THE PRESCRIBED MEAN CURVATURE EQUATION WITH CONSTANT BOUNDARY VALUES

E. LAMI DOZO - M. C. MARIANI

1. Introduction

We consider the Dirichlet problem with constant boundary value $c \in \mathbb{R}^3$ in the unit disc $B = \{(u,v) \in \mathbb{R}^2; u^2 + v^2 < 1\}$ for a vector function $X : \overline{B} \to \mathbb{R}^3$ which satisfies the equation of prescribed mean curvature

$$ext{(Dir)} \; egin{cases} \Delta X = 2H(X)X_u \wedge X_v & ext{ in } B \ X = c & ext{ on } \partial B \end{cases}$$

where $X_u = \frac{\partial X}{\partial u}$, $X_v = \frac{\partial X}{\partial v}$, "\lambda" denotes the exterior product in \mathbb{R}^3 and $H: \mathbb{R}^3 \to \mathbb{R}$ is a given continuous function.

It is known that for $H=H_0\in I\!\!R$, the only weak solution to (Dir) is c.[6]

For variable H and fixed $c \neq 0$ in \mathbb{R}^3 , we prove first that there is a class of functions H such that c is still the only weak solution to (Dir). Then, for another class, that there are at least two solutions.

2. Notations

We denote $W^{1,p}(B, \mathbb{R}^3)$ the usual Sobolev spaces [1] and $H^1(B, \mathbb{R}^3) = W^{1,2}(B, \mathbb{R}^3)$. For $X \in H^1(B, \mathbb{R}^3)$, $||X||_{L^2(\partial B, \mathbb{R}^3)} = \left(\int_{\partial B} |\operatorname{Tr} X|^2\right)^{\frac{1}{2}}$ where $\operatorname{Tr}: H^1(B, \mathbb{R}^3) \to L^2(\partial B, \mathbb{R}^3)$ is the usual trace operator [1] and for $Y \in L^\infty(U, \mathbb{R}^n)$ we denote

$$||Y||_{\infty} = \operatorname*{ess\ sup}_{w \in U} |Y(w)|.$$

When H is bounded we call $X \in H^1(B, {I\!\!R}^3)$ a weak solution of (Dir) if for every $\varphi \in C^1_0(B, {I\!\!R}^3)$

$$egin{cases} \int_{B} \left(
abla X m{\cdot}
abla arphi + 2H(X) X_u \wedge X_v m{\cdot} arphi
ight) = 0 \ X \in c + H^1_0(B, I\!\!R^3) \end{cases}$$

where $H_0^1(B, I\!\!R^3) = \text{adh } H^1C_0^1(B, I\!\!R^3)$

We will obtain weak solutions as critical points of $D_H(X) = D(X) + 2V(X)$ with $D(X) = \frac{1}{2} \int_B |\nabla X|^2$ the Dirichlet integral and $V(X) = \frac{1}{3} \int_B Q(X) \cdot X_u \wedge X_v$ the Hildebrandt volume[3].

Finally, we denote

$$dD_H(X)(\varphi) = \lim_{t \to 0} \left[\frac{D_H(X + t\varphi) - D_H(X)}{t} \right]$$

wherever this limit exists (resp. $dV(X)(\varphi)$).

3. A uniqueness type theorem

Theorem 1: Consider $H: \mathbb{R}^3 \to \mathbb{R}$ continuous and bounded such that the associated vector field Q satisfies

$$(1) \quad Q \in L^{\infty}(I\!\!R^3, I\!\!R^3) \ , \ \frac{\partial Q_i}{\partial \xi_i} \in L^{\infty}(I\!\!R^3) \ \text{for} \ i \neq j.$$

If $c \in IR^3$ verifies

$$(2)\quad \sup_{\xi\in\,I\!\!R^{\,3}}|H(\xi)(\xi-c)|<1$$

Then the only weak solution of (Dir) in $W^{1,\infty}(B; I\!\!R^3)$ is c.

Proof: (1) ensures that D_H is well defined in $W^{1,\infty}(B, \mathbb{R}^3)$ and that

$$dV(X)(arphi) = 3\int_B H(X) X_u \wedge X_v \cdot arphi$$

for $\varphi \in C^1_0(B, \mathbb{R}^3)$. As $H(X) \in L^{\infty}(B)$ and $X_u \wedge X_v \in L^{\infty}(B; \mathbb{R}^3)$, this equality holds for $\varphi \in H^1_0(B; \mathbb{R}^3)$, so $dD_H(X)(X-c) = 0$. But

$$egin{align} dD_H(X)(X-c) &= \int_B |
abla X|^2 + 2H(X)X_u \wedge X_v \cdot (X-c) \geq 0 \ &\geq 2D(X)(1-\|H(X)(X-c)\|_\infty) \end{split}$$

So D(X)=0 and X=c on ∂B . Hence X=c on B.

4. Nonuniqueness in the Dirichlet problem with constant boundary values

We will give c's en \mathbb{R}^3 and H's in $C^1(\mathbb{R}^3)$ such that (Dir) has at least two weak solutions. For this purpose we will use the following lemma and proposition.

Lemma 1: Let $H \in C^1(\mathbb{R}^3) \cap W^{1,\infty}(\mathbb{R}^3)$. If the function Q associated to H satisfies (1), then given $X_0 \in H^1(B,\mathbb{R}^3)$ such that $H(X_0) = 0$ and $\nabla H(X_0) = 0$, we have that $dV(X_0)(\varphi) = 0$ and $d^2V(X_0)(\varphi,\psi) = 0$ for $\varphi,\psi \in C_0^\infty(B,\mathbb{R}^3)$.

Proof: $dV(X_0)(\varphi) = 0$ holds trivially. The directional derivative of $dD_H(\cdot)(\varphi)$ at X in the direction Ψ is given by

$$d^2V(X)(arphi,\psi) = \int_B igl(
abla H(X)\cdot\psiigr)X_u\wedge X_v\cdotarphi + \int_B igl(
abla H(X)\cdot X_vigr)\psi_u\wedgearphi\cdot X \\ + \int_B igl(
abla H(X)\cdot X_uigr)arphi\wedge\psi_v\cdot X + \int_B H(X)(\psi_u\wedgearphi_v+arphi_u\wedge\psi_v)\cdot X$$

From $H(X_0) = 0$, $\nabla H(X_0) = 0$ in B, we have that $d^2V(X_0)(\varphi, \psi) = 0$ and the proof is complete.

For $c \in I\!\!R^3, \; H \in C^1(I\!\!R^3)$ with $0 < H_0 = \|H\|_\infty < \infty$ and k > 0 in $I\!\!R$, we define

$$M_k = \left\{ X \in c + H^1_0(B, I\!\!R^3); \ \|X - c\|_{\infty} \le \frac{1}{H_0}, \ \|\nabla(X - c)\|_{\infty} \le k
ight\}$$

and denote ρ the slope of D_H in M_k , i.e.

$$\rho(X) = \sup_{Y \in M_k} dD_H(X)(X - Y).$$
 [5]

Proposition 1: Any $X \in M_k$ with slope $\rho(X) = 0$ is a weak solution of (Dir).

Proof: If $\rho(X) = 0$, it is known that $dD_H(X)(X - c) < 0$ or X is a weak solution of (Dir) (Lemma 1 [4]). But

$$dD_H(X)(X-c) \geq \int_B \left[|
abla X|^2 - 2H_0|X-c||X_u \wedge X_v|
ight] \geq 0.$$

Now, we build c's, H's and k's such that c is a local minimum of D_H in $c+H_0^1(B,\mathbb{R}^3)$ and $D_H(\overline{X}) < D_H(c)$ for some $\overline{X} \in M_k$. Hence by Theorem 3 in [4], there exist $X \in M_k$, $X \neq c$, with slope $\rho(X) = 0$, so X is another weak solution by Proposition 1.

Let c=(0,a,0), with $a\in I\!\!R$ and let $H\in C^1(I\!\!R^3)$ be such that

$$H(\xi) = \left\{ egin{aligned} H_0 & & ext{if $\xi_1^2 + \xi_2^2 \leq R^2$ and $arepsilon_1 \leq \xi_3 \leq arepsilon_2$} \ 0 & & ext{if $\xi_1^2 + \xi_2^2 > ig(R + arepsilon_3ig)^2$ or $\xi_3
otin ig(arepsilon_1 - arepsilon_3, arepsilon_2 + arepsilon_3ig)$} \end{aligned}
ight.$$

For a convenient choice of $H_0 \neq 0$ in \mathbb{R} , ε_1 , ε_2 , ε_3 positive, the element $\overline{X}(r,\alpha) = ((1-r^2)r^2 \int_0^\alpha \sin^2 t dt$, a $,1-r^2)$ (in polar coordinates) is in M_k for $k > \|\nabla \overline{X}\|_{\infty}$ and $D_H(\overline{X}) < D_H(c) = 0$ [4]. Finally it follows easily that c is a local minimum in $c + H_0^1(B; \mathbb{R}^3)$ from lemma 1.

Remarks

i) If X_1 is an unstable critical point of D_H in M_k , then $\|H(X_1)(X_1-c)\|_{\infty}=1$, because if we suppose that $\|H(X_1)(X_1-c)\|_{\infty}<1$, as in Theorem 1 we have that

$$egin{aligned} 0 &= dD_H(X_1)(X_1-c) \ &= \int_B \left[
abla X_1 \cdot
abla (X_1-c) + 2H(X_1)X_{1u} \wedge X_{1v} \cdot (X_1-c)
ight] \ &\geq 2D(X_1) ig(1 - \|H(X_1)(X_1-c)\|_\infty ig). \end{aligned}$$

Hence, we deduce that $D(X_1) = 0$ and $X_1 = c$.

A contradiction.

ii) Given $c \neq 0$ in \mathbb{R}^3 , we can choose $|H_0|$ small enough in our example of H to satisfy the assumptions of theorem 1.

References

- [1] Adams, R. : "Sobolev Spaces". Academic Press.
- [2] Brezis, H., Coron, J.M.: "Multiple solution of H-Systems and Rellich's conjeture", Comm. Pure Appl. Math. 37 (1984), (149-187).
- [3] Hildebrandt, S.: "Randwertprobleme für Flächen mit vorgeschriebener mitterer Krümmung und Anwendungen anf die Kapillaritätstheorie Teil I". Fest vorgegebener Rand. Math. Z. 122 (1969), 205-213.

- [4] Lami Dozo, E.- Mariani, M.C.: "A Dirichlet problem for an H-System with variable H". Preprint I.A.M. N° 181
- [5] Struwe, M.: "Plateau's problem and the calculus of variations". Lecture Notes, Princeton University Press.
- [6] Wente, H.C.: "The differential equation $\Delta X = 2HX_u \wedge X_v$ with vanishing boundary values". Proc. AMS 50 (1975), 131-137

E. Lami Dozo Inst. Argentino de Matemática CONICET-Viamonte 1636, 1er. Cuerpo- 1er. Piso 1055-Buenos Aires, Argentina Depto. de Matemática Fac. de Cs. Exactas y Naturales UBA M. C. Mariani Depto. de Matemática Fac. de Cs. Exactas y Naturales UBA CONICET