ON A FREE BOUNDARY PROBLEM FOR

NONCATALYTIC GAS-SOLID REACTIONS
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I. INTRODUCTION.

In this talk, which show some results obtained jointly with L.T. Villa, we shall analyze a
mathematical model of an isothermal noncatalytic diffusion-reaction process of a gas A with a solid

slab S. The solid has a very low permeability and semi-thickness R along the gas diffusion direction.

Various devices and models, either phenomenological or structural, have been proposed and
analyzed with the purpose of interpreting gas-solid reaction process [BeLeWa, Bi, CaCul, CaCu2,
CoRi2, Do, FaPrRi, FrBi, IsWe, LeCaCu, Le, RaDo, SaHu, SoSz1, SoSz2, St, SzEvSo, SzEv1, SzEv2,
TaVil, TaVi2, ViQul, ViQu2, We]. We assume the solid is chemically attacked from the surface y = R
with a quick and irreversible reaction of order v >0 with respect to the gas A and zero order with
respect to the solid S. We also assume that the solid has uniform and constant composition. As a result
of the chemical reaction an inert layer is formed which is permeable to the gas and the process will
exhibit a free boundary (the reaction front) as described in [We]. The corresponding mathematical
scheme (Wen’s model) is formulated as follows : Find the gas concentration Cp =Cply,7) and the
free boundary y = o(7) such that
s _ | 8’Cy
ot T T gy?
CA(R,7) = Vo(r), To<T <711,

€

y o)<y <R, o< <1y,

9C, v
(1) D '“a‘y‘.“(‘f(T),T) =ksa CSo Cpla(r),m) , 1o <7 <7y,
- D ——-—ayA(O'(T),T) = a CSo a(r) , To< T <1y,

0-(7'0) = R‘O S R 3

CA(Y1T0):<I)(y) 3 ROSYSR )

where a, CS , D, kg and ¢ are positive constants denoting the stoichiometric coefficient, the reactant
0
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solid concentration, the effective gas diffusion coefficient in the porous layer, the chemical reaction
velocity, and the porosity of the inert layer, respectively. We are assuming that at the time 7, a
porous layer of nonzero thickness R — R is already formed and this explains the initial conditions
(15), (1g)- The gas concentration is prescribed at the outer surface by condition (1y). On the free
boundary y=o(r) (13) express the equality of the rate of mass consumption of the component A in
the reaction (r.h.s.) and the incoming mass flux of the same component (Lh.s.). Equation (1) states

the same balance in terms of the free boundary velocity, since —aCS o(7) is again the rate of mass
0

consumption of the gas.

We remark that in general, in gas-solid system for reaction-diffusion process, the gas surface
concentration CA(U(T), 7) is supposed to be much smaller than Cg the concentration of the reactant
solid. So that, in the vight hand side of the fourth condition in (1), the term aCA(U(T),T) &(t) has
been considered to be negligible with respect to aCSOd(T). The preceding consideration does not
apply, in general, to processes such as sorption of swelling solvents in polymers and this fact leads to a

principal difference between the latter problem and one we are concerned with (Wen’s model).

If the following dimensionless variables and parameters are introduced :

R - , R — ofr
h= B s o s =0 B
2) T = Cy(ry — 7¢) » ulxt) =04 CA()’,T) y vo(t) = Cy VD(TO +CL2 )
s n _Rx . R — Ry
W(x)_CS(D(R C}), b=C g ,
with v
v e Rkg C e C, ¢
Cl:-zq/s—l ’ C3:¢8‘ » e D = = aé
o Ay So
ks $2 CY K2 (a Cq )?”
N 4 4 0
(3) Co=——95°1T = 51 )
R «a D e
RksaCq C{1
¢ = 13 9 (Thiele reaction modulus)

where G, denotes a reference concentration of the gas, then problem (1) is transformed into the
0

following free boundary problem [Ta] :
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uxx — uy =0 inDT ,

u(0,t) = vo(t) , 0 <t < T,

(4) ug(s(t),t) = — u¥(s(t),t) , 0 <t < T ,
ux(s(t),t) = — s(t) , 0<t<T,
s(0) =b ,
u(x,0) = ¥(x) , 0<x<b ,
where
(5) Dp={(xt)/0<x<s(t),0 <t <T}.

From now on we shall consider b =0 and v4(t)=v, >0 and more general free boundary
conditions on x =s(t) are introduced. Then, the mathematical formulation of the problem consists in
finding the functions u=u(x,t) and x =s(t) defined in Drpoand (0,T) respectively, such that they

satisfy the following conditions

Duxy —u =0 in D,

) u(0,t) =vy >0 , 0<t<T

(6) ii) s{0) = 0

iv) ux(s(t),t) = gluls(i),t)) , 0 <t <T,
VS = Ruls(t),t) , 0<tL<T

where f and g are real functions which satisfy
| Hi>0 , >0 RHF and () = 0.
(7a)
ig<0,g <0 in RT and g0) =0 .

Functions { and g may be defined in R but we are only interested in positive argaments of

them as it will be scen below. Morcover, we shall assune that f and g are Lipschitz functions in [—)” Vi

with constants f; and g, respectively, i.e.
D36>0/ [ivy) =) | < G fve — v LYy, v, € B2 vy,
(7b)
Vi

i) 3gy>0/glvy) — gvi) | < gyl ve — v, Vv, v, € {Tv vl -

We remark here that functions [ and g , defiued by

(W) g) = —x" (= ~fx)) (x20,v>0)
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satisfy conditions (7ai,ii). A different choice of g in (6iv) is considered in [Do] ; It is a Langmuir type

condition : the chemical reaction rate is given by

n
- _ _ax - — = .
(L) g(x) = A ( f(x) ) ,a,b,c =const. >0,n>0

which also verifies conditions (7aii) for all constants a, b, ¢, n > 0 . We remark here that the (L)

condition reduces to a (W) condition when ¢ = 0.

In §II. we study an auxiliary moving boundary problem which will be used in $§III. We
generalize the results obtained in [FaPrl, FaPr2] changing the nonlinear condition on the fixed face

x = 0 by other one on the moving boundary x = s(t) , given by (6iv).

In §III. we study the Wen-Langmuir free boundary model for noncatalytic gas-solid reactions
that consists in finding T >0, x =s(t) and u = u(x,t) such that they satisfy conditions (6). We prove
that there exists a unique solution for a sufficiently small T > 0 . Moreover, the solution is given
through the unique fixed point, in an adequate Banach space, of the following contraction operator F, :

For s = s(t) € C°([0,T]) we define

(8) Fafs) (1) = | fv6(r) ) dir
0

where v is the solution of problem (6i-iv).

Here we exploit some techniques recently used in [CoRil, Fa, FaMePr, Pr] for sorption of
swelling solvents in polymers. Another approach is to use the general theory for free boundary for the
heat equation [Co, FaPr3]. In [BoTaTwVil], the condition u(0,t) =vg(t) , 0 <t <'T is considered by
using a method developed in {BoTw].

Remark 1. Taking into account the transforination

s(t)
(9) Vi t) = j W6, dé

the problem (4), with conditions uy(s(t),t) = g(u(s(t),t)) and §(t) = K(u(s(t),t)), 0 <t <T, for the
triple (v,s,T) becomes :

(a) v — vxx = a(8) in Dy,

(b) vx(0,t) = — vo(t), 0 <t < T, (c) s(0)=b,b>0,

(10) (d) v(s(t),t) =0, (e) 8(t) =f{— vx(s(t), t)),0<t <T,

b
0 v 0= [¥(©dg 0Sx<b,

X
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where

(11) ) = g(fTE) + 5 £71().

Such a problem is of type of the free boundary problems analysed in [Co, FaPr3]. Moreover, in
[BoTaTwVi], the same problem is studied through a system of two integral equations for the unknown

functions ®, and &, defined by

(12) B,(t) = u(s(t), t), %@y:iﬂ“?%n],0<t<T.

The free boundary is then given by the expression

t
(13) qo:b+JK@h»M.
0

Now, we show the approach given in [TaVil] by using a result obtained in [CoRil].

II. A HEAT CONDUCTION PROBLEM WITH A NONLINEAR CONDITION ON THE
MOVING BOUNDARY.

For each Lipschitz continuous function s = s(t), defined in [0,T] with s(0) = b > 0, we consider
the following moving boundary problem : Find the function v = v(x,t) such that it satisfies

(14) a) (61, ii, iv) , b) v(x,0) = ¥(x) , 0 <x <b=s(0).

For a solution of this problem we mean a function v = v(x,t) , continuous in BT with the

derivatives vxx and v, continuous in D that satisfies conditions (1) for a given T > 0.

Theorem 1 . Under the hypotheses

IL>0/]st) —s(r) | <L|t—r], Vtrel0T],
(151)

0 <ap<s(t) <A, , VteloT],

¥ e C°0b]) , W(0) = vo(0) , ¥ >0 in [0,b] ,
(15ii)

¥ e C%b —¢,b)) fora >0 ,with ¥'(b) <0,
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(15iii) g =g(v) is a strictly decreasing function in RT which verifies (7bii) and g(0)=0,

vo € C°([0,T]) , vo >0 in [0,T] ,
(151v) |

Mty g o 2 Mo v

there exists a unique solution of the problem

(16) a) (61, iv) , (14b) , b) v(0,t) = vo(t) , 0<t<T.
Proof. We follow a classical fixed point argument.

a) First, we consider an a priori estimate for the solution v of problem (16) :

(17) 0 < vi(xt) < tMEa)EO,T] vo(t) in D

We obtain the right hand side inequality of (17) because of the maximum principle and g < 0.
We prove v >0 in BT by absurd. Let Ty >0 be the first time such that v(s(Ty),Tg) = 0. Therefore,

we have vx(s(T;),Tg)<0 by the maximum principle which is a contradiction because
vx(s(Tg), To) = &(v(s(To) To ))=g(0)=0.

b) Uniqueness. It follows from the maximum principle and from (15iii).

¢) Existence. Following the methods given in [FaPrl], and under the hypotheses (15i-iv) we

have that for each given function h=h(t) € C°([0,T]) with h >0 and g(h(0)) = ¥/(b) , there exists a

unique solution v of the associate moving boundary problem

(61, 1b, 3b) , vx(s(t), t) = g(h(t)) = H(t) , 0 <t <T.

This solution v is given by the following expression

b t
(18) v(x,t) :J U(€) K(xt;€,0) d& + J é(t) Kx(x,t;0,7) dr +
0 0

t
+ j 6a(r) K(xtis(r),r) dr
0

where

(19) K(x,b; €,7) = ——bee ex B CSd ) G
s 03 Gy —2‘]”—“_—1_) P )
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is the fundamental solution of the heat equation, and ¢, and ¢, satisfy the following system of two

second kind Volterra integral equations

t
i) ¢1(t)=J Kia(t,r) do(r) dr + fi(t)
0

(20) . .
)60 = [ Kalhn) 60) dr + [ Knltr) dr) dr + 5,0
0 0
where b
D60 = - 2vo(t) + 2 [ W) KO0 de
bO
i) 60 =280 -2 [ %O K560 o |
0
(21) i) Kyt 7) = 2 K(0,t; s(r),7) iv) Kyt 7) = — 2 Kygx(s(t),t;0,7) ,
v)  Ky(t, 1) = — 2 Kx(s(t),t;s(7),7)

Thus, for each h € C°([0,T]) we can define h = h(t) = v(s(t),t) € C°((0,T]) [FaPr2, TaVil]
and therefore we have the operator F, : C°([0,T]— C°([0,T]) , defined in this way
(22) Fi(h)(t) = h(t) , te[0].

Then, the fixed points of F, will be solutions of problem (16). We can prove that F, is a
contraction operator from a classical argument, that is, there exists an increasing continuous function
Q =Q(T) of the variable T, vanishing for T =0 and depending continuously upon the parameters a, ,
Ay, L, gy, such that

(23) by —hyfly < Q(T) [[hy — by [, , Vte[oT],

where || f ||, is defined by

(24) 11l :7ng[0,t] RICONDE

Therefore, there exists Ty = Ty( ag, Ay, L,go) >0 such that Q(T) < Q(Ty) <1 for all T < T,
and then F) is a contraction operator on C%([0,T]) . Moreover, Q(T) does not depend upon the data
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¥ =W¥(x) and vo=v,y(t), so that the same method can be repeated without any change and

consequently, the solution of problem (16) exists and is unique for any time T >0.

We shall consider now the case b = 0 , i.e. for a given s € C°([0,T]))NC'((0,T]) with s(0)= 0
and s(t)>K;t (K;>0)in [0,T] we pose the moving boundary problem
(25) (64, ii, iv) with vy = const. > 0

and we obtain the following a priori estimates.

Lemma 2. a) If v is a solution of (25), then v verifies :

(26) ) 0<v(x,t)<vo in ]_DT , i) g(ve) Svx(x,£) <0 in BT

b) If the moving boundary s also satisfies the condition

_VO

[, S >0 ,
2 K, g(vo)

then v verifies

(28) 1) 0<P<v(xt)<vo in Dy, i) g(vo) Svx(xt)< g(‘—’29)<0 in Dy

Lemma 3. If g € C°(RT), s € C°([0,T]) with s(0) = 0 and v, € C°([0,T]) with v(>0
in [0,T] then there exists t/ € (0,T) such that the equation

(29) fy,t)=y — vo(t) — g(y) s(t) =0 , y>0, t€(0,T)

has at least one solution y for each t € (0,t') . Moreover, we can define yg=yo(t)>0 in (0,t") such
that

(30) fyo(t),t) =0 in (0,t') , lim yo(t) = vo(0) >0 .
t—0

Theorem 4. If g verifies (7aii) and s € C°([0,T]) N CH((0,T]) with s(0)=0 and s(t) 2Kt
(K, >0) in [0,T], then there exists a unique solution of the moving boundary problem (25) for a
suitably small T >0.

Proof. The argument for uniqueness in Theorem 1 still holds. To prove the existence of a

solution of problem (25) we introduce a decreasing sequence (tp) such that
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(31) T>t'>t >t,>..... >tn>...., lim th =0,
where t' is defined in Lemma 3 (in the present case we have vy(t)=v,>0 in (0, T] ). We define the
sequence (vp) such that vy =vp(x,t) is the solution of the following problem (n=1,2,...):
Vo, ~ Vg =0 in Dn,T = {(x,t) /[ 0<x<s(t), ty <t<T} ,
vn(0,8) = vy , th <t<T )

(32) Vg (5(t),t) = g(va(s(1),)) , ta<i<T
vp(x,tp) = ¥p(x) 0<x<s(ty)
where
(33) Un(x) = vo + g(¥n(s(tn))) x

which is justified by Lemma 3 choosing Yn(s(tn)) =yo(tn) >0 for each n that verifies

Am _ ¥y(s(tn)) =vp > 0.

We define z, = Vnyy Which satisfies the following problem

Zn, — Zngy = 0 in Dn,T )
zn(0,t) =0 |, tp <t<T |,
(34) zn(X,tp) = \Il{{(x) =0, 0<x<s(ty)
Zny (s(t)t) + 3(t) zn(s(t),t) = g'(v(t)) [3(t) g(v(t) + za(s(t),t) ] ,
t
7(t) :J (3(7) g(v(7)) + 2n(s(7), 7)1 dr + Wp(s(ty))
tn

From [CoRil] we can see that there exists a Ty >0 sufficiently small so that

(35) fen llp p < sup 5(t) . sup | 8(v) | < const. ,
n -1
t € [tn ,Tl) vV € (!29 ’VO)
where we note with || - (| the norm in the Banach space C%D) . If we define v, = Vn(x,t) in D, T
(T<T,) by
¢ X ¢
(36) Vn(x,t) =vg + x [g(¥n(s(tn))) + J zny (0,7) dr] + J d¢ J zn(y,t) dy
tn 0 0

we obtain the following properties :
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1) Vngy(x,t) = Vnt(x,t) = zp(x,t) in Dn,T ;

i) ¥yp(0,t) =vy , 0<t<T;

iii) ¥n(x,tn) = vo + x g(¥n(s(tn))) = Tn(x) , 0 < x < sltn) ;
s(t)

zny(0,7) dr + J zn(x,t) dx =

tn 0

—

iv) an(s(t), t) = g(‘I’n(S(tn))) +

t
= (¥als(t)) + [ £0(7) 3(r) dr =g(x() L 0 < <T,
0

because, for t € (t, ,T], we have

0=JJ (anx_zﬂt)dXdT:J zp dx + zp, d7 =

Dp,t dDp b
t s(t) t
= J [ zn(s(7),7) s(7) + znx(s(r),r)] dr — J zn(x,t) dx — J znx(O,r) dr ;
tn 0 tn

v) % In(s(t),t) = 8(t) gly(t)) + zn(s(t),t)=%(t) , t€(ty ,T] , and by integration, we obtain
Vn(s(t),t) =(t) for te(ty ,T].

Therefore, we deduce ¥y =vp because of the uniqueness of the solution of (32) and then we

obtain that

37 v < const. , ||v < const. , Vn.
(37) I n”“DnT < {l vy “DnT <

k) 3

Let v=v(x,t) be the limit function of v, when n— oo . Then v verifies (25i,ii) ; hence it
remains to verify the condition (25iii) on the moving boundary x =s(t). Let t € (0, T) and x € (0,s(t))

be fixed and consider
v(s(t),8) = v(x,t) = [v(s(t),t) = va(s(1),t) ] + [va(s(t),t) — valx,t) ] +
+ [l ) = viut)] = [v(s(t),t) = va(s(1), 1) ] + [vn(x,t) = v(x,0) ] +
+ g(va(s(t),t)) (s(1) = %) = § vig (%, 1) (s(t) — x)?
for some % € (x,s(t)), so we deduce that
(38) | v(s(e),£) = v(x,t) — g(va(s(t)t) (s(t) — x) | <

< 21| v — vy |l + const. (s(t) — x)?.

Therefore, passing to the limit n — co and then x — s(t) , we obtain condition (25iii), because of (37).
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II. THE WEN - LANGMUIR - LIKE FREE BOUNDARY MODEL.

The Wen-Langmuir free boundary model for noncatalytic gas-solid reactions consists in finding
(in dimensionless variables) a time T >0 , the free boundary s=s(t) € C°([0,T]) N C((0,T]) with
$(0) =0 and the concentration u=1u(x,t)€ C(]—)T) ncx 1(DT) with uy continuous on x =s(t),
such that they satisfy conditions (6), where the functions f and g verify (7). Owing to f' >0 and the a
priori estimate (28) we have

(39) 5(t) > f(v—2°) >0, Vte (0t

and therefore we obtain s(t) > 0 for all t & (0,t,] .

From now on we suppose that T is a suitably small time; in particular, we have

(40) T < Min (ty, t/, T))

where tq, t/, and T, are given by (27), Lemma 3 and (35) respectively. We consider the following
auxiliary moving boundary problem : Given r=1(t)€ C°([0,T}))nC*((0,T]) with r(0)=0 and
0 <K, <i(t) <K, in (0,T] we define v = v(x,t) as the unique solution of the problem
vi —Vvxx =0 in Dr,T:{(x,t)/0<x<r(t),0<t<T} ,
(41) v(0,t) = vy >0, 0<t<T,
v (r(t), t) = g(v(r(t),t)) L 0<t<T.

Function v satisfies in Br T the estimates (27, 28) , i.e.
v
(42) 5 S v(xt) <vp [vx(x,t) | £ G = sup lg(v) | (= —g(ve)) -
Vo
y€ [_2‘ s Vol

In a similar way to the proof of the theorem 4 and taking into account [CoRil], we have that
vxx is bounded in Dr,T by a constant z, which depends upon K, and G for a T > 0 small enough.
Let B be the set
(43) B = {seC’(0,THNC((0,T]) / s(0)=0,0<K, <i(t) <K,
| 8(t2) = 8(02) | < Kg [ tp—ty] for 0<ty, t,<T |

which is a closed subset of C°([0,T]) and the coefficients K, , K, and K satisfy the conditions

0 <K, < Min fly) , 0 < Max fly) <K, ,
y € [ ,vq) € [ ,vol
(44) 5 1Yo Yy 5 Vo

K3 > £,[G K, + 20(G,K,) | -
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In our case, we can choose

(44 bis) Ky =1(3), Ko =1(vo) , K3 = G Ky + 2(G, K3) ) -

We define the operator
(45) F;:B—B [/ Fy(r) =% ,

where T is given by

t
(46) P(t) = J f(v(r(r), 7)) dr , t € [0,T] ,
0

and v =v(x,t) is the unique solution of (41) which satisfies the following estimates

(47) vjoSVSVOa|VxlSG,|Vxx|SZ0inﬁr’T-
We have T € B because
E(tg) — F(ty) | < fo | v(s(ta), ta) — v(s(ty),ty) | <
(48) < fo [l v(s(ta)sty) — vis(ty),ta) |+ | v(s(ty),ta) — v(s(ty),t) | ] <

< £y (GKy4z9) Jty =ty < Ky [ty =t ], for ty,t, € (0,7T].

Now we define the distance between two functions in B as

(49) d(SZ 781) = “ 89 — 8 “ CO([O,T)]

and we can prove [TaVil].

Theorem 5. The mapping F, of B into itself is a contraction in the metric (49) for a suitably

small T > 0. Moreover, the free boundary problem () admits a unique solution.
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