FrROM LARGE EcoNOMIES TO UNIFORM SEMIGROUP-VALUED

MEASURES!

Achille Basile

Universita Federico II, Napoli

PREMISE. The title is rather binding. Indeed, it evidently promises a connection between
two things that, a priori, appear quite different and distant. We shall move along the
following lines. We would like to show:
how perfect competition leads to a finitely additive measure space of agents;
how the need to extend, to the latter setting, exisiting results on countably additive set

correspondences, leads to use semigroup-valued measures.

1. Introduction

One of the most representative examples in modern theory of general eco-
nomic equilibrium is the model of an economy with a finite number of com-
modities and a finite number of households and firms in the formulation [AD]
which is due to the two Nobel Prize winners K. J. Arrow and G. Debreu.

Since our purpose here is to show how economic theory influenced some
developments of measure theory, we may remain confined to the simpler case
of exchange economies. This means that the only economic activity we take
into consideration is the exchange of goods among individuals. In other words,
economic agents (each starting with a certain initial endowment), for better
satisfying personal necessities, exchange commodities untill an equilibrium sit-

uation is produced and no more exchanges can take place. We better fix

!Presented at IIT Congreso “Dr. Antonio A.R. Monteiro” April 26-28, 1995 - Universidad Nacional del
Sur, Bahia Blanca - Republica Argentina.
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notation.

Let us say that Q is the set of all economic agents and let us assume that there
are £ commodities. In this way, a typical commodity bundle is a point in the
positive cone of Rf. The starting situation, namely the distribution of initial
endowments is represented by a given function e(w) with w € 2 and values in
RY%. Evidently, the questions arise of:

e characterizing situations f: Q) — R‘_i_ which are equilibria

e proving the existence of equilibria.

Prior to this, we need to model the reason to exchange. This is done by in-
troducing, for each agent, his own preference relation? =, on the consumption
set, Rﬂ_. So, it is clear: the reason for any agent w to exchange is the hope
to move from e(w) to a point in the set {z € R{ : z >, e(w)}, which would
mean an improvement.

Two approaches to equlibrium concept have been traditionally investigated.
One is the competitive approach, the other is the cooperative one. They go,
respectively, back to L. Walras and to F. Y. Edgeworth.

Roughly speaking, the competitive notion of equilibrium is based on the fact
that each individual takes prices as given and acts ignoring other agents. The
individual evaluate his own initial endowment at the given price system, then
chooses the best bundle available which costs no more than the initial income.
Here is the formal definition:

Definition of Walras Equilibrium

A Walras Equilibrium is a pair (f, p) where the situation f and the price system
pE Ri are such that

e total demand equals total supply, namely

S i) = 3 efw)

wEeN we

2Let me be vague, now, about properties of >.
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¢ and, for any agent w, we have p- f(w) < p- e(w) and
2€RL & p-z<pe(w)= flw) .z

On the other hand, in the Edgeworth’s idea, prices do not appear and what
matters it is the possibility of a cooperative behaviour of agents. An equilib-
rium will be a situation that presents no incentive for agents to form coali-
tions and bargain for a redistribution of resources. More formally, if we set
f(A) = >, ca f(w) for any situation f and any nonempty coalition A C ,
then
Definition of Core
A core allocation is any situation f such that
e total demand equals total supply
e no coalitions A exist for which we can find another situation g with
g(A) = e(A) and g(w) ., f(w) Yw € A.

Given the two above concepts of equilibrium, Fundamental Theorems, see
[HK], state (under appropriate assumptions) that Walras equilibria are
Core allocations and that Walras equilibria do exist. Moreover, Core
allocations do not necessarily admit prices making them Walras e-
quilibria (usually is the contrary). This leads us to the basic question:
under which circumstances does cooperative barter and competition through de-
centralized markets lead essentially to the same result?

Going back to the idea of competitive equilibria we can easily point out that
the price-taking behaviour only makes sense when individuals view themselves
as an insignificant part of a large market. How to capture this idea? How
to model perfect competition? The approach, due to Aumann [A] (see also
[V]), is to consider an economy in which there are arbitrarily many players
none of whom individually makes any noticeable contribution. Formally the
assumption will be that € will carry nonatomic countably additive measures

or, straightly, that it will be identified with the unit interval of the real line.
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Although the above assumption might appear artificial, we have to think of
this limit economy in the same spirit of physicists, when they treat fluids as a
continuum even though they know there are finitely many particles in a given
volume.

It is in this contest of perfect competition that Aumann first proved that Core

and Walras allocations are the same?®.

2. Role of Measure Theory in Perfect Competition

The fact that the idea of perfect competition was captured by means of
modelling the space of economic agents as a nonatomic countably additive
measure space, stimulated several mathematical developments. They mainly
dealt with the studying of additive set correspondences that originates from
the economic theory. Already the paper [V] points out two of the principal
directions of investigation: richness in selections and geometric structure of
the range*. A third main direction deals with integration of correspondences
and integral representation of additive correspondences.

My personal interest is due to two papers by Armstrong and Richter [AR,
ARI1] that focused attention on the role that finite additivity should have in
perfect competition. The step from countable to finite additivity is not only
mathematically important (as it is anyway), it is basic also for its economic
relevance. Indeed, as we said in the introduction, the reason to deal with a
nonatomic measure space of agents is to depict the limit behaviour of finite
economies when their cardinality goes to infinity. Since there are no nonzero
nonatomic countably additive measures on the measurable space (N,QN), it

follows that the countable additivity hypothesis automatically excludes the

3We observe that a better understanding of the Core-Walras equivalence theorem requires mentioning
the fact that it is possible to formalize that if the cardinality of {2 tends to infinity, then the set of all Core

allocations shrinks to the set of all Walras equilibria.
4In [V] a Lyapunov-type theorem is proved for the net trade correspondence of an exchange economy,

assuming that such correspondence is countably additive, has no atoms and is rich in selections.
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possibility of countably many agents. On the other hand it seems clear, and it
is usually accepted, that a realistic model for the limit space of economic agents
should exactly include the case of countably many of them. The difficulty that
comes out is overcome by modelling perfect competition with finitely additive
nonatomic measure spaces of players. Of course, the consequence is that it
is then necessary to investigate, in the finitely additive setting, the results
that the literature on large economies presents in the countably additive case.
Partly this has been done in [AB, B, B1] relatively to some of the topics that
were crucial from the economic point of view, namely selections and structure

of range of set correspondence. Let us go into some details.
3. Rf-valued finitely additive set correspondences

Through some theorems for semigroup-valued measures (see the appendix),
we can use the classical Stone space argument for deriving, very quickly and
easily, the following
Theorem [B, Theorem 3]. For a closed-valued nonatomic f.a. set correspon-
dence ® we have:

a) convezity of values,
b) relative convezity of the range,

¢) richness of f.a. selections.

For a f.a. set correspondence we mean a mapping ® from® F to the family

of nonempty subsets of R such that () = {0} and
EUF)=0(E)+®(F)={z+y: z € ®E), y € ®(F)}

whenever £ and F are disjoint.
The range R(®) of ® is the union of all values of ®. C,, r > 0, is the ball

{r € R’: |z| < r}. The meaning of richness in selection is clearified in the

5F is a given Boolean algebra of substes of Q0.
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next
Definition. Let S be the set of all contents (= f.a. set functions) that are

selections of ®. We say that ® is rich in selections if S is nonempty and,

moreover,
O(A) = {u(A4) : pe S}
for all A € F.
The definition of nonatomicity for a set correspondence @ is the following : for

any r > 0 there exists in F a partition {Fy,..., F},} of  such that

ECF, FeF=®F)CC,.

It is quite obvious that a finitely additive nonatomic set correspondence is
bounded.
It appears that a f.a., nonatomic, closed-valued set correspondence @ is com-
pact valued. This circumstance gives us the possibility to treat such a @ as
an ordinary (semigroup-valued) content (=finitely additive measure, see the
appendix). Of course the idea of treating special multifunctions as ordinary
functions is standard. Even multimeasures have been treated as vector mea-
sures, by means of the so-called Minkowski-Radstrém-Hérmander Theorem on
embedding collections of closed, bounded, convex sets into a suitable Banach
Space. However, an appeal to this embedding theorem seems not possible here
to get results like those in our previous Theorem. This impossibility justify
the use of semigroup-valued contents.
For our purpose of proving the Theorem stated above, let us introduce the
complete metric semigroup (K, +,{0},8) where K is the family of compact

nonempty subsets of R? and § is the Hausdorff metric
§(A,B)= inf{t>0: ACB+C,and BC A+ Cy}.

It is evident that closed-valued, nonatomic f.a. set correspondences are nothing

else than X —valued nonatomic contents.
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We need a few preparatory propositions.
Proposition 1. If A and B are two subsets of K, then A C B* implies
UA C UB.
Proposition 2. Let (A,) be a sequence in K. If, in the semigroup K, the
series Y A, has sum A, then:
a) T, € A, VYn = Y.z, converges (uniformly with respect to the choice of
T, € An );
b) A={z: ¢ =37 i, z; € A;}.
Proposition3. Assume ® is f.a. and bounded-valued. For E, F € F, the
following are equivalent:
a) ®(F) # {0} and E C F = ®(E) = {0} or ®(F \ E) = {0},
b) R(®(-NF)) # {0} and E C F = R(®(-NE)) = {0} or

R(®(-1 F\ B)) = {0}.
We are finally in a position to prove, quickly, our Theorem. Let X be the
Stone space of F and C the algebra of closed-open subsets of X. Denote by
¥ the o-algebra generated by C and denote by h the Stone isomorphism. The
position

m(hF) := ®(F)

gives a content m : C — K which is nonatomic, s-bounded and o-continuous.
From Theorem B in the appendix, we extend m to ¥ having the o-continuous

content

m: % — K.
m is nonatomic and (in K) R(m) C R(m). But really m is countably additive
and atomless (appendix, Theorem A). From propositions 3 and 2 we see that
m is a “non-atomic set-valued measure” in the sense of [Ar] and therefore has
convex values [Ar, Theorem 4.2], has convex range [Ar, Theorem 4.4] and [Ar,
Theorem 8.3] for any E € ¥ and y €m (E) there is a selection measure of m

that takes value y on E. To finish we use Proposition 1.0
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An improvement of statement b) of our Theorem is possible if we assume
that F is a o-algebra:
Theorem (Lyapunov-type)[AB]. A closed-valued, nonatomic, f.a. set corre-
spondence, defined on a o-algebra ha a conver range.
APPENDIX. Let (S,+,0) be an abelian semigroup with neutral element 0. A pseudo-

metric d on S is called semiinvariant if
d(a+¢,b+c) < d(a,b) for all a,b,c € S.

When a uniformity & on S is given such that it is generated by a family of seminivariant
pseudometrics, then we say that (S, +,0,U) is a uniform semigroup. In particular S could
be just endowed with one semiinvariant metric and in this case we should call it a metric
semigroup. The semiinvariance guarantees the uniform continuity of the sum.

Assume now to deal with a separated and complete uniform semigroup S. Finitely ad-
ditive set functions g : F — S that are null on the empty set are here called (S—valued)
contents. Let p: F — S be a content. We say that it is s-bounded (resp. o-continuous) if
#(Ep) — 0 whenever E, € F form a disjoint (resp. decreasing and with empty intersec-
tion) sequence; u is called nonatomic if for any U € U there exists in F a finite partition

{F1,...,Fp} of  such that
EecF, ECF = (u(E)0el.
On the other hand we remind that an atom of p is a set F' € F \ N(g) such that
EcF ECF = FEor F\ E belongs to N(u).

The results we need about (S-valued) contents are stated in the next two theorems. The
proof of Theorem B is in [D] (a minor extra work is necessary). Theorem A is from [W].

Theorem A If p is o-continuous, F is a c—algebra and S is metrizable, then

i nonatomic < p atomless.

Theorem BIf the S—valued content u is s-bounded, o- conlinuous and nonatomic, then
there ezists a unique o-continuous nonatomic S—valued content m which extends p to the

o—algebra generated by F. Moreover the range of p is dense in the range of m.
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