealed.

(a) Each connected component of the left extremal subsection is a complete slice in
the connecting component without projective modules of the Auslander-Reiten
quiver of a connected component of the left end algebra . A. In particular, the
left type of A equals the type of oA as a tilted algebra.

(b) Each connected component of the right extremal subsection is a complete slice
in the connecting component without injective modules of the Auslander-Reiten
quiver of a connected component of the right end algebra Ao,. In particular,
the right type of A equals the type of A, as a tilted algebra.
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Proof. Under the stated hypothesis, A has a unique connecting component. The
statement then follows from the description of modA as given in [28], and the respec-
tive definitions. [

5.4. The following lemma is a direct consequence of the homological properties of
tilting modules discussed earlier.

Lemma. Let A be a tilted algebra and ¥ be a complete slice in T'4.

(a) If M is an indecomposable successor of ¥, then idaM <I.
(b) If M is an indecomposable predecessor of &, then pdaM <1.

Proof. We shall only prove (a), since the proof of (b) is dual.

Let T = @{N : N € ©}. Assume id4M > 1 for some indecomposable successor M of
Y. Then Hom(r~'M, A) # 0 (by [35](2.4)(1*) p.74). Let P4 be an indecomposable
projective module such that Hom (7'M, P) # 0. Since M is a successor of ¥, so are
7=1M and P. Hence P belongs to the subcategory of all A-modules generated by T
so that there exist m > 0 and an epimorphism 7(™ — P which must split, because
P is projective. Hence P is a direct summand of T, thus belongs to ¥. We have
obtained a sequence of non-zero non-isomorphisms U — -+ = M — * — M — P
with both U, P on ¥, which is not sectional, a contradiction to the fact that ¥ 1s a
complete slice. [J

5.5. As a consequence of this lemma and the fact that the global dimension of a
tilted algebra is at most two. we have:

Corollary. A tited algebra A is representation-finite if and only iof pdaM =2 and
ida M =2 for almost all M in indA.

Proof. Since the necessity is obvious, let us show the sufficiency. Since A is tilted,
there exists a complete slice ¥ in T'4. By (5.4), ¥ has only finitely many predecessors
and only finitely many successors. Hence A is representation-finite. [J

5.6. The following result was obtained in [3](3.4), and independently in [38].

Proposition. A representation-infinite algebra A 1s concealed if and only if pdM =1
and idM =1 for almost all M in indA.

5.7. We shall now define the reduced right and left types of a representation-infinite
tilted algebra A.

Let A be a representation-infinite tilted algebra. We first define the reduced left
type of A. If A has a postprojective component containing a complete slice or if
the unique connecting component of A contains no projective module, we define the
reduced left type of A to be equal to the left type of A, that is, respectively, the
empty graph and the type of A. Assume that the unique connecting component of
A is not postprojective but contains projectives, and let ¥ = X; U---U Y., be the
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left extremal subsection of A. We define the reduced left extremal subsection of A
to be X{ U--- U] where, for each 7, ¥/ is the full (convex) subquiver of ¥, obtained
by deleting all the sinks. The reduced left type of A is then the underlying graph
T U---U %, of the reduced left extremal subsection. Observe that the sinks of ¥;
correspond to radical

summands of projective A-modules.

Likewise, we define the reduced right type of A. If A has a preinjective component
containing a complete slice or if the unique connecting component of A contains no
injective module, we define the reduced right type of A to be equal to the right type
of A, that is, respectively, the empty graph and the type of A. Assume that the
unique connecting component of A is not preinjective but contains injectives, and let
2 =%, U---UX, be the right extremal subsection of A. We define the reduced right
extremal subsection of A to be £ U---U X! where, for each i, Y1 is the full (convex)
subquiver of ¥; obtained by deleting all the sources. The reduced right type of A is
then the underlying graph f’l U---U f: of the reduced right extremal subsection .
Observe that the sources of ¥; correspond to socle factors of imjective A-modules.

Since A is representation-infinite, the reduced left (or right) type of A is empty if
and only if so is the left (or right, respectively) type of A.

For instance, in the example in (5.1), the reduced left extremal subsection is the
disjoint union of two copies of the quiver

while the reduced right extremal subsection is the disjoint union of two copies of the
quiver

.

In particular, both the reduced right and left types of A are disjoint unions of Dynkin
graphs, so that A satisfies the conditions of our main theorem in this section, which
we shall now prove.

Theorem. Let A be a representation-infinite algebra which is tilted but not concealed,
and ¥ be a complete slice in T .

(a) pdM = 2 for almost all indecomposable successors M of ¥ if and only if the
reduced right type of A is empty or a disjoint union of Dynkin graphs.

(b) 1dM = 2 for almost all indecomposable predecessors M of ¥ if and only if the
reduced left type of A is empty or a disjoint union of Dynkin graphs.

Proof. We shall only prove (a), since the proof of (b) is dual.
(2) Proof of sufficiency. Since A is not concealed, there exists only one component
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' containing complete slices. Now, if the reduced right type is empty then T' is
preinjective, ¥ has at most finitely many non-isomorphic indecomposable successors,
and clearly, the projective dimension of almost all of them equals 2. Suppose now that
the reduced right type of A is a non-empty disjoint union of Dynkin graphs, which,
is equivalent, in our case, to say that I' is not a preinjective component. Since the
global dimension of A is at most 2 and pd4M > 1 if and only if Homa(DA, ™M) #0
(by [35)(2.4)(1) p.74), it suffices to prove that Homu (DA, N) # 0 for almost all
indecomposable successors N of ©. Let thus Ay, = A; X -+ X Ay, where the A;
are connected tilted algebras. For each 1, let ¥; be the right extremal subsection
in the connecting component of I'y, as constructed in (5.1), so that the right type
of A equals Ty U ---UX; (by (5.3)). Let T = ®{M : M € %}, considered as an
A;-module. Then H = End(Ty,) is a hereditary algebra and, for each source S in X,
the H-module §' = Hompy, (T, S) is simple projective.

Let U7 denote the direct sum of all sources in ¥; and set U’ = Homy (T, U). Since
/' is the direct sum of simple projective H-modules, we can write U’ = eH for
some non-zero idempotent e € H. The hereditary algebra H'= End(l — e)H has
for type the full convex subquiver %! of ¥, obtained by dropping the summands
of U. That is, &/ is the (disjoint union of the) component(s) of the reduced type
corresponding to ¥;, hence -\ji is a (disjoint union of) Dynkin graph(s), by hypothesis.
Consequently, H' is representation-finite. This implies that Homg(U’, X) # 0 for
almost all indecomposable H-modules X.

Let (7, F) denote the torsion theory induced by 7' in modA;. It is easy to see that F
consists of the proper predecessors of X; in the connecting component of I'4,, hence
contains only finitely many non-isomorphic indecomposables. On the other hand, by
the Brenner-Butler theorem

HomAl(U, ]M) = HomH(U', HOIHA‘(T, M))
for any M in 7. This implies that Homa, (U, M) # 0 for almost all M in indA,.

Since, for any indecomposable summand S of U, there exists an indecomposable
injective A-module I and an irreducible epimorphism I — S, we deduce that
Homu(DA, N) # 0 for almost all N in indA;. This being true for each i, we infer
that Hom4(DA, N) # 0 for almost all N in indA,,. Since almost all indecomposable
successors of ¥ are A, -modules, this completes the proof of the sufficiency.

(i1) Proof of necessity. Suppose that A is a representation-infinite tilted algebra and
let ¥ be a complete slice in a connecting component ' of '4 such that pdaM = 2
for almost all indecomposable successors M of ¥. If I is a preinjective component
then the reduced right type of A is the empty graph and we are done. Suppose
from now on that I' is not a preinjective component and let ¥, U---U Y, denote the
right extremal subsection of A, where each ¥; is connected. We must show that the
reduced right extremal subsection YU U ¥ is such that, for each 1 <1 <1, fi is

a (disjoint union of) Dynkin graph(s). Assume that, for some ¢, T, is not a (disjoint

172



TILTED ALGEBRAS

union of) Dynkin graph(s) and let H’ be the endomorphism algebra of the module
©{M : M € X!}. Then H' is a representation-infinite full convex subcategory of the
(hereditary) endomorphism algebra H of the module ®{N : N € %;}. By defini-
tion (and (5.3)), the types of A; (which is the connected component of A,, having
Y; as a complete slice in its connecting component) and of H coincide and equal
¥;. Moreover, there are infinitely many non-isomorphic indecomposable A;-modules
(L)xea such that Homa(S1 @ -+ @ S, Ly) =0 for all A € A, where §p,--- . S,, are
all the sources in ¥;. We claim that this implies Hom4(DA, L) = 0 for all A € A.
Indeed, let I be an indecomposable injective A-module and consider the left minimal
almost split morphism f: I — K. If K has no summand in modA;, then clearly
Hom,(1, Ly) = 0 since any non-zero morphism would factor through f, an absurdity.
If K has a summand in modA;, it must be one of Sty Sm. Thus, Hom (I, Ly)#0
implies Hom 4(S;, Ly)# 0forsomel <j< m, a contradiction to our assumption on
the family (L,))sea. This shows that we indeed have Homy4 (DA, Ly) = 0 for all

€ A, or, equivalently, that pda(77'Ly) < 1 for all A € A, a contradiction to our
hypothesis. [

Corollary. Let A be a representation-infinite tilted algebra.

(a) If A has a complete slice in a postprojective component then pdgsM=2 for
almost all M in indA if and only if the reduced right type of A is a disjoint
union of Dynkin graphs.

(b) If A has a complete slice in a prewngective component then idgs M =2 for almost
all M in indA of and only if the reduced left type of A is a disjoint union of
Dynkin graphs.
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