De Morgan Algebras with an additional operation

Sergio A. Celani

Facultad de Matemática, Universidad de Barcelona, España.

Aldo V. Figallo

Departamento de Matemática, Universidad Nacional del Sur, 8000 Bahía Blanca, Argentina.

Abstract

De Morgan E-algebras $\langle A, \vee, \wedge, \sim, h, 0, 1 \rangle$ of type (2, 2, 1, 1, 0, 0) such that $\langle A, \vee, \wedge, \sim, 0, 1 \rangle$ is a De Morgan algebra and h is a De Morgan endomorphism are defined. The dual category and the lattice of congruences is given.

Finally, the class of k-cyclic De Morgan E-algebras are considered and a method for obtaining the free algebra over an ordered set are determined. ¹

Keywords and phrases: Distributive Lattices, Free Algebras, Priestley duality. 1991 AMS Subject Classification: 06D, 08A50.

1 Preliminaries

Throughout this paper L denotes the variety of (0,1)-distributive lattices. The category of L-algebras and L-homomorphisms will be denoted by \mathcal{L} .

General references for concepts and results on distributive lattices used in this paper are the books [1] and [2].

Recall that a totally order-disconnected topological space is a triple (Y, τ, \leq) such that (Y, \leq) is a poset, (Y, τ) is a topological space and given x, y in Y, with $x \nleq y$, there exists a clopen (i.e. closed and open) increasing set V such that $x \in V$

¹Some results of the present paper where submittedd, under the title "H-Algebras De Morgan", to the Annual Meeting of the Unión Matemática Argentina, October 1989.

and $y \notin V$.

A *Priestley space* (or P–space) is a compact totally order–disconnected topological space.

We shall denote by \mathbf{P} the class of P-spaces and by \mathbf{P} the category whose objects are the elements of \mathbf{P} and whose morphisms are the order-preserving continuous mappings (or P- mappings).

As usual, we are going to denote the objects in \mathcal{P} by its underlying set Y.

For each $A \in \mathbf{L}$ we represent by $\mathbf{X}(A)$ the set of prime filters of A. Ordering $\mathbf{X}(A)$ by inclusion and with the topology τ having as a subbasis the sets of the form

(i)
$$\sigma_A(a) = \{ P \in \mathbf{X}(A) : a \in P \} \text{ and } \mathbf{X}(A) \setminus \sigma_A(a), \text{ for each } a \in A,$$

we have that $P_r(A) = (\mathbf{X}(A), \mathcal{T}, \subseteq) \in \mathbf{P}$.

If $Y \in \mathbf{P}$ and $\mathbf{D}(Y)$ is the set of increasing and τ -clopen subsets of Y, then $\mathcal{L}(Y) = \langle \mathbf{D}(Y), \cap, \cup, \emptyset, Y, \rangle \in \mathbf{L}$.

In [9,10] it is proved that the category \mathcal{L} is dually equivalent to \mathcal{P} .

A De Morgan algebra (or M-algebra) is a pair (A, \sim) , where $A \in \mathbf{L}$ and \sim is a unary operation satisfying the following identities:

$$\sim \sim x = x, \quad \sim (x \lor y) = \sim x \land \sim y$$

We shall denote by M the variety of M-algebras and by $\mathcal M$ the category of M-algebras and M-homomorphisms, i.e. De Morgan homomorphisms.

A De Morgan space (or mP-space) is a pair (Y, g) such that Y is an object in \mathcal{P} and $g: Y \to Y$ is a decreasing and continuous mapping satisfying $g = g^{-1}$.

Let (Y,g) and (Y',g') be mP–spaces. An mP–mapping from (Y,g) into (Y',g') is a P–mapping $f:Y\to Y'$ such that $f\circ g=g'\circ f$.

We shall denote by \mathbf{mP} the class of \mathbf{mP} -spaces and by \mathbf{mP} the category of \mathbf{mP} -spaces and \mathbf{mP} -mappings.

If
$$(A, \sim) \in \mathbf{M}$$
 and $g_A : \mathbf{X}(A) \to \mathbf{X}(A)$ is defined by

(ii)
$$g_A(P) = \mathbf{X}(A) \setminus \{ \sim x : x \in P \}, \text{ for every } P \in \mathbf{X}(A),$$

then $P_m(A) = (P_r(A), g_A)$ is an mP-space.

If $(Y,g) \in \mathbf{mP}$ and $\sim: \mathbf{D}(Y) \to \mathbf{D}(Y)$ is defined by

(iii)
$$\sim (V) = Y \setminus g^{-1}(V)$$
, for every $V \in \mathbf{D}(Y)$,

then
$$\mathcal{M}(Y) = (\mathcal{L}(Y), \sim) \in \mathbf{M}$$
.

In [4] it is proved that the category \mathcal{M} is dually equivalent to $m\mathcal{P}$.

Furthemore, if $A \in \mathbf{L}$, it is well known that the set $Con_{\mathbf{L}}(A)$ of all congruences of A is determined by the closed subsets of $\mathbf{X}(A)$. More precisely, if $\mathcal{C}(\mathbf{X}(A))$ is the set of the closed subsets of $\mathbf{X}(A)$, then the mapping $\Phi: \mathcal{C}(\mathbf{X}(A)) \to Con_{\mathbf{M}}(A)$ defined by

(iv)
$$\Phi(Y) = \{(a,b) \in A \times A : \sigma_A(a) \cap Y = \sigma_A(b) \cap Y\}, \text{ for every } Y \in \mathcal{C}(X(A)),$$
 is an L-antiisomorphism

On the other hand, if $A \in \mathbf{M}$ then the set $Con_{\mathbf{M}}(A)$ of all congruences of A is determined by the involutive closed subsets of $\mathbf{X}(A)$. Recall that $Y \subseteq \mathbf{X}(A)$ is said to be *involutive* if $g_A(Y) = Y$. More precisely, if $C_I(\mathbf{X}(A))$ is the set of involutive closed subsets of $\mathbf{X}(A)$, then the mapping $\Phi: C_I(\mathbf{X}(A)) \to Con_{\mathbf{M}}(A)$ indicated in (iv) is an L-antiisomorphism.

An E-lattice (see [5]) is a pair (A, h) where $A \in \mathbb{L}$ and h is an L-endomorphism.

We denote by ${\bf E}$ the variety of E–lattices and by ${\bf \mathcal E}$ the category of E–lattices and E–homomorphisms, i.e. E–lattice homomorphisms.

An eP-space is a pair (Y, α) such that Y is an object in \mathcal{P} and α is a morphism of \mathcal{P} .

Let (Y, α) and (Y', α') be eP-spaces. An eP-mapping from (Y, α) into (Y', α') is a P-mapping $f: Y \to Y'$ such that $f \circ \alpha = \alpha' \circ f$.

We shall denote by $e\mathcal{P}$ the category of eP–spaces and eP–mappings.

For each $(A, h) \in \mathbf{E}$ we consider the mapping $\alpha_A : \mathbf{X}(A) \to \mathbf{X}(A)$ defined by

(v)
$$\alpha_A(P) = h^{-1}(P)$$
, for every $P \in X(A)$,

then $P_e(A) = (P_r(A), \alpha_A)$ is an eP-space.

On the other hand, if (Y, α) is an eP–space and $h: \mathbf{D}(Y) \to \mathbf{D}(Y)$ is the mapping defined by

(vi)
$$h(V) = \alpha^{-1}(V)$$
, for every $V \in \mathbf{D}(Y)$,

then
$$\mathcal{H}(Y) = (\mathcal{L}(Y), h) \in \mathbf{E}$$
.

The category \mathcal{E} is dually equivalent to $e\mathcal{P}([5])$.

Furthermore in [5] it is proved that $\theta \in Con_{\mathbf{E}}(A)$ if and only if there exists $Y \subseteq \mathbf{X}(A)$, such that it verifies the following properties:

$$P \in Y$$
 implies $h^{-1}(P) \in Y$, $\theta = \Theta(Y)$.

2 De Morgan E-algebras

Definition 2.1 A De Morgan E-algebra (or ME-algebra) is a triple (A, h, \sim) where (A, h) is an E-algebra, (A, \sim) is an M-algebra and h is an M-homomorphism.

We denote by **ME** the variety of ME-algebras.

Lemma 2.1 Let $(A, \sim) \in \mathbf{M}$ and $h : A \to A$ be a map. If it holds that $h^{-1}(P) \in \mathbf{X}(A)$ and $g_A(h^{-1}(P)) = h^{-1}(g_A(P))$ for all $P \in \mathbf{X}(A)$, then $(A, h, \sim) \in \mathbf{ME}$.

From the results of Cornish and Fowler [4] which generalized the Priestley duality for De Morgan algebras and the results of Figallo and Monteiro [5], we have the Theorems 2.1 and 2.2 indicated below.

Definition 2.2 An meP-space is a triple (Y, α, g) such that (Y, α) is an eP-space, (Y, g) is an mP-space and it holds $g \circ \alpha = \alpha \circ g$.

Definition 2.3 Let (Y, α, g) and (Y', α', g') be meP-spaces. An meP-mapping from (Y, α, g) into (Y', α', g') is an eP-mapping and mP-mapping.

Lemma 2.2 If (Y, α, g) be an meP-space then $\mathcal{H}(Y) = (\mathcal{L}(Y), h, \sim) \in \mathbf{ME}$, where h and \sim are defined as in (vi) and (iii) respectively.

Lemma 2.3 If $(A, h, \sim) \in \mathbf{ME}$ then $P_{me}(A) = (P_r(A), \alpha_A, g_A) \in \mathbf{meP}$, where α_A and g_A are defined as in (v) and (ii) respectively.

We denote by \mathcal{ME} and $me\mathcal{P}$ the categories of ME-algebras with ME-homomorphisms, and the meP-spaces with meP-mappings, respectively.

Theorem 2.1 The category \mathcal{ME} is dually equivalent to the category $me\mathcal{P}$.

Now we are going to determine the set $Con_{\mathbf{ME}}(A)$ of all congruences of $A \in \mathbf{ME}$.

Lemma 2.4 Let $A \in \mathbf{ME}$, $Y \subseteq \mathbf{X}(A)$ and $\Theta(Y)$ be the relation defined in (vi). Then the following conditions are equivalent:

- (a) $\theta \in Con_{\mathbf{ME}}(A)$,
- (b) there exists $Y \subseteq \mathbf{X}(A)$ such that:
 - $(1) \ \theta = \Theta(Y),$
 - (2) $P \in Y$ implies $h^{-1}(P) \in Y$,
 - (3) $P \in Y$ implies $g(P) \in Y$.

Theorem 2.2 Let $(A, h) \in \mathbf{ME}$. Then the lattice $Con_{\mathbf{ME}}(A)$ is isomorphic to the dual lattice of involutives meP-sets of $\mathbf{X}(A)$.

3 k-cyclic ME-algebras

In this section we study the class of k-cyclic ME-algebras and we give a method to determine the free k-cyclic ME-algebra over a poset which is a generalization of those obtained in [7],[8] and [5].

Let k be a fixed positive integer. We say that (A, h) is a k-cyclic E-algebra (or E_k -algebra) if it verifies for all $x \in A$, $h^k(x) = x$ ([5]).

Observe that $h^0(x) = x$ and $h^{n+1}(x) = h^n(h(x))$ for all positive integer n.

We shall denote by \mathbf{E}_k the variety of \mathbf{E}_k -algebras.

Definition 3.1 $(A, h, \sim) \in \mathbf{ME}$ is said to be a k-cyclic \mathbf{ME} -algebra (or \mathbf{ME}_k -algebra) if $(A, h) \in \mathbf{E}_k$.

We shall denote by ME_k the variety of ME_{k} -algebras.

In what follows if **K** is one of the varieties $\mathbf{E_k}$ or $\mathbf{ME_k}$, $A \in \mathbf{K}$ and $Y \subseteq A$, we shall denote by $[Y]_{\mathbf{K}}$ the K-subalgebra of A generated by Y.

Definition 3.2 Let I be a poset. $L \in \mathbf{K}$ is free over I if the following conditions are satisfied:

- (L1) There exists an order-isomorphism $f: I \to L$ such that $[f(I)]_{\mathbf{K}} = L$.
- (L2) If $A \in \mathbf{K}$ and $s: I \to A$ is an increasing mapping, then there exists a K-homomorphism $h: L \to A$ which verifies $h \circ f = s$.

Construction of L

Let (I, \leq) be a poset. For each non negative integer j let $I_j = \{(x, j) : x \in I\}$. We define an order relation \leq over I_j in the following way: $(x, j) \leq (y, j)$ if and only if $x \leq y$.

For each j, $0 \le j \le k-1$ let I_i^* be the dual poset of I_j .

Now we consider the set $R = T + T^*$ (cardinal sum,[1]), where $T = I_0 + I_1 + \ldots + I_{k-1}$ and $T^* = I_0^* + I_1^* + \ldots + I_{k-1}^*$. For convenience, in some cases we denote by $\{t^* : t \in T\}$ the set T^* .

Let $\lambda: T \to T^*$, $\beta: R \to R$ be the mappings defined by

$$\lambda(t) = t^*, \ \beta(r) = \begin{cases} \lambda(r), & \text{if } r \in T, \\ \lambda^{-1}(r), & \text{otherwise} \end{cases}$$

Let $B = \{0, 1\}$ be the Boolean algebra with 0 < 1 and $\mathcal{I} = \mathcal{I}(R, B)$ the set of all order preserving functions from R into B. We define on \mathcal{I} the operations \wedge , \vee as usual and \sim by means of the formula $(\sim x)(r) = -x(\beta(r))$ for all $x \in \mathcal{I}$ and $r \in R$. Then $(\mathcal{I}, \wedge, \vee, \sim, 0, 1) \in \mathbf{M}$.

Let $\eta_j: I_j \to I_{j+1}, \ \eta_j^*: I_j^* \to I_{j+1}^*$, for all $j \in \{0, \dots, k-2\}$, and $\eta_{k-1}: I_{k-1} \to I_0$, $\eta_{k-1}^*: I_{k-1}^* \to I_0^*$ be the mappings defined by

$$\eta_i((x,j)) = (x,j+1), \ \eta_i^*((x^*,j)) = (x^*,j+1),$$

and

$$\eta_{k-1}(x, k-1) = (x, 0), \ \eta_{k-1}^*(x^*, k-1) = (x^*, 0),$$

If we consider $h: \mathcal{I} \rightarrow \mathcal{I}$ defined by

$$(h(x))(r) = x(\mu(r)),$$

where

$$\mu(r) = \begin{cases} \eta_j(r), & \text{if } r \in I_j \\ \eta_j^*(r), & \text{if } r \in I_j^* \end{cases},$$

then it is easy to see that $(\mathcal{I}, h, \sim) \in \mathbf{ME_k}$ and $(\mathcal{P}(\mathcal{I}), H, N) \in \mathbf{ME_k}$, where $\mathcal{P}(\mathcal{I})$ is the set of all subsets of \mathcal{I} , $H(Y) = h^{-1}(Y)$ and $N(Y) = \mathcal{I} \setminus \{\sim y : y \in Y\}$, for all $Y \subseteq \mathcal{I}$.

If $\gamma: R \to \mathcal{P}(\mathcal{I})$ is the mapping defined by

$$\gamma(r) = G_r = \{x \in \mathcal{I} : x(\beta^{-1}(r)) = 1\}, \text{ for all } r \in R,$$

and $\mathcal{L} = [\gamma(I_0)]_{\mathbf{ME}_k}$, then \mathcal{L} is the free ME_k-algebra over I_0 (and so it is also free over I).

Indeed, it is easy to see that

(11) $\gamma: I_0 \to \mathcal{L}$ is an order-isomorphism.

On the other hand

(12)
$$H(G_r) = G_{\mu(r)}$$
. (see [5])

Now we shall prove that

$$(13) N(G_r) = G_{\beta(r)}.$$

Indeed, the following conditions are pairwise equivalent:

- (1) $x \in N(G_r)$,
- (2) $\sim x \notin G_r$,

(3)
$$(\sim x)(\beta^{-1}(r)) = 0$$
,

(4)
$$-x(\beta(\beta^{-1}(r))) = 0$$
,

(5)
$$x(\beta^{-1}(\beta(r))) = 1$$
,

(6)
$$x \in G_{\beta(r)}$$
.

Then we have that $N(\gamma(I_0)) = \gamma(\beta(I_0)) = \gamma(I_0^*)$, and so it holds

(14)
$$\mathcal{L} = [\gamma(I_0)]_{\mathbf{ME}_k} = [\gamma(I_0) \cup \gamma(\beta(I_0))]_{\mathbf{E}_k} = [\gamma(T_0)]_{\mathbf{E}_k}, \text{ where } T_0 = I_0 + I_o^*.$$

Let (A, h_A, \sim_A) be an arbitrary ME_k -algebra and $s: I_0 \to A$ be an increasing mapping.

Then we define the function $S: T \rightarrow A$ by

$$S(r) = h_A^j(s(\mu^{-j}(r))), \text{ for each } r \in I_j, 0 \le j \le k-1.$$

Let us consider the function $S': R \rightarrow A$ defined by

$$S'(r) = \begin{cases} S(r), & \text{if } r \in T \\ \sim S(\beta(r)), & \text{otherwise} \end{cases}$$

It is clear that $S'_{|T} = S$ and $S'_{|I_0} = s$.

Since S is an isotone function, by (l4) \mathcal{L} is the free distributive lattice over T (see [7]), then it holds:

(15) there exists an L-homomorphism $\overline{h}: \mathcal{L} \to A$ such that $\overline{h}(\gamma(T)) = S(T)$.

Furthermore $\overline{h}\circ\gamma=S'$ is verified and on the other hand it holds:

(l6) \overline{h} is an M-homomorphism.

Indeed, it is holds:

$$(1) \quad \overline{h}(N(G_r)) = \overline{h}(G_{\beta(r)}) = \overline{h}(\gamma(\beta(r))) = (\overline{h} \circ \gamma)(\beta(r)) = S'(\beta(r))$$

(2)
$$\sim \overline{h}(G_r) = \sim \overline{h}(\gamma(r)) = \sim (\overline{h} \circ \gamma)(r) = \sim S'(r),$$

(3)
$$S'(\beta(r)) = \sim S'(r)$$
, because it holds:

(a) if
$$r \in T$$
, then $\beta(r) \in T^*$ and
$$S'(\beta(r)) = \sim S(\beta(\beta(r))) = \sim S(r) = \sim S'(r),$$

(b) if
$$r \in T^*$$
 then $\beta(r) \in S$ and
$$S'(\beta(r)) = S(\beta(r)) = \sim S(r) = \sim S'(r).$$

Finally, we have

(17) \bar{h} is an ME-homomorphism

Indeed, it is holds

(1)
$$\overline{h}(H(G_r)) = \overline{h}(G_{\mu(r)}) = \overline{h}(\gamma(\mu(r))) = (\overline{h} \circ \gamma)(\mu(r)) = S'(\mu(r)),$$

(2)
$$h_A(\overline{h}(G_r)) = h_A((\overline{h} \circ \gamma)(r)) = h_A(S'(r)),$$

- (3) $h_A(S'(r)) = S'(\mu(r))$, because is holds:
 - (a) if $r \in I_j$, then $h_A(S'(r)) = h_A(S(r)) = h_A(h_A^j(s(\mu^{-j}(r))))$ $= h_A^{j+1}(s(\mu^{-(j+1)}(\mu(r))))$

$$= S(\mu(r)) = S'(\mu(r)),$$

(b) if $r \in I_i^*$, then

$$h_{A}(S'(r)) = h_{A}(\sim S(\beta(r))) = \sim (h_{A}^{j+1}(s(\mu^{-j}(\beta r))))$$

$$= \sim (h_{A}^{j+1}(s(\mu^{-(j+1)}(\mu(\beta r)))))$$

$$= \sim (h_{A}^{j+1}(s(\mu^{-(j+1)}(\beta(\mu(r)))))$$

$$= \sim S(\beta(\mu(r))) = S'(\mu(r)).$$

References

- [1] G. Birkhoff, Lattice Theory , Amer. Math. Soc., Col Pub., 25 3rd ed., Providence, 1967.
- [2] V. Boicescu, A. Filipoiu, G. Georgescu and S. Rudeanu, *Lukasiewicz-Moisil Algebras*, North-Holland, 1991.
- [3] S. Celani and A. V. Figallo, *H-Algebras De Morgan*, Rev. de la Unión Matemática Argentina, 38, 1-2 (1992), 96.

- [4] W. H. Cornish and P. R. Fowler, Coproduts of De Morgan Algebras, Bull. Austral. Math. Soc.,16(1977), 1–13.
- [5] A. V. Figallo and L. Monteiro, E-Lattices, to appear.
- [6] A. V. Figallo and L. Monteiro, Système determinant de l'algèbre de De Morgan libre sur un ensemble ordonné fini, Port. Math. 40, Fas. 2 (1981), 129 135.
- [7] L. Monteiro, Une construction du réticulé distributif libre sur un ensemble ordonné, Colloquium Mathematicum, XVII, Fas. 1(1967), 23–27.
- [8] L. Monteiro, Une construction des algèbres de De Morgan libre sur un ensemble ordonné, Rep. on Math. Logic, 3(1974), 31–36.
- [9] H. Priestley, Representation of distributive lattices by means of ordered Stone spaces, Bull. London Math. Soc., 2(1970), 186–190.
- [10] H. Priestley, Ordered topological spaces and the representation of distributive lattices, Proc. London Math. Soc., 3(1972), 507–530.