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DISCRETE CONNECTIONS ON PRINCIPAL BUNDLES:
ABELIAN GROUP CASE
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Dedicated to our friend Hernán Cendra

ABSTRACT. In this note we consider a few interesting properties of discrete connections
on principal bundles when the structure group of the bundle is an abelian Lie group. In
particular, we show that the discrete connection form and its curvature can be interpreted
as singular 1 and 2 cochains respectively, with the curvature being the coboundary of the
connection form. Using this formalism we prove a discrete analogue of a formula for
the holonomy around a loop given by Marsden, Montgomery and Ratiu for (continuous)
connections in a similar setting.

1. INTRODUCTION

Principal bundles are used to state many important questions in Geometry and in Physics.
One versatile tool in the study of those bundles, and in finding answers to the questions, are
the principal connections and the “connection package”: curvature, parallel transport and
holonomy. Curvature and holonomy are closely related notions, as shown, for example,
by the Ambrose–Singer Theorem (Thm. 8.1 in [KN96]). When the structure group G of
the (left) principal bundle π : Q → M is abelian and A is a principal connection on π , a
well known formula (see, for instance, p. 41 of [MMR90]) gives a direct expression for the
holonomy of A around a loop ρ in M in terms of an integral of A over ρ or, in case ρ is the
boundary of a surface σ , the integral over σ of the curvature of A . This kind of formula is
very useful for many applications: for instance, it allows the control of the “displacement”
in a fiber by choosing an adequate loop ρ and parallel-transporting along ρ . It is also useful
in the reconstruction of the dynamics of some systems on Q that have G as a symmetry
group and whose (reduced) dynamics is known in M := Q/G (see §5 of [MMR90]). In this
setting the holonomy is also known as the geometric phase (see, for instance, [Sim83]).

More precisely, if V ⊂ M is an open subset and s : V → Q is a smooth local section of
π , let ρ : [0,1]→ M be a continuous loop contained in V and m := ρ(0); pick q ∈ Q|m, the
fiber of Q over m, and define ΦA (ρ,q) ∈ G by

ΦA (ρ,q) := expG

(
−
∫

ρ

A s
)
, (1.1)

where A s := s∗(A ) is the local expression of A in the trivialization induced by s (hence a
1-form on V with values in g := Lie(G)) and expG : g→ G is the Lie-theoretic exponential
map. If, in addition, ρ is the boundary of a surface σ contained in V , by Stokes’ Theorem,
we have

ΦA (ρ,q) = expG

(
−
∫

σ

Bs
)
, (1.2)
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for Bs := s∗(B) = dA s, where B is the curvature 2-form of A . These formulas are
relevant because ΦA (ρ,q) is the phase gained by q on parallel transport around the loop
ρ . In other words, if PTA (ρ) : Q|m → Q|m is the parallel transport over ρ operator (with
respect to A ), then

PTA (ρ)(q) = lQ
ΦA (ρ,q)(q),

where lQ
g is the left G-action on Q defined by the principal G-bundle structure.

As we mentioned above, connections are useful in the study of certain symmetric dy-
namical systems, for example, the mechanical systems as considered in [AM78]. In many
instances, it is essential to consider numerical approximations to those systems, which can
be thought of as discrete-time dynamical systems (see [MW01]). In this context it is natural
to replace the tangent bundle T Q with Q×Q, its “discrete version”1. If, in addition, there
is a symmetry group G acting on Q in such a way that the quotient map π : Q → Q/G is
a principal G-bundle, in the continuous case, a principal connection A on π can be used
to decompose all elements of T Q into vertical an horizontal parts. Discrete connections
were introduced by M. Leok, J. Marsden and A. Weinstein in [LMW05] and [Leo04] and,
later, refined by some of us in [FZ13] in order to have a geometric way of splitting elements
of Q×Q into “vertical” and “horizontal” parts in a way that was suitable to perform the
symmetry reduction for the discrete time mechanical systems. With this idea in mind, the
goal of this paper is to prove formulas analogous to (1.1) and (1.2) for discrete connections
on a principal G-bundle, when G is abelian. As for (continuous) connections, a natural
application of such formulas is to control the dynamics of symmetric dynamical systems.

Even though there are many conceptual parallels between connections and discrete con-
nections, the fact that (for abelian G) the curvature (2-form) B is related to the connection
1-form A by B = dA has no equivalent in the discrete world: both the discrete connection
form Ad and its curvature Bd are G-valued functions. In order to reach our stated goal we
introduce a formalism that allows us to view Ad and Bd as singular cochains [Ad ] and [Bd ]
such that [Bd ] = δ [Ad ]. It is within this framework that we obtain the discrete holonomy
phase formulas (4.1) and (4.2). We mention that, in this setting, what we call integration is
the natural pairing of singular cochains and chains; this idea is in line with the fact that the
integral of differential forms over manifolds is a realization of the pairing between cochains
of differential forms —the elements of the de Rham complex— and singular chains on a
manifold. There is still a twist in that (1.1) and (1.2) involve integration in g while (4.1)
and (4.2) use integration of G-valued cochains. Thus, we reformulate our G-valued singular
cochains as g-valued ones and are able to obtain (5.2) and (5.3), the exact analogue of the
continuous phase formulas.

The plan for the paper is as follows. In Section 2 we recall the relevant notions of dis-
crete connection on a principal G-bundle, its curvature, the corresponding parallel transport
and holonomy. In Section 3 we review some basic ideas of singular chains and cochains
which we then refine to what we call the small complexes that are needed in order to view
the discrete connection form Ad and the discrete curvature Bd as singular 1 and 2 cochains
[Ad ] and [Bd ] respectively. In Section 4 we obtain formulas to compute the discrete holo-
nomy phase that, eventually, lead to the first version of our result expressing those phases
in terms of integrals of the G-valued [Ad ] and [Bd ] (Theorem 4.3). Last, in Section 5 we
consider g-valued singular cochains and construct logarithmic versions of [Ad ] and [Bd ],
which appear in the expression of the discrete holonomy phase as an integral of g-valued
cochains (Theorem 5.11).

1The basic motivation is that if time is discrete, a velocity vector —that is, an element of T Q— may be
replaced by two nearby points —that is, an element of Q×Q, near the diagonal ∆Q.
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We would like to thank the anonymous reviewer of this work, whose keen eyes have
helped us make it better.

Notation: throughout this paper π : Q → M is a smooth principal (left) G-bundle —
usually referred to as π in what follows— and we denote the (left) G-action on Q by lQ

g (q)
for q ∈ Q and g ∈ G. In addition to lQ we will consider some other (left) G-actions: the
diagonal action on Q×Q and the action on the first factor of Q×M. Explicitly, for g ∈ G,
(q,q′) ∈ Q×Q and (q,m) ∈ Q×M,

lQ×Q
g (q,q′) := (lQ

g (q), l
Q
g (q

′)) and lQ×M
g (q,m) := (lQ

g (q),m).

We denote the diagonal of any Cartesian product X ×X by ∆X and the discrete vertical
submanifold of Q by Vd := (π ×π)−1(∆M)⊂ Q×Q.

2. DISCRETE CONNECTIONS ON PRINCIPAL BUNDLES

In this section we review the notion of discrete connection on a principal bundle (via
discrete connection form and discrete horizontal lift), the associated curvature and the cor-
responding parallel transport.

2.1. Discrete connection form and discrete horizontal lift. Discrete connections on a
principal bundle can be constructed using different data. For this paper it will be sufficient
to characterize discrete connections via their discrete connection form and their discrete
horizontal lift. For more information on discrete connections see [FZ13].

Definition 2.1. An open subset U ⊂ Q×Q is said to be of D-type if it is G×G-invariant
for the product of the G-action with itself and Vd ⊂ U (in particular, ∆Q ⊂ U ).

Given a D-type subset U ⊂ Q×Q we define

U ′ := (idQ ×π)(U )⊂ Q×M and U ′′ := (π ×π)(U )⊂ M×M. (2.1)

As π is a principal bundle map, both U ′ and U ′′ are open subsets.

Definition 2.2. Let U ⊂ Q×Q be a D-type subset. A smooth function Ad : U → G is
called a discrete connection form on π if, for all q ∈ Q, Ad(q,q) = e, the identity element
of G, and it satisfies

Ad(lQ
g0
(q0), lQ

g1
(q1)) = g1Ad(q0,q1)g−1

0 for all (q0,q1) ∈ U , g0,g1 ∈ G.

Remark 2.3. An important difference between continuous and discrete connections on a
principal G-bundle π : Q → M is that while the (continuous) connection 1-form is defined
over all of T Q, a discrete connection over π is only defined in some open neighborhood of
the diagonal ∆Q ⊂ Q×Q, unless π is a trivial bundle. Indeed, if a discrete connection is
globally defined, a global section of π can be readily constructed. For this reason, when
dealing with discrete connections, their domain is very important.

Remark 2.4. Just as connections on principal bundles can be defined by a horizontal
distribution, discrete principal connections can be defined by a horizontal submanifold
HorAd ⊂ Q×Q. Indeed, this is the approach of [LMW05] and [FZ13]. But, as shown
in Theorem 3.6 of [FZ13], giving a horizontal submanifold is equivalent to giving a discrete
connection form Ad . The horizontal submanifold associated to Ad is HorAd :=Ad

−1({e}).

Example 2.5. Let R>0 :=(0,+∞)⊂R and U(1) := {z∈C : |z|= 1} seen as a multiplicative
group under complex multiplication. Then, π : Q → M given by p1 : R>0 ×U(1)→ R>0 is
a smooth (trivial) principal G-bundle, with G :=U(1) acting on the second factor by multi-
plication. Although it is not relevant for this work, the manifold Q can be seen, for instance,
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as the configuration manifold (for the center of mass description) of a planar mechanical
system consisting of two equal-mass particles. For µ ∈ N, we define

Ad,µ : Q×Q →U(1) by Ad,µ((r0,h0),(r1,h1)) := exp(i(r1 − r0)
µ)

h1

h0
.

It is easy to check that Ad,µ is a discrete connection form on π that is globally defined, i.e.,
with domain U := Q×Q.

Definition 2.6. Let U ⊂ Q×Q be of D-type. A smooth function hd : U ′ → Q×Q is a
discrete horizontal lift on π if the following conditions hold.

(1) hd : U ′ → Q×Q is G-equivariant for the G-actions lQ×M and lQ×Q.
(2) hd is a section of (idQ×π) : Q×Q → Q×M over U ′, that is, (idQ×π)◦hd = idU ′ .
(3) For every q ∈ Q, hd(q,π(q)) = (q,q).

If hd : U ′ → Q×Q is a discrete horizontal lift on π , we define hd := p2 ◦ hd , where
p2 : Q×Q → Q is the projection onto the second factor.

Discrete connection forms and discrete horizontal lifts are related as follows. First, recall
the following construction: consider the fiber product Q ×π π Q of π with itself —that is,
the set of pairs (q0,q1) such that π(q0) = π(q1). Let κ : Q ×π π Q → G be defined by
κ(q0,q1) := g if and only if lQ

g (q0) = q1. It is easy to check that κ is a smooth function. Let
U ⊂ Q×Q be a D-type subset. Given a discrete connection form Ad : U → G, we define

hAd : U ′ → Q×Q by hAd (q,r) := (q, lQ
Ad(q,q′)−1(q′)), (2.2)

for any q′ ∈ Q|r. Conversely, given a discrete horizontal lift hd : U ′ → Q×Q, we define

A
hd

d : U → G by A
hd

d (q0,q1) := κ(hd(q0,π(q1)),q1). (2.3)

Theorem 2.7. The maps hAd and A
hd

d defined by (2.2) and (2.3) are a discrete horizontal
lift and a discrete connection form on π respectively. Furthermore, the two constructions
are inverses of each other.

Proof. It follows from Theorems 3.6 and 4.6 of [FZ13]. □

As a consequence of Theorem 2.7 discrete connection forms and discrete horizontal lifts
are alternative descriptions of a single object, the discrete connections with domain U . In
this spirit we speak of a “discrete connection” with domain U as the object defined by
either one of these maps.

Remark 2.8. If Ad : U → G is a discrete connection form on π and hAd is the associated
discrete horizontal lift, then Ad(hAd (q,r)) = e for all (q,r) ∈ U ′.

Example 2.9. The discrete horizontal lift associated by Theorem 2.7 to the discrete con-
nection form Ad,µ introduced in Example 2.5 is, using (2.2),

hd,µ : (R>0 ×U(1))×R>0 → (R>0 ×U(1))2 so that

hd,µ((r0,h0),r1) := ((r0,h0),(r1,h0 exp(−i(r1 − r0)
µ))).

Next we introduce a local description of discrete connection forms.

Definition 2.10. Let V ⊂ M be an open set and s : V → Q a smooth section of Q|V . Given
a discrete connection Ad : U → G we define its local expression with respect to s by

A s
d : V ′′ → G so that A s

d (m0,m1) := Ad(s(m0),s(m1)), (2.4)

where V ′′ := (V ×V )∩U ′′ (recall (2.1) for U ′′).
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Example 2.11. In the context of Example 2.5, the principal bundle is trivial. So we can take
V := R>0 and a global section of p1, s(r) := (r,1). Then, the “local” expression of Ad,µ is
A s

d,µ(r0,r1) := exp(i(r1 − r0)
µ) for all (r0,r1) ∈ V ′′ = M×M = (R>0)

2.

The following properties of the local expression of a discrete connection are easy to
check.

Lemma 2.12. Let Ad : U → G be a discrete connection on π and s : V → Q be a sec-
tion of Q|V . Then, V ′′ ⊂ M ×M is open, A s

d is smooth and A s
d (m,m) = e for all m ∈ V .

If ϕs : V ×G → Q is defined by ϕs(m,g) := lQ
g (s(m)), then Ad(ϕs(m0,g0),ϕs(m1,g1)) =

g1A s
d (m0,m1)g−1

0 .

2.2. Curvature of a discrete connection. The curvature of a connection on a principal
bundle can be seen as an obstruction to the local trivializability of the bundle (with connec-
tion) or, alternatively, as the obstruction to a certain map appearing in the Atiyah sequence
being a morphism of Lie algebroids. In a similar manner, a notion of curvature of a dis-
crete connection on a principal bundle can be introduced as the obstruction to the bundle
(with discrete connection) being locally trivializable (see [FZ]) or, alternatively, to a certain
map appearing in the discrete Atiyah sequence being a morphism of local Lie groupoids
(see [FJZ22]).

Definition 2.13. Let Ad : U → G be a discrete connection form on π . The curvature of Ad
is the map

Bd : U (3) → G so that Bd(q0,q1,q2) := Ad(q0,q2)
−1Ad(q1,q2)Ad(q0,q1),

where U (3) := {(q0,q1,q2)∈Q3 : (q j,qk)∈U for all 0≤ j < k≤ 2}. A discrete connection
form is flat if its curvature is constantly e.

When V ⊂ M is an open set and s : V → Q is a smooth section of Q|V we define the local
expression of the curvature with respect to s by

Bs
d : V ′′(3) → G so that Bs

d(m0,m1,m2) := Bd(s(m0),s(m1),s(m2)), (2.5)

where
V ′′(3) := {(m0,m1,m2) ∈ M3 : (m j,mk) ∈ V ′′ for all 0 ≤ j < k ≤ 2}. (2.6)

Example 2.14. The curvature of the discrete connection Ad,µ introduced in Example 2.5 is

Bd,µ((r0,h0),(r1,h1),(r2,h2)) = exp(i(−(r2 − r0)
µ +(r2 − r1)

µ +(r1 − r0)
µ)),

for all ((r0,h0),(r1,h1),(r2,h2)) ∈ U (3) = Q3. Also, in the local trivialization considered
in Example 2.11,

Bs
d,µ(r0,r1,r2) = exp(i(−(r2 − r0)

µ +(r2 − r1)
µ +(r1 − r0)

µ)), (2.7)

for all (r0,r1,r2) ∈ V ′′(3) = (R>0)
3. It is easy to check that Bd,µ = 1 if and only if µ = 1.

The following properties of the local expression of the curvature of a discrete connection
are easy to check.

Lemma 2.15. Let Ad : U →G be a discrete connection on π and s :V →Q a section of Q|V .
Then, Bs

d is smooth and Bs
d(m0,m1,m2) = A s

d (m0,m2)
−1A s

d (m1,m2)A s
d (m0,m1) for all

(m0,m1,m2) ∈ V ′′(3). Also, Bd(ϕs(m0,g0),ϕs(m1,g1),ϕs(m2,g2)) = g0Bs
d(m0,m1,m2)g−1

0

for all (m0,m1,m2) ∈ V ′′(3) and g0,g1,g2 ∈ G, where ϕs is defined in Lemma 2.12.
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2.3. Parallel transport associated to a discrete connection. Given a set X and N ∈ N∪
{0}, a discrete path of length N is an element x. := (x0, . . . ,xN) ∈ XN+1. The initial and
final points of x. are x0 and xN respectively. When x0 = xN , x. is a discrete N-loop. The
set of all discrete paths of length N with initial point x and final point x′ is denoted by
ΩN(x,x′) and the discrete N-loops with initial point x is denoted by ΩN(x). Last, we define
Ω(x,x′) := ∪∞

N=0ΩN(x,x′) and Ω(x) := Ω(x,x).
In what follows, it will be necessary to consider discrete paths that satisfy some restric-

tions. Thus, given U ⊂ X ×X and N ∈ N∪{0} we define the following sets of discrete
paths subordinated to U : ΩN,U(x,x′) := {x. ∈ΩN(x,x′) : (xk−1,xk)∈U for all k = 1, . . . ,N},
ΩN,U(x) := ΩN,U(x,x), ΩU(x,x′) := ∪∞

N=0ΩN,U(x,x′) and ΩU(x) := ΩU(x,x).
Let U ⊂ Q×Q be a D-type subset and hd : U ′ → Q×Q be a discrete horizontal lift on

the principal bundle π . Then, for any discrete path in M, m. ∈ ΩN,U ′′(m,m′) and q ∈ Q|m
we define inductively q0 := q and, for each k = 1, . . . ,N, qk := hd(qk−1,mk). It is easy
to verify that, as (mk−1,mk) ∈ U ′′ for all k = 1, . . . ,N, all (qk−1,mk) ∈ U ′, so that each
qk is well defined and π(qk) = mk. Let q. := (q0, . . . ,qN) ∈ ΩN(q,qN); by construction,
π(qN) = mN = m′. The discrete path q. is called the discrete horizontal lift of m. starting at
q. This leads to the following notion.

Definition 2.16. Let U ⊂ Q×Q be a D-type subset and hd : U ′ → Q×Q be a discrete
horizontal lift on π . For each m. ∈ ΩN,U ′′(m,m′) we define the discrete parallel transport
map over m.

PTd : Q|m → Q|m′ so that PTd(m.)(q) := qN ,

where qN is the one constructed in the previous paragraph.

Of interest for our analysis is the special case where one considers parallel transport over
discrete loops, so that PTd is a map from a fiber of Q onto itself.

Definition 2.17. Let U ⊂ Q×Q be a D-type subset and hd : U ′ → Q×Q be a discrete
horizontal lift on π . For each m. ∈ ΩN,U ′′(m) and q ∈ Q|m we define the discrete holonomy
phase around m. starting at q as

Φd(m.,q) := κ(q,PTd(m.)(q)) ∈ G.

The discrete holonomy phase is well defined because π(PTd(m.)(q)) = π(qN) = mN =
m = π(q).

Example 2.18. The parallel transport operator associated to the discrete connection form
Ad,µ defined in Example 2.5 is constructed as follows. For r,r′ ∈ R>0 fix a discrete path
in R>0, r. ∈ ΩN(r,r′) —we ignore U ′′ because Ad,µ is globally defined— and choose
q := (r,h) ∈ Q|r. Then, using hd,µ computed in Example 2.9, the discrete lifted path of r.
starting at q is given by

qk =

{
q, if k = 0,
(rk,h exp(−i∑

k
j=1(r j − r j−1)

µ)), if k = 1, . . . ,N.

Therefore PTd(r,h) = (r′,(rk,h exp(−i∑
N
j=1(r j − r j−1)

µ))) and

Φd(r.,(r,h)) = exp

(
−i

N

∑
j=1

(r j − r j−1)
µ

)
.

A natural question is how the discrete holonomy phase Φd(m.,q) changes when q is
replaced by lQ

g (q).
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Proposition 2.19. Let hd : U ′ → Q×Q be a discrete horizontal lift on π , m ∈ M, q ∈ Q|m
and m. ∈ ΩN(m). Then, for any g ∈ G,

(1) If q. ∈ ΩN(q,qN) is the discrete horizontal lift of the path m. starting at q, the path
q′. defined by q′k := lQ

g (qk) for k = 0, . . . ,N is the discrete horizontal lift of m. starting
at lQ

g (q).
(2) In addition, Φd(m., l

Q
g (q)) = gΦd(m.,q)g−1.

Proof. By definition, q′. ∈ ΩN(l
Q
g (q), l

Q
g (qN)). That q′. is the discrete horizontal lift of m.

starting at lQ
g (q) follows by the definition of discrete horizontal lift and property (1) in

Definition 2.6. Thus,

Φd(m., lQ
g (q)) = κ(lQ

g (q),PTd(m.)(lQ
g (q))) = κ(lQ

g (q), l
Q
g (PTd(m.)(q)))

= gκ(q,PTd(m.)(q))g−1 = gΦd(m.,q)g−1.

□

The following two local results will allow us, later, to find explicit formulas relating the
holonomy phase and the curvature of a discrete connection.

Lemma 2.20. Let Ad : U → G be a discrete connection form on π , V ⊂ M be an open
subset and s : V → Q be a section of π . Then, for each m. ∈ ΩN,V ′′(m0,mN) (with V ′′ as in
Definition 2.10), the following assertions are true.

(1) Let q. ∈ ΩN(q0,qN) be the discrete horizontal lift path of m. starting at q0 ∈ Q|m0 .
Then, there are unique gk ∈ G so that, for ϕs as in Lemma 2.12, qk = ϕs(mk,gk) for
all k = 0, . . . ,N.

(2) We have PTd(m.)(ϕs(m0,g0)) = ϕs(mN ,gN) for gN := g0 ∏
N
k=1 A s

d (mk−1,mk)
−1.

Proof. As π(qk)=mk and (mk−1,mk)∈V ′′ ⊂V ×V for all k, we see that qk ∈Q|V . Point (1)
follows immediately because ϕs trivializes Q|V .

By definition of PTd and point (1) we have that PTd(m.)(ϕs(m0,g0))=ϕs(mN ,gN). Then,
as (qk−1,qk) = hAd (qk−1,mk) and ϕs(m,g) = lQ

g (s(m)), recalling Remark 2.8, we have

e = Ad(qk−1,qk) = Ad(ϕs(mk−1,gk−1),ϕs(mk,gk))

= Ad(lQ
gk−1

(s(mk−1)), lQ
gk
(s(mk))) = gkA

s
d (mk−1,mk)g−1

k−1.

Thus, gk = gk−1A
s

d (mk−1,mk)
−1 for all k. Point (2) follows by applying this formula recur-

sively. □

Proposition 2.21. Let Ad : U → G be a discrete connection on π . Then, for each N ≥ 2,
the following statements are true.

(1) For each q. ∈ ΩN(q,q′) such that (q0,qk,qk+1) ∈ U (3) for all k = 1, . . . ,N − 1 we
have (

N

∏
k=1

Ad(qk−1,qk)
−1

)
Ad(q0,qN) =

N−1

∏
k=1

Bd(q0,qk,qk+1)
−1.

(2) Let V ⊂ M be an open subset and s : V → Q be a section of Q. Then, for each
m. ∈ ΩN(m) such that (m0,mk,mk+1) ∈ V ′′(3) (see (2.6)) for all k = 0, . . . ,N − 1
and for each q ∈ Q|m we have

Φd(m.,q) = g0

(
N

∏
k=1

A s
d (mk−1,mk)

−1

)
g−1

0 =
N−1

∏
k=1

Bd(q0,qk,qk+1)
−1, (2.8)

where q. ∈ ΩN(q) is the discrete horizontal lift of m. and g0 satisfies ϕs(m0,g0) = q.
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Proof. Point (1) can be readily checked by induction (on N). In order to prove point (2)
we notice that, since (m0,mk,mk+1) ∈ V ′′(3) for all k = 0, . . . ,N − 1, it follows that m. ∈
ΩN,V ′′(m). Hence, by Lemma 2.20 there exists the discrete horizontal lift q. of m. and,
writing qk = ϕs(mk,gk) for all k, it satisfies PTd(m.)(ϕs(m0,g0)) = ϕs(mN ,gN) for gN =
g0 ∏

N
k=1 A s

d (mk−1,mk)
−1. Then,

Φd(m.,q) = κ(q0,PTd(m.)(ϕs(m0,g0))) = κ(ϕs(m0,g0),ϕs( mN︸︷︷︸
=m0

,gN))

= κ(lQ
g0
(s(m0)), lQ

gN
(s(m0))) = gNg−1

0 = g0

N

∏
k=1

A s
d (mk−1,mk)

−1g−1
0 ,

proving the first equality of (2.8). In order to prove the second equality, it is easy to check
that, as (m0,mk,mk+1) ∈ V ′′(3) for all k, we have (s(m0),s(mk),s(mk+1)) ∈ U (3) for all k.
Then, using the previous computation and the result of point (1) we have

Φd(m.,q) = g0

(
N

∏
k=1

A s
d (mk−1,mk)

−1

)
g−1

0 = g0

(
N

∏
k=1

Ad(s(mk−1),s(mk))
−1

)
g−1

0

= g0

(
N−1

∏
k=1

Bd(s(m0),s(mk),s(mk+1))
−1

)
Ad(s(m0),s(

=m0︷︸︸︷
mN ))−1︸ ︷︷ ︸

=e

g−1
0

= g0

(
N−1

∏
k=1

Bs
d(m0,mk,mk+1)

−1

)
g−1

0 .

The second equality of (2.8) now follows from Lemma 2.15. □

Remark 2.22. By (2.8), we see that all the discrete holonomy phases (for loops satisfying
the conditions of point (2) of Proposition 2.21) are products of values of the (inverse of
the) curvature of the discrete connection. In this sense, this result can be seen as a seminal
observation towards a discrete analogue of the Ambrose–Singer Theorem.

3. SINGULAR (CO)HOMOLOGY AND ADAPTATIONS

In this section we review some basic standard notions used in singular homology theory
(see, for instance, [Mun84]) and, then, make an adaptation to have a theory that works with
discrete connection forms and curvatures.

Let X be a topological space, n ∈ N∪ {0} and {e0, . . . ,en} be the canonical basis of
Rn+12.

Definition 3.1. Given n ∈ N∪{0}, the set

∆n :=

{
n

∑
j=0

t je j ∈ Rn+1 : t j ≥ 0 for j = 0, . . . ,n and
n

∑
j=0

t j = 1

}
is called the standard n-simplex. A singular n-simplex of X is a continuous map Tn : ∆n →X .
A singular n-chain of X is an element of the free abelian group generated by the singular
n-simplexes, that we denote by Sn(X). When n ∈ N and k = 0, . . . ,n, the k-th face of the

2In this context, it is convenient to consider Rn ⊂ RN as the subset consisting of sequences vanishing after
the n-th component. Thus, Rn−1 is a subspace of Rn and the inclusion a linear map.

Actas del XVI Congreso Dr. Antonio A. R. Monteiro (2021), 2023



DISCRETE CONNECTIONS ON PRINCIPAL BUNDLES: ABELIAN GROUP CASE 191

standard n-simplex is the map ∂ k
n : ∆n−1 → ∆n defined by

∂
k
n

( n−1

∑
j=0

t je j

)
:=

k−1

∑
j=0

t je j +
n

∑
j=k+1

t j−1e j, if k = 0, . . . ,n.

For n∈N the n-th boundary map is the group homomorphism ∂n : Sn(X)→ Sn−1(X) defined
by

∂n(T ) :=
n

∑
k=0

(−1)k(T ◦∂
k
n ).

We observe that, for n ∈ N and e j ∈ ∆n−1, we have

∂
k
n (e j) =

{
e j+1 ∈ ∆n, if k = 0, . . . , j,
e j ∈ ∆n, if k = j+1, . . . ,n.

Example 3.2. Let T1 be a singular 1-simplex of X , then ∂1T1 ∈ S0(X) satisfies (∂1T1)(1) =
(T1 ◦ ∂ 0

1 )(1)− (T1 ◦ ∂ 1
1 )(1) = T1(0,1)− T1(1,0). Similarly, if T2 is a singular 2-simplex

of X , then ∂2T2 ∈ S1(X) satisfies (∂2T2)(t0, t1) = (T2 ◦ ∂ 0
2 )(t0, t1)− (T2 ◦ ∂ 1

2 )(t0, t1)+ (T2 ◦
∂ 2

2 )(t0, t1) = T2(0, t0, t1)−T2(t0,0, t1)+T2(t0, t1,0).

Definition 3.3. Let A be an abelian group and n ∈ N∪ {0}. The group of singular n-
cochains of X is Sn(X ,A) := hom(Sn(X),A) and the group homomorphism δn : Sn(X ,A)→
Sn+1(X ,A) defined by δnαn := αn ◦∂n+1 is the singular n-coboundary of X .

Example 3.4. Let α0 ∈ S0(X ,A) and α1 ∈ S1(X ,A); using the computations from Exam-
ple 3.2, for any singular 1-simplex T1 of X we have

(δ0α0)(T1) = α0(∂1T1) = α0(T1(0,1)−T1(1,0)) = α0(T1(0,1))−α0(T1(1,0)).

Analogously, for any singular 2-simplex T2 of X we have

(δ1α1)(T2) = α1((∂2T2)(t0, t1)) = α1(T2(0, t0, t1)−T2(t0,0, t1)+T2(t0, t1,0))

= α1(T2(0, t0, t1))−α1(T2(t0,0, t1))+α2(T2(t0, t1,0)).

Notice that in this example we denote the group operations in Sn(X), Sn(X ,A) and A addi-
tively. Later on we may use the product notation for the group operation in A and Sn(X ,A).

Remark 3.5. It is easy to check that ∂n−1 ◦ ∂n = 0 for all n ≥ 2 and, consequently, that
δn+1 ◦δn = 0 for all n ≥ 0.

Definition 3.6. We denote the duality pairing between Sn(X) and Sn(X ,A) by
∫

. Thus, for
any αn ∈ Sn(X ,A) and Tn ∈ Sn(X) we have∫

Tn

αn := αn(Tn).

Remark 3.7. For any Tn+1 ∈ Sn+1(X) and αn ∈ Sn(X ,A) we have∫
∂n+1Tn+1

αn = αn(∂n+1Tn+1) = (δnαn)(Tn+1) =
∫

Tn+1

δnαn, (3.1)

that is, the “singular Stokes’ Theorem”.
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3.1. Small singular chains and cochains. Next we want to consider a small variation of
the previous construction, with the goal of defining chains and cochains of X that are, in a
sense, controlled by an open set.

Let X be a topological space and U ⊂ X ×X be an open subset (for the product topology).
Then, for any n ∈ N we define

U (n+1) := {(x0,x1, . . . ,xn) ∈ Xn+1 : (x j,xk) ∈U for all 0 ≤ j < k ≤ n}. (3.2)

Definition 3.8. For n ∈ N, a singular n-simplex Tn of X is said to be U-small (small if no
confusion arises) if (Tn(e0), . . . ,Tn(en)) ∈ U (n+1). The free abelian group generated by the
U-small singular n-simplexes of X is denoted by Sn,U(X) and its elements will be called
U-small singular n-chains of X . For completeness, we define S0,U(X) := S0(X).

The following result is straightforward.

Lemma 3.9. For each n ≥ 0, Sn,U(X)⊂ Sn(X) is a subgroup and, for each n ≥ 1, the map
∂U

n : Sn,U(X)→ Sn−1,U(X) defined as the restriction and co-restriction of ∂n is a homomor-
phism satisfying ∂U

n ◦∂U
n+1 = 0.

Definition 3.10. Let A be an abelian group and U ⊂ X × X an open subset. For each
n ∈ N∪{0} we define the group Sn,U(X ,A) := hom(Sn,U(X),A); its elements are called U-
small singular cochains of X . The group homomorphism δU

n : Sn,U(X ,A) → Sn+1,U(X ,A)
defined by δU

n αn := αn ◦∂U
n+1 is the small singular n-coboundary of X .

The following result is straightforward.

Lemma 3.11. For each n ∈ N∪{0}, Sn(X ,A) ⊂ Sn,U(X ,A) is a subgroup and the homo-
morphism δU

n restricted and co-restricted appropriately coincides with δn. Furthermore,
δU

n+1 ◦δU
n = 0.

Last we have a simple “change of coefficients” relation. Let f ∈ hom(A,A′), where A
and A′ are abelian groups. It is easy to check that the map f∗ : Sn,U(X ,A) → Sn,U(X ,A′)

defined by f∗(αn) := f ◦αn is a homomorphism satisfying f∗ ◦δ
U,A
n = δ

U,A′

n+1 ◦ f∗ (i.e., f∗ is
a homomorphism of cochain complexes).

As an application of the ideas developed so far, in the next section we construct small
singular cochains associated to a discrete connection on π , when the structure group of the
principal bundle is abelian.

3.2. Discrete connections and singular cochains. Let Ad : U → G be a discrete connec-
tion on π and assume that the structure group G of π is abelian. Let T1 ∈ S1,U (Q) be a
1-simplex. Then, we define

[Ad ](T1) := Ad(T1(1,0),T1(0,1)) ∈ G.

Being these 1-simplexes free generators of S1,U (Q), this assignment defines a unique ele-
ment [Ad ] ∈ S1,U (Q,G).

Observe that, if Q is connected, the cochain [Ad ] determines the function Ad : U → G.
Thus, the discrete connection form of a discrete connection is a true 1-form (a cochain)
for this (small) singular cohomology, at least when G is abelian. If Bd : U (3) → G is the
curvature of Ad and T2 ∈ S2,U (Q,G) is a 2-simplex, we define

[Bd ](T2) := Bd(T2(1,0,0),T2(0,1,0),T2(0,0,1)) ∈ G.

As those simplexes freely generate S2,U (Q), this formula determines a unique [Bd ] ∈
S2,U (Q,G).
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Example 3.12. In the case of the discrete connection form Ad,µ introduced in Example 2.5,
if T1 = ∑

N
j=1 a jT

j
1 ∈ S1,Q×Q(R>0 ×U(1)) = S1(R>0 ×U(1)), using multiplicative notation,

we have

[Ad,µ ](T1) =
N

∏
j=1

Ad,µ(T
j

1 (1,0)︸ ︷︷ ︸
=:(r j

0,h
j
0)

,T j
1 (0,1)︸ ︷︷ ︸
=:(r j

1,h
j
1)

)a j = exp

(
i

N

∑
j=1

a j(r
j
1 − r j

0)
µ

)
N

∏
j=1

(
h j

1

h j
0

)a j

.

Similarly, if T2 = ∑
N
j=1 a jT

j
2 ∈ S2,Q×Q(R>0 ×U(1)) = S2(R>0 ×U(1)), we have

[Bd,µ ](T2) =
N

∏
j=1

Bd,µ(T
j

2 (1,0,0)︸ ︷︷ ︸
=:(r j

0,h
j
0)

,T j
2 (0,1,0)︸ ︷︷ ︸
=:(r j

1,h
j
1)

,T j
2 (0,0,1)︸ ︷︷ ︸
=:(r j

2,h
j
2)

)a j

= exp

(
i

N

∑
j=1

a j

(
−(r j

2 − r j
0)

µ +(r j
2 − r j

1)
µ +(r j

1 − r j
0)

µ

))
.

Proposition 3.13. For [Ad ]∈ S1,U (Q,G) and [Bd ]∈ S2,U (Q,G) as above, we have [Bd ] =
δU

1 [Ad ] and δU
2 [Bd ] = e.

Proof. The second assertion follows from the first and the fact that δU
2 ◦ δU

1 = e. As the
2-simplexes generate S2,U (Q), it suffices to check the first assertion of the statement on
them to conclude its validity in general. Let T2 be one such 2-simplex. Then,

[Bd ](T2) = Bd(T2(1,0,0),T2(0,1,0),T2(0,0,1))

= Ad(T2(1,0,0),T2(0,0,1))−1Ad(T2(0,1,0),T2(0,0,1))Ad(T2(1,0,0),T2(0,1,0)).

On the other hand, converting to multiplicative notation the computations of Example 3.4,

(δU
1 [Ad ])(T2)

= [Ad ](T2(0, t0, t1))([Ad ](T2(t0,0, t1)))−1[Ad ](T2(t0, t1,0))

= Ad(T2(0,1,0),T2(0,0,1))Ad(T2(1,0,0),T2(0,0,1))−1Ad(T2(1,0,0),T2(0,1,0)).

The result follows by comparing the two formulas. □

Remark 3.14. The expression δU
2 [Bd ] = e may be interpreted as a discrete version of

Bianchi’s Identity.

A nice immediate consequence of the formalism developed is the following result.

Corollary 3.15. Let Ad : U → G be a discrete connection on π : Q → M with Q connected.
If there is α0 ∈ S0(Q) such that [Ad ] = δU

0 α0 then Ad is flat, i.e., Bd = e.

Proof. As [Ad ] = δU
0 α0, by Proposition 3.13 and Lemma 3.11, we have [Bd ] = δU

1 [Ad ] =

(δU
1 ◦δU

0 )α0 = e. Hence, for any T2 ∈ S2,U (Q),

e = [Bd ](T2) = Bd(T2(1,0,0),T2(0,1,0),T2(0,0,1)). (3.3)

For any (q0,q1,q2)∈U (3), as Q is connected (hence, path connected), there is a continuous
map γ : [0,1]→ Q such that γ(0) = q0, γ(1

2) = q1 and γ(1) = q2. Let T2 : ∆2 → Q be defined
by T2(t0, t1, t2) := γ(1

2 t1 + t2); it is immediate that T2 ∈ S2,U (Q) and it satisfies T2(e j) = q j
for j = 0,1,2. All together, using (3.3),

Bd(q0,q1,q2) = Bd(T2(1,0,0),T2(0,1,0),T2(0,0,1)) = e.

□
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3.3. The local version. Just as we described in Section 3.2 how to view discrete connection
forms and the corresponding curvature of a principal bundle as (small) singular cochains, it
is possible to do the same for the local expressions of those objects, as we discuss below.

Let V ⊂ M be an open subset, s : V → Q be a section of π and Ad : U → G be a discrete
connection form on π . Let A s

d : V ′′ → G be the corresponding local expression of Ad with
respect to s (2.4). For each 1-simplex T1 ∈ S1,V ′′(M) we define

[A s
d ](T1) := A s

d (T1(1,0),T1(0,1)) ∈ G.

Being those simplexes generators of S1,V ′′(M), this assignment determines a unique element
[A s

d ] ∈ S1,V ′′
(M,G).

Similarly, let Bs
d : V ′′(3) → G be the local expression of the curvature of Ad (2.5) and

T2 ∈ S2,V ′′(M) be a 2-simplex. We define

[Bs
d ](T2) := Bs

d(T2(1,0,0),T2(0,1,0),T2(0,0,1)) ∈ G.

Just as before, as the 2-simplexes generate S2,V ′′(M) this last expression defines a unique
element [Bs

d ] ∈ S2,V ′′
(M,G).

Example 3.16. In the case of the discrete connection form Ad,µ introduced in Example 2.5
together with the (global) trivialization of Example 2.11, if T1 =∑

N
j=1 a jT

j
1 ∈ S1,M×M(R>0)=

S1(R>0), we have

[A s
d,µ ](T1) =

N

∏
j=1

A s
d,µ(T

j
1 (1,0)︸ ︷︷ ︸
=:r j

0

,T j
1 (0,1)︸ ︷︷ ︸
=:r j

1

)a j = exp

(
i

N

∑
j=1

a j(r
j
1 − r j

0)
µ

)
.

Similarly, if T2 = ∑
N
j=1 a jT

j
2 ∈ S2,M×M(R>0) = S2(R>0), we have

[Bs
d,µ ](T2) =

N

∏
j=1

Bs
d,µ(T

j
2 (1,0,0)︸ ︷︷ ︸

=:r j
0

,T j
2 (0,1,0)︸ ︷︷ ︸

=:r j
1

,T j
2 (0,0,1)︸ ︷︷ ︸

=:r j
2

)a j

= exp

(
i

N

∑
j=1

a j

(
−(r j

2 − r j
0)

µ +(r j
2 − r j

1)
µ +(r j

1 − r j
0)

µ

))
.

It is easy to prove the following local analogue of Proposition 3.13.

Lemma 3.17. For [A s
d ] ∈ S1,V ′′

(M,G) and [Bs
d ] ∈ S2,U ′′

(M,G) as above, we have [Bs
d ] =

δV ′′
1 [A s

d ] and δV ′′
2 [Bs

d ] = e.

4. HOLONOMY AROUND A LOOP

In this section we find an explicit formula for the discrete holonomy phase around a
loop that is contained in an open set trivializing π . We still work in the case where G, the
structure group of π , is abelian.

Remark 4.1. By Proposition 2.17 the different values of the discrete holonomy phase
around a loop, starting at different points of the corresponding fiber are conjugated ele-
ments of G. When G is abelian, these elements are all the same, so that the discrete phase
around a loop only depends on the loop and we denote it by Φd(m.).

Lemma 4.2. Let Ad : U → G be a discrete connection on π , whose structure group G is
abelian. Let V ⊂ M be a connected open subset and s : M → Q be a local section of π . For
any discrete loop in M, m. ∈ ΩN,V ′′(m), we have that
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(1) there exists m̃ = ∑
N
k=1 T k

1 ∈ S1,V ′′(M) such that T k
1 (e0) = mk−1 and T k

1 (e1) = mk for
k = 1, . . . ,N.

(2) Then, for any such m̃, ∏
N
k=1 A s

d (mk−1,mk)
−1 =

(∫
m̃[A

s
d ]
)−1.

Proof. Being V connected, for each k = 1, . . . ,N there is a continuous path γk−1,k : [0,1]→V
such that γk−1,k(0)=mk−1 and γk−1,k(1)=mk. Define T k

1 : ∆1 →M by T k
1 ((1−t)e0+te1) :=

γk−1,k(t) for t ∈ [0,1]. As (T k
1 (ei),T k

1 (e j)) ∈ V ′′ for all i, j = 0,1, we see that m̃ := ∑
N
k T k

1 ∈
S1,V ′′(M), proving point (1). Then, by definition of

∫
,

∫
m̃
[A s

d ] = A s
d (m̃) = A s

d

(
N

∑
k=1

T k
1

)
=

N

∏
k=1

A s
d (T

k
1 )

=
N

∏
k=1

A s
d (T

k
1 (e0),T k

1 (e1)) =
N

∏
k=1

A s
d (mk−1,mk),

that, on inversion, leads to point (2). □

We say that the chain m̃ ∈ S1,V ′′(M) satisfying point (1) of Lemma 4.2 interpolates the
discrete path m..

Theorem 4.3. Let Ad : U → G be a discrete connection on the principal G-bundle π : Q →
M with G abelian, V ⊂ M a connected open subset and s : V → Q a local section of π . For
any m. ∈ ΩN(m) such that (m0,mk,mk+1) ∈ V ′′(3) for all k = 0, . . . ,N −1, we have

Φd(m.) =
(∫

m̃
[A s

d ]

)−1

, (4.1)

where m̃ ∈ S1,V ′′(M) is any small singular chain interpolating the discrete path m., in the
sense of Lemma 4.2. If, in addition, there is σ̃ ∈ S2,V ′′(M) so that ∂ V ′′

2 (σ̃) = m̃, then

Φd(m.) =
(∫

σ̃

[Bs
d ]

)−1

. (4.2)

Proof. Identity (4.1) follows from the first equality in (2.8) taking into account that G is
abelian and, then, point (2) of Lemma 4.2. On the other hand, if σ̃ ∈ S2,V ′′(M) satisfies
∂ V ′′

2 (σ̃) = m̃, using Proposition 3.17 and (a “small version” of) (3.1), we have∫
σ̃

[Bs
d ] =

∫
σ̃

δ
V ′′
1 [A s

d ] =
∫

∂V ′′
2 σ̃

[A s
d ] =

∫
m̃
[A s

d ],

and (4.2) follows from (4.1). □

Example 4.4. In the case of the discrete connection form Ad,µ introduced in Example 2.5
together with the (global) trivialization of Example 2.11, if r. ∈ ΩN,V ′′(r) = ΩN(r), it au-
tomatically satisfies that (r0,rk,rk+1) ∈ V ′′(3) = R3

>0 for all k, so that we can apply Theo-
rem 4.3 to compute the discrete holonomy phase Φd(r.). A 1-chain in R>0 that interpolates
r. is r̃ := ∑

N
j=1 T j

1 for T j
1 (t0e0 + t1e1) := t0r j−1 + t1r j, so that r̃ ∈ S1(R>0). Thus, using (4.1)

and Example 3.16, we have

Φd(r.) =
(∫

r̃
[Ad,µ ]

)−1

= ([Ad,µ ](r̃))−1 = exp

(
−i

N

∑
j=1

(r j − r j−1)
µ

)
. (4.3)
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We construct σ̃ ∈ S2(R>0) as follows. First, for each j = 1, . . . ,N −1, define

γ j(t) :=


3tr j +(1−3t)r0, if 0 ≤ t ≤ 1

3 ,
(3t −1)r j+1 +(2−3t)r j, if 1

3 ≤ t ≤ 2
3 ,

(3t −2)r0 +(3−3t)r j+1, if 2
3 ≤ t ≤ 1,

and T j
2 (t0e0 + t1e1 + t2e2) := γ j(

1
3 t1 + 2

3 t2). Finally, σ̃ := ∑
N−1
j=1 T j

2 . By construction, σ̃ ∈
S2(R>0) and it is not hard to check that ∂2σ̃ = r̃. Then, using (4.2) and (2.7),

Φd(m.) =
(∫

σ̃

[Bs
d,µ ]

)−1

=
(
[Bs

d,µ ](σ̃)
)−1

=
N−1

∏
j=1

(Bs
d,µ(T

j
2 (1,0,0),T

j
2 (0,1,0),T

j
2 (0,0,1)))

−1 =
N−1

∏
j=1

(Bs
d,µ(r0,r j,r j+1))

−1

=
N−1

∏
j=1

exp(−i(−(r j+1 − r0)
µ +(r j+1 − r j)

µ +(r j − r0)
µ))

= exp

(
−i

N−1

∑
j=1

(−(r j+1 − r0)
µ +(r j+1 − r j)

µ +(r j − r0)
µ)

)

= exp

(
−i

N−1

∑
j=0

(r j+1 − r j)
µ

)
,

matching the previous computation of Φd(m.).

Remark 4.5. For (continuous) connections on a principal G-bundle the set of all possible
holonomy phases starting at a given point is known as the holonomy group of the connec-
tion and it encodes interesting information about the connection and the bundle (see, for
instance, [KN96]). A similar set can be constructed in the discrete setting: HolAd (q) :=
{Φd(m.,q) ∈ G : m. ∈ ΩU ′′(π(q))}. As a subset of the group G, HolAd (q) is, in general,
a submonoid (i.e., it contains the identity element and is closed under products). If, in ad-
dition, the discrete connection is symmetric (essentially, Ad(q0,q1) = Ad(q1,q0)

−1 for all
(q0,q1) ∈ U ), HolAd (q) is a subgroup of G (see [FZ] for more details on discrete holo-
nomy).

For the discrete connection Ad,µ introduced in Example 2.5, it is easy to see, using (4.3),
that HolAd (q) =U(1) for all µ > 1 while HolAd (q) = {1} if µ = 1.

Notice that identities (4.1) and (4.2) are discrete analogues of (1.1) and (1.2), although
not “exponentiated”. In the next section we make a few formal changes to consider singular
cochains with values in g := Lie(G), so that we can obtain exact discrete analogues of (1.1)
and (1.2).

5. FORMS WITH VALUES IN THE LIE ALGEBRA

The goal of this section is to define functions as
d and bs

d with values in g so that A s
d =

expG(a
s
d) and Bs

d = expG(b
s
d). Then, use them to define singular cochains that will enable

us to prove discrete analogues of (1.1) and (1.2).

5.1. Logarithms of A s
d and Bs

d . The main tool that we need is the following classical
result.
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Theorem 5.1. Let G be a Lie group with Lie algebra g. Then, the exponential map expG :
g → G is a diffeomorphism between open neighborhoods U0 and Ve of 0 ∈ g and e ∈ G.
In addition, when G is abelian, exp is a homomorphism of groups, considering g as a Lie
group with the operation given by the addition.

Proof. See Theorem 2.10.1 and Corollary 2.13.3 of [Var84]. □

The following result uses Theorem 5.1 to obtain some additional open sets.

Lemma 5.2. With the same notation of Theorem 5.1, there are open neighborhoods U ′
0 ⊂U0

and V ′
e ⊂ Ve of 0 ∈ g and e ∈ G such that expG |U ′

0
: U ′

0 → V ′
e is a diffeomorphism and the

following conditions hold.

(1) U ′
0 and V ′

e are invariant under a 7→ −a and g 7→ g−1 respectively.
(2) For any a0,a1,a2 ∈U ′

0, a0+a1+a2 ∈U0 and, when G is abelian, for any g0,g1,g2 ∈
V ′

e , we have g0g1g2 ∈Ve.

Proof. It is a standard application of topological properties, mostly continuity of the group
and algebra operations. □

In what follows we assume that the structure group G of π is abelian and that Ad : U →G
is a discrete connection form on π . Also, we fix an open subset V ⊂ M and a section
s : V → Q of π .

Definition 5.3. Let W ′′ := (A s
d )

−1(V ′
e)⊂ M×M and as

d : W ′′ →U ′
0 so that expG ◦as

d =A s
d .

We call as
d the logarithm of the local expression of Ad .

Lemma 5.4. In the context of Definition 5.3, W ′′ ⊂ V ′′ is open, and as
d is well defined and

smooth.

Proof. As A s
d : V ′′ → G is smooth, and V ′

e ⊂ G is open, W ′′ ⊂ V ′′ is open. For any
(m0,m1) ∈ W ′′, we have A s

d (m0,m1) ∈V ′
e and, as expG |U ′

0
: U ′

0 →V ′
e is a diffeomorphism,

there is a unique as
d(m0,m1) ∈U ′

0 such that expG(a
s
d(m0,m1)) = A s

d (m0,m1). The smooth-
ness of as

d follows from that of A s
d and the fact that expG |U ′

0
is a diffeomorphism. □

In the same spirit, we have the following notion.

Definition 5.5. Let W̃ ′′ := (Bs
d)

−1(Ve) ⊂ M3 and bs
d : W̃ ′′ → U0 so that expG ◦bs

d = Bs
d .

We call bs
d the logarithm of the local expression of Bd .

Lemma 5.6. In the context of Definition 5.5, we have

(1) W̃ ′′ ⊂ V ′′(3) is open and W ′′(3) ⊂ W̃ ′′, where V ′′ is introduced in Definition 2.10,
W ′′ in Definition 5.3 and V ′′(3),W ′′(3) follow (3.2).

(2) bs
d is well defined and smooth.

(3) For all (m0,m1,m2)∈W ′′(3), we have bs
d(m0,m1,m2)=−as

d(m0,m2)+as
d(m1,m2)+

as
d(m0,m1).

Proof. As Bs
d : V ′′(3) → G, W̃ ′′ = Bs

d
−1(V ′

e) ⊂ V ′′(3) and its openness follows from that
of V ′

e and the continuity of Bs
d . On the other hand, for (m0,m1,m2) ∈ W ′′(3), we have

(m j,mk) ∈ W ′′ for all j,k = 0,1,2 and, so, A s
d (m j,mk) ∈ V ′

e for all j,k = 0,1,2. Then, by
Lemma 2.15 and point (2) of Lemma 5.2, we have

Bs
d(m0,m1,m2) = A s

d (m0,m2)
−1A s

d (m1,m2)A
s

d (m0,m1) ∈Ve.
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Thus, (m0,m1,m2) ∈ (Bs
d)

−1(Ve), proving point (1). As Bs
d(W̃

′′)⊂Ve and expG |U0 : U0 →
Ve is a diffeomorphism, bs

d = (expG |U0)
−1 ◦Bs

d |W̃ ′′ is well defined and smooth, proving

point (2). In order to prove point (3) we observe that, for (m0,m1,m2) ∈ W ′′(3),

expG(b
s
d(m0,m1,m2)) = Bs

d(m0,m1,m2) = A s
d (m0,m2)

−1A s
d (m1,m2)A

s
d (m0,m1)

= (expG(a
s
d(m0,m2)))

−1 expG(a
s
d(m1,m2))expG(a

s
d(m0,m1))

= expG(−as
d(m0,m2)+as

d(m1,m2)+as
d(m0,m1)),

(5.1)

where the second equality is by Lemma 2.15, the third is because (m j,mk) ∈ W ′′ for all
j,k and the last by Theorem 5.1 and the commutativity of G. Then, as as

d(m j,mk) ∈
U ′

0, by Lemma 5.2, −as
d(m0,m2) + as

d(m1,m2) + as
d(m0,m1) ∈ U0. As we also have that

bs
d(m0,m1,m2) ∈U0 and we know that expG is injective over U0, point (3) of the statement

now follows from (5.1). □

Example 5.7. In the context of Example 2.5, we have that

g := Lie(U(1)) = iR and expU(1)(iζ ) = exp(iζ ).

If we take U0 := i(−π,π) and Ve :=U(1)∖{−1}, it is an elementary fact that expU(1) |U0 :
U0 → Ve is a diffeomorphism; the corresponding inverse map is Log(z), (the appropriate
restriction of) the principal branch of the complex logarithm. The sets U ′

0 and V ′
e constructed

in the proof of Lemma 5.2 are U ′
0 = i(−π

3 ,
π

3 ) and V ′
e = {z ∈ U(1) : |Arg(z)| ≤ π

3 } (where
Arg(z) is the argument of z that lies in (−π,π]). Following Definition 5.3, the domain of
as

d,µ is W ′′ = (A s
d )

−1(V ′
e) = {(r0,r1)∈R2

>0 : |mod2π((r1 − r0)
µ)|< π

3 }, where mod2π(r) is
the unique real number in (−π,π] congruent to r modulo 2π; then, for (r0,r1) ∈ W ′′,

as
d,µ(r0,r1) = Log(A s

d,µ(r0,r1)) = mod2π((r1 − r0)
µ).

Similarly, following Definition 5.5, we have W̃ ′′ := (Bs
d)

−1(Ve) = {(r0,r1,r2) ∈ R3
>0 :

mod2π(−(r2 − r0)
µ +(r1 − r0)

µ +(r2 − r0)
µ) ̸= π} and, for all (r0,r1,r2) ∈ W̃ ′′,

bs
d,µ(r0,r1,r2) = Log(Bs

d(r0,r1,r2)) = mod2π(−(r2 − r0)
µ +(r1 − r0)

µ +(r2 − r0)
µ).

5.2. Small singular cochains associated to as
d and bs

d . Now we reproduce the arguments
of Section 3.2 to obtain small singular cochains with values in g associated to as

d and bs
d .

Recall the open subset W ′′ ⊂ M ×M introduced in Definition 5.3. In what follows, we
work with the W ′′-small singular cochain complex (Sn,W ′′(M,g),∂ W ′′

n ).

Definition 5.8. With the notation as above, for any 1-simplex T1 ∈ S1,W ′′(M,g) we define

[as
d ](T1) := as

d(T1(1,0),T1(0,1)).

Also, for any 2-simplex T2 ∈ S2,W ′′(M,g) we define

[bs
d ](T2) := bs

d(T2(1,0,0),T2(0,1,0),T2(0,0,1)).

As the 1 and 2 simplexes freely generate S1,W ′′(M) and S2,W ′′(M) respectively, the previous
formulas uniquely define [as

d ] ∈ S1,W ′′
(M,g) and [bs

d ] ∈ S2,W ′′
(M,g).

Proposition 5.9. With the same notation as above, δW ′′
1 [as

d ] = [bs
d ] and δW ′′

2 [bs
d ] = 0.

Proof. As the 2-simplexes generate S2,W ′′(M), it suffices to verify that (δW ′′
1 [as

d ])(T2) =
[bs

d ](T2) for every such 2-simplex T2. After unraveling the definitions, this identity follows
from point (3) of Lemma 5.6 and (a “small version” of) the formula in Example 3.4. Thus,
the first identity holds. The second one is a consequence of the first and of Lemma 3.11. □
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Proposition 5.10. The cochains [A s
d ] ∈ S1,V ′′

(X ,G) and [Bs
d ] ∈ S2,V ′′

(X ,G) are naturally
elements of S1,W ′′

(X ,G) and S2,W ′′
(X ,G) respectively. As such, we have

[A s
d ] = (expG)∗[a

s
d ] and [Bs

d ] = (expG)∗[b
s
d ],

where (expG)∗ is the homomorphism of cochain complexes defined in Section 3.1 and in-
duced by expG ∈ hom(g,G).

Proof. That the V ′′-small cochains are also W ′′-small cochains follows from W ′′ ⊂ V ′′

(Lemma 5.4) and, then, because Sn,W ′′(M) ⊂ Sn,V ′′(M). To check the identities, it suffices
to see that they are satisfied on 1 and 2 simplexes T1 ∈ S1,W ′′(M) and T2 ∈ S2,W ′′(M). But
then, on evaluation both identities are satisfied because of Definitions 5.3 and 5.5. □

Theorem 5.11. Let π : Q → M be a principal G-bundle with G abelian and Ad : U → G
be a discrete connection on π . Given an open subset V ⊂ M and s : V → Q a smooth
section of π as well as m ∈V , for any m. ∈ ΩN(m) such that (m0,mk,mk+1) ∈ W ′′(3) for all
k = 0, . . . ,N −1, we have that the discrete holonomy phase around m. is

Φd(m.) = expG

(
−
∫

m̃
[as

d ]

)
, (5.2)

where m̃ ∈ S1,W ′′(M) interpolates m., that is, satisfies the conditions of Lemma 4.2. If, in
addition, there is σ̃ ∈ S2,W ′′(M) such that ∂ W ′′

2 (σ̃) = m̃, then

Φd(m.) = expG

(
−
∫

σ̃

[bs
d ]

)
. (5.3)

Proof. Observe that m̃ ∈ S1,W ′′(M) ⊂ S1,V ′′(M) so that, by Theorem 4.3, we have (4.1).
Then, using Proposition 5.10 and the fact that expG is a homomorphism,

Φd(m.) =
(∫

m̃
[A s

d ]

)−1

= ([A s
d ](m̃))−1 = (((expG)∗[a

s
d ])(m̃))−1 = expG([a

s
d ](m̃))−1

= expG(−[as
d ](m̃)) = expG

(
−
∫

m̃
[as

d ]

)
,

proving (5.2). Then, if ∂ W ′′
2 (σ̃) = m̃, (5.3) follows immediately from (5.2) and∫
m̃
[as

d ] =
∫

∂W ′′
2 (σ̃)

[as
d ] =

∫
σ̃

δ
W ′′
1 [as

d ] =
∫

σ̃

[bs
d ].

□
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