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Abstract

De Morgan E-algebras (A4, V,A,~,h,0,1) of type (2,2,1,1,0,0) such that
(A,V, A,~,0,1) is a De Morgan algebra and h is a De Morgan endomorphism
are defined. The dual category and the lattice of congruences is given.

Finally, the class of k—cyclic De Morgan E-algebras are considered and a
method for obtaining the free algebra over an ordered set are determined. !
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1 Preliminaries

Throughout this paper L denotes the variety of (0,1)-distributive lattices. The
category of L-algebras and L-homomorphisms will be denoted by L.

General references for concepts and results on distributive lattices used in this
paper are the books [1] and [2].

Recall that a totally order-disconnected topological space is a triple (Y, 7, <)
such that (Y, <) is a poset, (Y, 7) is a topological space and given z,y in Y, with
z £ y, there exists a clopen (i.e. closed and open) increasing set V such that z€V

1Some results of the present paper where submitedd, under the title “H-Algebras De Morgan”,
to the Annual Meeting of the Unién Matemadtica Argentina, October 1989.
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andy ¢ V.

A Priestley space (or P-space) is a compact totally order—disconnected topolog-
ical space.

We shall denote by P the class of P-spaces and by P the category whose objects
are the elements of P and whose morphisms are the order-preserving continuous
meppings (or P— mappings).

As usual, we are going to denote the objects in P by its underlying set Y.

For each A € L we represent by X (A) the set of prime filters of A. Ordering
X (A) by inclusion and with the topology 7 having as a subbasis the sets of the form

(i) oa(a) = {P€X(A):a€P} and X(A)\ 04(a), for each a€ A,

we have that P.(A) = (X(4),7T,C)eP.

If Y € P and D(Y) is the set of increasing and 7-clopen subsets of Y, then
L(Y)=(D(Y),n,U,0,Y,)€eL.

In [9,10] it is proved that the category L is dually equivalent to P.

A De Morgan algebra (or M-algebra) is a pair (A,~), where A€ L and ~ is a
unary operation satisfying the following identities:

~~ =1, ~(ZVY)=~TA~Y.

We shall denote by M the variety of M-algebras and by M the category of
M-algebras and M—homomorphisms, i.e. De Morgan homomorphisms.

A De Morgan space (or mP-space) is a pair (Y, g) such that Y is an object in P
and ¢:Y —Y is a decreasing and continuous mapping satisfying g = g~

Let (Y,g) and (Y’,g’) be mP-spaces. An mP-mapping from (Y, g) into (Y',g")
is a P-mapping f : Y —Y" such that fog=g'0 f.

We shall denote by mP the class of mP-spaces and by mP the category of
mP-spaces and mP-mappings.

If (A,~)€M and g4:X(A)— X(A) is defined by
(i) ga(P) = X(A)\ {~ z : z€ P}, for every P€ X (A),

then P,(A) = (P,(A), ga) is an mP-space.
If (Y,g) €mP and ~: D(Y)— D(Y) is defined by
(i) ~ (V)=Y\g V), for every Ve D(Y),
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then M(Y) = (L(Y),~)eM.
In [4] it is proved that the category M is dually equivalent to m7P.

‘Furthemore, if A€L, it is well known that the set Cony(A) of all congruences
of A is determined by the closed subsets of X (A). More precisely, if C (X(A)) is
the set of the closed subsets of X (A), then the mapping ® : C(X (A)) — Conpy(A)
defined by

(iv) @) ={(a,b)eAx A:04(a)NY = c4(b)NY}, for every Y €C(X (A)),

is an L-antiisomorphism

On the other hand, if A€ M then the set Conp(A) of all congruences of A is
determined by the involutive closed subsets of X (A). Recall that ¥ C X (A) is said
to be involutive if g4(Y) = Y. More precisely, if C;(X (A)) is the set of involutive
closed subsets of X (A), then the mapping ®: C;(X(A)) — Conm(A) indicated in
(iv) is an L-antiisomorphism.

An E-lattice (see [5]) is a pair (A4, h) where A€ L and h is an L-endomorphism.

We denote by E the variety of E-lattices and by £ the category of E-lattices
and E-homomorphisms, i.e. E-lattice homomorphisms.

An eP-space is a pair (Y, @) such that Y is an object in P and a is a morphism
of P.

Let (Y, @) and (Y, o) be eP-spaces. An eP-mapping from (Y, @) into (Y, /) is
a P-mapping f : Y =Y’ such that foa = oo f.

We shall denote by eP the category of eP—spaces and eP-mappings.
For each (A, h) € E we consider the mapping a4 : X (A)— X (A) defined by
(v)  @a(P)=h7Y(P), for every Pe X (A),
then P,(A) = (P.(A), a4) is an eP-space.

On the other hand, if (Y, o) is an eP-space and A D(Y)— D(Y) is the mapping
defined by '

(vi)  A(V)=a "1 (V), for every Ve D(Y),
then H(Y) = (L(Y),h)€E.
The category £ is dually equivalent to eP([5)).

Furthermore in [5] it is proved that § € Cong(A) if and only if there exists
Y C X (A), such that it verifies the following properties:

PeY implies A" (P)eY, 6= O(Y).
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2 De Morgan E—algebras

Definition 2.1 A De Morgan E-algebra (or ME-algebra) is a triple (A, h,~) where
(A, k) is an E-algebra, (A,~) is an M-algebra and h is an M-homomorphism.

We denote by ME the variety of ME-algebras.

Lemma 2.1 Let (A,~)eM andh : A— A be a map. Ifit holds that h~}(P)e X (A)
and ga(h™'(P)) = h™Y(ga(P)) for all P€ X (A), then (A, h,~)EME.

From the results of Cornish and Fowler [4] which generalized the Priestley duality
for De Morgan algebras and the results of Figallo and Monteiro [5], we have the
Theorems 2.1 and 2.2 indicated below.

Definition 2.2 An meP-space is a triple (Y, o, g) such that (Y, a) is an eP-space,
(Y,g) is an mP-space and it holds goa = o g.

Definition 2.3 Let (Y, a,g) and (Y, o/, g’) be meP-spaces. An meP-mapping from
(Y,a,g) into (Y',o/,g") is an eP-mapping and mP-mapping.

Lemma 2.2 If (Y,a,g) be an meP-space then H(Y) = (L(Y), h,~) € ME, where
h and ~ are defined as in (vi) and (iii) respectively.

Lemma 2.3 If (A, h,~) € ME then P,.(A) = (P,(A),a4,94) € meP, where ay,
and g4 are defined as in (v) and (ii) respectively.

We denote by ME and meP the categories of ME-algebras with ME-homomor-
phisms, and the meP—-spaces with meP-mappings, respectively.

Theorem 2.1 The category ME is dually equivalent to the category meP.
Now we are going to determine the set Conyg(A) of all congruences of A€ ME.

Lemma 2.4 Let Ac ME, Y C X (A) and ©(Y) be the relation defined in (vi).
Then the following conditions are equivalent:
(a) GGCOTLME(A),
(b) there exists Y C X (A) such that:
(1) 6 =06(Y),
(2) PeY implies h"'(P)eY,
(3) PeY implies g(P)eY.

Theorem 2.2 Let (A,h) € ME. Then the lattice Conyg(A) is isomorphic to the
dual lattice of involutives meP-sets of X (A).
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3 k—cyclic ME-algebras

In this section we study the class of k—cyclic ME-algebras and we give a method
to determine the free k—cyclic ME-algebra over a poset which is a generalization of
those obtained in [7],[8] and [5].

Let k be a fixed positive integer. We say that (A, h) is a k—cyclic E-algebra (or
Ey-algebra) if it verifies for all z€ A, h*(z) = z ([5)).

Observe that h%(z) = = and h"*1(z) = h™(h(x)) for all positive integer n.

We shall denote by E; the variety of E,—algebras.

Definition 3.1 (A, h,~) € ME is said to be a k—cyclic ME-algebra (or ME; -al-
gebra) if (A, h) €Ey.
We shall denote by ME, the variety of ME,~algebras.

In what follows if K is one of the varieties Ex or MEy, A€ K and Y C A, we
shall denote by [Y]k the K-subalgebra of A generated by Y.

Definition 3.2 Let I be a poset. LK is free over I if the following conditions are
satisfied:

(L1) There exists an order—isomorphism f:I— L such that [f(I)]k = L.

(L2) If A€ K and s : I — A is an increasing mapping, then there exists a
K-homomorphism h : L— A which verifies ho f = s.

Construction of L

Let (I, <) be a poset. For each non negative integer j let I; = {(x,5) : z€1}.

We define an order relation < over I, in the following way: (z,5) < (y,7) if and
only if x < y.

For each j, 0 < j <k —1let I be the dual poset of I;.

Now we consider the set R = T + T* (cardinal sum,[1]), where T = Iy + I; +
coot+ Iyyand T =I5+ I7 4 ...+ I}_,. For convenience, in some cases we denote
by {t* : t€T} the set T*.

Let A : T—T*, 3:R— R be the mappings defined by

. . )\(7"), ifretT,
A(t) =t*, B(r) = {,\“l(r), otherwise
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Let B = {0,1} be the Booléan algebra with 0 < 1 and Z = Z(R, B) the set of
all order preserving functions from R into B. We define on Z the operations A, V as
usual and ~ by means of the formula (~ z)(r) = —z(8(r)) for all z€T and r € R.
Then (Z,A,V,~,0,1)e M.

Let n; : [; > Iy, nj: I; =I5, for all j€{0,...,k—2}, and 7y : I—1— Do,
nt_, @ If_; — I be the mappings defined by
n;((z,5)) = (z,5 +1), nj((z*, 7)) = (z",5 + 1),
and
nk—l(xak - 1) = (IE,O), "71:—1(33*7]‘: - 1) = (iE*,O),
If we consider h : Z— 7 defined by
(h(@))(r) = z(u(r)),
where

n;(r), ifrel;
HAT) = * . *
(r) {nj(r), if rer;

then it is easy to see that (Z, h,~) € MEy and (P(Z), H, N) € MEy, where P(Z) is

the set of all subsets of Z, H(Y) = A" Y(Y) and N(Y) =T\ {~ y : ye Y}, for all
YCI.

If v: R—P(Z) is the mapping defined by
y(r) =G, ={z€l :z(B7'(r)) =1}, for all r€R,

and £ = [y(Ip)]mE,, then £ is the free ME,—algebra over I, (and so it is also free
over I).
Indeed, it is easy to see that

(11)  ~v:Ip— £ is an order-isomorphism.
On the other hand
(12)  H(G,) = G- (see [9])
Now we shall prove that
(13)  N(G:)=Gpp).
Indeed, the following conditions are pairwise equivalent:
(1) zeN(Gy),
2) ~z¢G,
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@) (~a)(B7H(r) =0,
(4)  —=(B(67'(r) =0,
(6)  =(B7(B(r)) =1,
(6) zeGpgy).

Then we have that N(y(ly)) = v(B(Ip)) = v(IZ), and so it holds

(4) £ =[y(lo)lme, = [y(lo) U (B(Ip))]e. = [¥(T))]E,, where Tp = Ip + 1.

Let (A, ha,~4) be an arbitrary ME;-algebra and s : I, — A be an increasing
mapping.
Then we define the function S : T— A by

S(r) = hf;l(s(,u"j(r))), foreach rel;, 0 < j <k -—1.
Let us consider the function S’ : R— A defined by

N S(r), ifreT
S(r) = {N S(B(r)), otherwise

It is clear that Si; = S and S, = s.

Since S is an isotone function, by (14) £ is the free distributive lattice over T'
(see [7]), then it holds:

(15)  there exists an L-homomorphism % : £ - A such that h(y(T)) = S(T).
Furthermore h oy = 5 is verified and on the other hand it holds:
(16) h is an M-homomorphism.
Indeed, it is holds:
(1) FV(G)) = BiGa) = Fr(B0)) = (B on)(B(r)) = S'(8(r))
(2)  ~h(G,) =~h(y(r)) =~ (hor)(r) =~ S'(r),
(3) S'(B(r)) =~ S'(r), because it holds:
(a) ifreT, then B(r)€T* and

S'(B(r)) =~ S(B(B(r))) =~ S(r) =~ §'(r),
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(b) if reT* then B(r)€ S and
§'(B(r)) = S(B(r)) =~ S(r) =~ 5'(r).
Finally, we have
(17) h is an ME-homomorphism
Indeed, it is holds
(1) A(H(G))) = A(Gum)) = hly(ul(r))) = (B ov)(u(r)) = S'(u(r)),
(2)  ha(h(G,)) = ha((ho7)(r)) = ha(S'(r)),
(3)  ha(S'(r)) = S'(u(r)), because is holds:
(a) if rel;, then
ha(S'(r)) = ha(S(r)) = ha(hly(s(u™(r))))
= W (s(w= 0D ((r)))))
= S(p(r)) = 5'(u(r)),
(b) ifrely, then
ha(8'(r)) = ha(~ S(B(r))) =~ (B (s(u™7(Br))))
=~ (B (s(u=0 0 (u(Br)))))
(=GB (u(r)))))
=~ 5(B(u(r))) = ' (p(r)).

=~ (s
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