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Abstract

In this paper we provide a construction of free Ockham algebras over a poset.
We also investigate free objects in the Berman classes Py »n, and in the class MS
of Morgan—Stone algebras and their generalisation M S,-algebras.

1 Introduction

An Ockham algebra is an algebra (A;V, A, £,0,1) of type (2,2,1,0,0) in which
(A;V,A,0,1) is a bounded distributive lattice and f is a dual lattice homomorphism, i.e.,
f(0) =1, f(1) = 0, and the equations

(1) flzny) = f(z)V fy)
(2) flzVvy) = flz) A fly)

hold identically.

An Ockham algebra (A;V, A, f,0,1) will often be denoted by the simpler notation
(4; f).

The class of Ockham algebras is a variety, and will be denoted by O. They were
introduced by J. Berman [2] in a short but very important paper in 1977.

Subvarieties of O of paramount importance are the so called Berman varieties P,
m >mn 2> 0, m —n even (see [11],[2]). These are obtained by placing restrictions on the
dual endomorphism f. Precisely, we define P, to be the subclass of @ obtained by
adjoining the equation
(3) (@) = ().

The smallest Berman class is the class P, of de Morgan algebras. The class Pj,
contains the class of de Morgan algebras and the class of Stone algebras as well.

We consider also subvarieties P, ,, withm >n > 0and m—n odd, given equationally
within O by
(4) M)A fM)=0 and  fMz)V fHz)=1

Among other subvarieties of O that have been studied, we bring out the variety MS

of MS-algebras, introduced by T. Blyth and J. Varlet as a common generalization of de
Morgan algebras and Stone algebras. An M S-algebra is an Ockham algebra (A; f) in
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which z < f*(z), for every z € A [4]. The class MS is a subclass of P3;. As a natural
generalization, M. Ramalho and M. Sequeira [12] considered in 1987 more generally the
subvarieties of @ defined by ¢ < f2*(z), for n > 1. These subvarieties will be denoted
MS,,, and their elements will be called MS,-algebras. So, MS,-algebras are Ockham
algebras (A; f) in which f?" is a closure operator on A.

Section 2 is devoted to the determination of the algebraic structure of the free Ockham
algebra over a poset. Sections 3 and 4 deal entirely with the subvarieties Py, n whereas
section 5 is devoted to M S,-algebras.

Some of the results contained in this paper are generalisations of Golberg’s results in
[7], but our techniques are completely different.

2 Free Ockham algebras over a poset

The sole aim of this section is to derive a characterization of free Ockham algebras over
a poset given in Theorem 2.6.

For any Ockham algebra A and a subset X in A, OS(X) and SL(X) respectively
denote the Ockham subalgebra and the (distributive) sublattice generated by X.

Definition 2.1 Let I be a poset. An Ockham algebra FO(I) is called free over I if the
following conditions are satisfied:

(A) I C FO(I) and OS(I) = FO(I).

(B) Let f be an order-preserving map from I into an Ockham algebra A. Then there exists
a homomorphism h from FO(I) into A such that h|I = f.

It is easy to see ([9]) that if FO(I) exists, it is unique up to isomorphism and the
homomorphism & in (B) is also unique. Throughout this paper the following remark will
be an important tool.

Remark 2.2 Let I;, 1 = 1,...,n, be posets and I; C D with D € Do. Let hy - I; — A
be an order-reversing map, where A € Do;. For the order dual A* of A, let a: A — A
be the natural anti-isomorphism. If, for all i = 1,...,n, the maps a o h; can be extended
to a homomorphism H : D — A* such that H|I; = a o h; for every ¢ = 1,...,n, then
there ezists a dual lattice homomorphism H* : D — A such that H*|I; = h;. In fact, we
put H* = a~Yo H. It is easy to see that H*|I; = h; and that H™ is a dual homomorphism.
In particular, if D is the free distributive lattice L(I) over a poset I and h: 1 — A is an
order-reversing map, then we can extend h to a dual homomorphism H* : L(I) — A.

Let I be a poset and [” its order dual. Let

(5) G=2 1

i>0

where I; = [ if 7 is even, I; = I* if i is odd and }_ is the cardinal sum of posets. Let
a; : I; — I;;1 be the natural anti-isomorphism. Let

(6) f:G—G
be the map defined as follows: if g € I; for some ¢ > 0, then f(g) = ai(g). It s clear that
for z € I;, there exists zo € Iy such that = = fi(xo).
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Lemma 2.3 f is an order-reversing map.

Proof For z,y € G, if z < y, it is clear that z and y lie in the same I; (: > 0). Hence
f(z) = ai(z) > ei(y) = f(y). O

Let L(G) be the free distributive lattice over G. A construction of L(G) is developed
in {9], and when G is finite
(7) L(G) = 2],

where 2 is the two element chain and 2/%! is the distributive lattice of all order-preserving
maps from the poset X to 2.

By 2.2 and 2.3, f can be extended to a dual homomorphism F : L(G) — L(G). Then
(L(G); F) is an Ockham algebra.

We -are now going to point out some properties that we shall need to establish an

isomorphism between (L(G); F) and FO(I).
Lemma 2.4 (LG);F) = 0S(1,).

Proof Let z € [, then z € f(lp). Consequently 2 € OS(Iy) whenever z € G. Since
L(G) is free over G, then (L(G); F) = SL(G) C OS(Iy). Hence (L(G),F) = 0S(l,). O

Let f be the dual homomorphism corresponding to FO(I).
Lemma 2.5 Let Q = U;so f*(I). Then SL{Q) = FO(I).

Proof The set {z € SL(Q): f(z) € SL(Q)} is a sublattice of SL(Q) containing Q, so
for every z € SL(Q), f(z) € SL(Q). Then SL(Q) is closed under f, that is, SL(Q) is an
Ockham subalgebra of F'O(I). Since I C SL(Q), then SL(Q) = FO(I). 0

Theorem 2.6 FO(I) = (L(G); F).

Proof Let h: I — Iy C (L(G);F) be the order-isomorphism identity. Then h can

be extended to a homomorphism of Ockham algebras H : FO(I) — (L(G); F). By 2.4,

H(FO(I)) = H(OS(I)) = OS(H(I)) = OS(Iy) = (L(G); F). Hence H is an epimorphism.
We consider now

E:G— Q,

defined as follows: If z € Iy, we put k(z) = h™z). If 2 € I;, then z € Fi(zy),
with zo € fp. Then we put k(z) = f'(h7"(z0)). It is not difficult to prove that k
is an order-preserving map, and then, it can be extended to a lattice homomorphism
K : (L(G);F) — FO(I). Moreover, K is an Ockham homomorphism. Let us check that
K.H = Idroq). If 2 € I, then K.H(z) = K(h(z)) = k(h(z)) = z. Now, the only homo-
morphism extending the identity is the identity Ockham homomorphism Idpoy. Then
K.H = Idpo(y. Hence H is also a monomorphism and therefore FO(I) = (L(G); F).
0
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3 TFree P, ,-Ockham algebras over a poset with m—n
even

Now we investigate Berman varieties Py, 5. The definition of free P, ,-Ockham a,lgeBra.
FO,, »(I) over a poset I is analogous to Definition 1.1. In this case we consider the poset

m—1
(8) G=7> I,
1=0

where I, & [ if i is even and I; = I*if i is odd, and, as before, o; : I; = Liy1 is the natural
anti-isomorphism for 7 < m — 1. Let

(9) f:G— G

be the map defined as follows: if g € I; for some 0 <z < m—1, then we put f(g) = ai(g). If
g€ I, 1,theng =ap 0. oag(z) with z € I, and we put f(9) = ap_10... oap(z).
It is clear that, for zo € Iy, f(zo) € I;; 1 <4< m and f™(zo) = (o). In addition, for
z € I;, there exists zo € Ip such that fi(zo) = .

Lemma 3.1 f is an order-reversing map and verifies f™(g) = £*(g) for allg e G.

Proof Let z,y € G, z < y. Clearly, if z and y are comparable“then they lie in the
same I; (¢ > 0). If ¢ < m —1 then fis an order-reversing map being that so is ;. Let
z,y € I,_1, z < y. We may assume that m — 1 is even and n is odd. Let zo,y0 € Ip such
that y = @m—20...Q1 0 ao(yo) and £ = app20...1 0 ao(zo). Since m — 2 is odd, then
Qp_20...0Q100ag is an order isomorphism. And thus zo < yo. Then f™(yo) < f™(yo) since
n is odd. So f(y) < f(z). Analogous, if m —11s odd and n is even. This completes the
proof of the first part of the lemma. Let = € I;, then z = f'(zy) with zo € Io. Therefore

£ (z) = £7 (£ (20)) = £'(E™ (z0)) = £(f"(20)) = £"(F'(20)) = I"(2).
0
By Remark 2.2 and the preceding Lemma we can extend f to a dual homomorphism
(10) Fun : L(G) — L(G).
It is not difficult to prove the following Lemma.

Lemma 3.2 F (z) = Fi, n(2), forallz € L(G).

As a consequence we have that (L(G);Fmpn) € Pran-
Theorem 3.3 FOp.(I) = (L(G); Fmn)-

Proof Analogous to Theorem 2.6. O

The following Lemma provides some known properties of powers of sets, and can be

found in [8}.
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Lemma 3.4 Let A, B y C be posets. Then
(i) ABHCl o Bl 5 AlC]
(i) (ABHIC] 2= pAlBxC]
(ii1) (A x B)IC1 = AlC] x BICT,
(iv)

with C; posets, for all1=1,2,...,n— 1.

Corollary 3.5 Let I be a finite poset. Then
FO (1) =25 2 ]

where L; is the distributive lattice with the set of its join irreducible elements isomorphic
to I, if 1 is odd, and I* if i is even.

Proof In [8] one can see that every finite distributive lattice L is isomorphic to 2M/(1)°1
where J(L) is the set of join irreducible elements in L. On the other hand, the free

distributive lattice over a poset I is isomorphic to 227 Consequently, by Lemma 3.4, if
we put I = (G, we have the thesis. O

Corollary 3.6 Let F'O,, ,(s) be the free Ockham algebra with s generators, s a finite
positive cardinal number. Then

FO,n(s) = L(m.s),
with L(m.s) the free distributive lattice with m.s generators.

Proof Immediate from Corollary 3.5 and Theorem 3.3. O

This Corollary was proved by M. Goldberg in (7] with different techniques.

4 Free P, ,-Ockham algebras over a poset with m—n
odd

It is easy to see that P, , C Py . This fact will allow us to use some results of the
preceding sections.

Lemma 4.1 Let FO,,,(I) be the free Prn Ockham algebra over a poset I. Then

SL <2m_[j—l f’(])) = FO,, .(I)
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Proof Analogous to Lemma 2.5. O

Consider now the sets O; and O, defined as follows:

n—1 m—1
(11) 0, = Z I, O, = Z I,
i=0 =n
where I; = I, if i is even, and I; = I*, if ¢ is odd.

Let L; = L(O,) be the free distributive lattice over the poset Oy, and let B; = B(02)
be the free Boolean algebra over the poset O,. The construction of the free Boolean algebra
B(I) over a poset I is analogous to the construction of the free distributive lattice over a
poset [9], and for the finite case we have that

(12) B(I) = 22",

i.e., all functions from 2l0l to 2. In the sequel we will adopt the “coproduct convention”
developed in [1]. Let
(13) L= L1 * Bl,

where “x” is the coproduct in Dg;. Let
(14) fl : 01 — L,

be a map defined as follows: if z € O;, then z € I; for some 1 < n. Then we put
fi(z) = ai(z). Let
(15) f2 . 02 e L,

be a map defined as follows: If z € O, therefore z € [; for some n <1 < m — L. If
i < m— 1, then we put fo(z) = ai(z). If z € Ipy then z = apg0...0 an(z,) with
z, € I,. In this case we put fo(z) = Tn,, where T, is the Boolean complement of z,, in B;.
It is not difficult to prove that f; and f, are order-reversing maps. Hence, by Remark
2.2, f; and f; can be extended to dual homomorphisms

(16) fl . Ll e L
and
(17) f,: B, — L.

We note that f, preserves complementation. By Remark 2.2, f, and f; can be
extended to a dual homomorphism

(18) f;: L — L.

Note that f3|B, = f;, then f3 preserves complements in By.
If B is a Boolean algebra, denote by BS(X) the Boolean subalgebra generated by X
in B.

Lemma 4.2 f3 verifies the equations (4) for allz € L.
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Proof Let Ly = {0;,0,,0;}U {0,1}, where O; = {7 : z € 0,}, and define by induction
Ly={zAy,z€ L,yeL;;i+j=s-1}U{zVy,z€L;,y€ Lj,i+j=s—1}. Let
A= Ua>0 L,. Since SL(02 U —0_2) = B1 and SL(Ol) = Ll, then SL(01 U 02 U 0_2) =
SL(B;UL;) = L. Therefore A = L. We claim that the equations (4) are valid for all L,,
which will be readily seen by induction on s. Let z € Lo. If z € {0,1}, as m and n have
different parity, then the equations (4) are trivially verified. Let £ € O;. Then z € I;, for
0<:<n-1,and z = fi(z,), with 2o € I,. Therefore

£5(2) A5 (2) = () A (f3(20)) = £3(2) A G(E (85 (20)))) =

£5 () A (85777 (£5(20))))) = £5'(2) A £5(FF (0)).

Since f3/B; preserves complements, it follows that

£5(2) A (£ (0)) = £3(2) A B(E5 (20)) = £5(2) A (E3(20)) = £(2) A T (2) = 0.

For the other equation of (4) the proof is analogous. Let z € O,. Then z € L,
n<i:<m-—1,and z = fi""(z,), z, € I,. Therefore

£5(z) A5 (2) = £5(2) AT (557" (2a)) = £51(2) AG(E(67 77 (2))) = £5(2) A fi(70),
and since f5|B; preserves complements, then we have
£3(2) A3(T2) = £5'(2) A () = £ () A (7 (20)) = £2(2) AT} (2) = 0.

The proof is analogous for the other equation of (4). If z € O, the proof is analogous
to the preceding case. Hence the equations of (4) are verified in L. Suppose that the
equations of (4) are verified in Ly, with & < s. Let z € £,. Then we have two posibilities:
l.z=azAy,withz € L,y € L;,i+; = s— 1. By inductive hipotesis the equations of
(4) hold for z and y. Then if we suppose that n is even (m odd), we have

£5(2) ANE(2) = (@ Ay) M (2 Ay) = £5(2) A5 (y) A (£ () V £57 (1)) =

5 (2) AMZ (W) A (B (2) V) = () A5 (y) A (B (2) A () = 0.

The proof is analogous in the case that n is odd.
2.z=zVy,withz € L,y € L;,i+j =5~ 1. Analogous to item 1. 0O

By the preceding Lemma we can conclude that (L;f5) € P
Lemma 4.3 Iy is a generating set of (L;f3) as Ockham algebra.

Proof Let z € O; U0,. Then ¢ = f3(z0) with z¢ € I,. Therefore O, U0, C OS(1y). Let

z € O,. Then z = f¥(z,), with 0 < k <m —n—1and z, € I,. Moreover z, = fI(zo),
with zg € Iy. Since f3|B; preserves complements, it follows that

v =T (2,) = £5(z3) = £5(T(z0)) = £4(E] (20).

Consequentely O, C OS(lp). Therefore L = SL(O; U0, U0,) C 0OS(l). Hence
L=0S(L). 0O
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Theorem 4.4
(L; f3) = FOn,.(I)

Proof Let a: I, — I, be the identity isomorphism. Let f be the dual homomorphism
corresponding to FOm»(I) and let

(19) b0 = U £

be defined as follows: Let z € I;, = = fi(zo) with 2o € Ip. Then we put hy(z) = f(a(z0))-
b, can be extended to a homomorphism of distributive lattices

(20) Hy : Ly — FOma(D).
Let »
(21) hy: 02— U £1(1)

be defined as follows: If z € I;, then z = fi(zo) with zo € Jo. Therefore we put hy(z) =
fi(a(zo))- Then hy can be extended to a homomorphism of Boolean algebras

(22) H, : By — B(FOna(I)) C FOma(l).
' Hence H,, H, can be extended to a homomorphism of distributive lattices
(23) H:L — FOn.(I).
We claim that H is onto. In fact, it is easy to see that
m—1
U (1) € H(L).
=1

By the definition of hs, we also have that

m—1 i
U 7 € ha(Ba),
moTreover , . .
U rm=UTFD
Hence
2m-n-1
U £ cHL).
=0
Consequently

2m—n—1

FOpp = SL ( U f"(f)) c H(L)
1=0
Let k : I — I, be the identity. k can be extended to an Ockham homomorphism
K:FO,.(I)— L.

By lemma 4.3, K is an epimorphism, since 0S(Iy) = L. As in Theorem 2.6, it can be
proved that H = K~'. Hence K is an isomorphism. O
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Theorem 4.5 Let I be a finite poset. Then

N
FOmyn ~ H Z[Z[M]],
=1

with N = ’2[227-1 0| and M = T 1L

Proof By the preceding theorem

m-—1
B, =B (Z Ii)
and

n—1 [2[ |n=_0l Ii]:l
L,>L (Z Ii> > 2 :
1=0
therefore by [8]
L = Bl * Ll = (Ll)[‘](Bl)l.

Since J(B,) is an antichain and

3

J(By)| = lz[ZI’;j,‘ )

the stated is clear. O

Corollary 4.6 Let FO,,,.(r) be the free Ockham algebra with r generators, r a finite
positive cardinal number. Then

go(m—n).r

FOpu(r) = I:Il L(r.n).

The preceding Corollary was proved by M. Goldberg in [7] for the particular case
n=m-—1.

5 A Construction of free M S,—Algebras over a poset

In this section we deal with M S, -algebras.

Given an M S,-algebra D and a subset X in D, S(X) denote the M.S,-subalgebra
generated by X. The definition of free M S, —algebra F,,(I) over a poset I, is analogous to
Definition 1.1.

Let I be a poset and I* its order dual. Let

2n-1

(24) G=T+ Y I,

i=1
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where I, 2 I if i is even, I; = I* if i is odd, 0 <i<2n—1,T, 2 I, x 2 with 2 the
2-element chain, and Y is the cardinal sum of posets. Let a; : I; — I;;4; be the natural
anti-isomorphism, and p : Iy — Io, the projection p((go,u)) = go, 9o € Io, u € 2. Let

(25) f:G—G

be the map defined as follows: If g € To then g = (go, u), then f(g) = ao(p(g)) = aol(go)- If
gel;, 1 <i<2n-2,1(g) = ailg) I g € Jon_y then g = can—2(. .. a1 (ao(p((g0,%)))) - - ),
then we put £(g) = (go,1).

It is clear that, for z € Ip, fi(z) € [;; 1 <1 <2n -1 and f?"(z) > z. In addition, for
y € I;, there exists (y0,0) € T, x 0 such that y = £*((y0,0)). If y = (y0,1) € Lo X 1, then

Lemma 5.1 f is an order-reversing map.

Proof Let z,y € G, z < y. It is clear that if z and y are comparable then they lie in
the same I; (i > 1) or z,y € Io. Then we have three cases:

1. f1 <i < 2n — 2 then f(z) = a;(z) > eu(y) = £(y)

2. If7 =0 then z = (21,22) <y = (y1,92). Hence f(z) = ao(zo) > ao(yo) = £(y)-

3 Ifi = 2n—1then z = @g,_20...0a10a0(T0,0) and y = agn—20... 01 oag(yo,0). Since
a; is an order-reversing map, then (zo,0) > (y0,0). Hence f(z) = (z0,1) > (y0,1) = f(y)-
ad

Lemma 5.2 f™(g)>g foralgeG.

Proof Let g € Ip. Then by the definition of f we have that f™(g) > g. Let g € I;, with
;> 1. Then g = f¥((z,0)) with (z,0) € Io. Then

() = 71 ((2,0) = fI(2,0)) = f(z,1) = T f((=1)) =

_ Fapop((z,1)) = fiao o p((,0)) = f((2,0) = =
O

By 2.2 and 5.1, f can be extended to a dual homomorphism F : L(G) — L(G). Then
(L(G); F) is an Ockham algebra.

Lemma 5.3 F?*(z) > =z for all z € (L(G); F).

Proof This follows immediately on noting that the set {z € L(G) : F*"(z) > z} is a
sublattice of L(G) containing G. So F**(z) > z for all z € L(G). O

By the preceding Lemma, (L(G); F) is an M S,-algebra.
The following property of (L(G); F) will be used to establish an isomorphism between
(L(G); F) and F,(I).

Lemma 5.4 (L(G);F) = S(Io x {0}).
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Proof Let z € I; and i > 1, then z = f((z,0)). If (z,1) € I, x {1} then F**((z,0)) =
(z,1) with (z,0) € Io x {0} . Consequently = € S(I, x {0})) whenever z € G. Since L(G)
is free over G, then (L(G); F) = SL(G) C S(Ip x {0})). Hence (L(G); F) = S(I, x {0})).
8]

Let f be the dual homomorphism corresponding to Fy(I), the free M S,-algebra over
I

Lemma 5.5 Let Q = Ui»o fi(I). Then SL(Q) = F,(I).

Proof The set {z € SL(Q): f(z) € SL(Q)} is a sublattice of SL(Q) containing Q. So
SL(Q) is closed under f, and therefore, SL(Q) is an M S,-subalgebra of F,(I) containing
I. Thus SL(Q) = F.(I). O

Theorem 5.6 F,(I) = (L(G);F).

Proof Let h: I — Iy x {0} C (L(G);F) be the natural order-isomorphism. Then A

can be extended to a homomorphism of M S, algebras H : FO(I) — (L(G); F). By 5.4,

H(F,(I)) = H(S(I)) = S(H(I)) = S(Io x {0}) = (L(G); F). Hence H is an epimorphism.
We consider now

k:G— Q,

defined as follows: If z € Iy x {0}, we put k(z) = A7 (z). fz € 1,1 <i<2n—1,
then z = F*((x0,0)), with zo € Io. Then k(z) = f'(h"!(z0)). If z € Ip x {1}, then ¢ =
F?"((20,0)). In this case k(z) = f'(h™!(z0)). k is order-preserving. Indeed, for z, y € G,
suppose z < y. Let us consider the case z = (0,0), y = (yo,1) € Iy x {1}, zo < yo, the
other cases being easy to check. Thus, k(z) = h~'((20,0)), k(y) = f*"(h"*((y0,0))). From
(20,0) < (y0,0) we have h™'((z0,0)) < A7'((y0,0)). and since f>* is a closure operator,
A~ ((30,0)) < f*"(h7*((30,0))). Therefore k(z) < k(y). Let K : (L(G),F) — FO(I) be
the extension of k. It is easy to check that K.H is the identity over I, and then H.K is
the identity map. Therefore H is an isomorphism. O

Corollary 5.7 Let I be a finite poset. Then

2n-—-1

Fu1) = o[

’

where L; 1s the distributive lattice with the set of its join irreducible elements isomorphic
to I, if 1 is even, and I* if 1 is odd.

Proof It is known that every finite distributive lattice L is isomorphic to 2M/(£)°] where
J(L) is the set of join irreducible elements in L, and that the free distributive lattice over

2]

a poset I is isomorphic to 2 . Consequently, if we put I = G, by Lemma 3.4

o[+ i ]] [znoxz,xz[z:?:;l ]] o s
Fn(1)22[ =2 gz[l’o "Hm L']_

a

Let r be a finite positive cardinal number, and F,(r) the free MS,-algebra with r
generators.
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Corollary 5.8
F (‘r) o~ 2[31')(27'(2"—1)].

Proof Here, the poset of free generators is an antichain; then, by Corollary 5.7 and
Lemma 3.4, the result is immediate. O

Observe that
TI(F(r)) = 37 x 27@"71),

where II(F,(r)) is the set of join irreducible elements of Fo.(r).
Corollary 5.9 Let F(r) the free M S-algebra with r generators. Then
F(r) = 272

Proof Immediate from Corollary 5.8. O
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