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A NOTE ON CHEBISHEV’S INEQUALITY VIA k-GENERALIZED
FRACTIONAL INTEGRALS

JUAN E. NAPOLES VALDES AND FLORENCIA RABOSSI

ABSTRACT. We establish certain integral inequalities for the Chebyshev functional in the
case of synchronous functions, using the k-generalized fractional integrals. In this new
framework, we prove several known integral inequalities.

1. INTRODUCTION

One of the most developed mathematical areas in recent years is that of integral inequali-
ties, in particular using various fractional and generalized integral operators (see, for exam-
ple, [4,6, 11, 13, 14, 19, 24]). In earlier work, generalized k-proportional fractional integral
operators with general kernel were defined, containing many of the known fractional oper-
ators.

To facilitate the understanding of this work, we need to present some preliminary results.
We will use throughout the functions I (see [26, 28, 36, 37]) and I'; (defined in [9]):

['(z) :/ o7 le7"dT, Re(z) >0,
0

Ti(z) = / e ke, k>0.
0

It is clear that if k — 1 we have [i(z) — I'(z), Ti(z) = (k)i 'T' (%), and Ty(z + k) =
zZI'k(z). We also define the k-beta function as follows:

1 1 u v
Bi(u,v) = %/0 i1 —1)itdr.

Notice that By(u,v) = 1B(%,¥) and By(u,v) = %

Although there is a “basic” fractional integral operator, that of Riemann-Liouville, this
has been the origin of various extensions and generalizations, one of which we present in
this work, from the point of view of differential operators; by manipulating simple alge-
braic identities, we can follow the idea of fractional differential operators of the Riemann—
Liouville or Caputo type. From the simple facts x =1+ o —1 or & = ot — 1+ 1 we have,
respectively,

®pef(e) = L0}

Dese) =y (4 ) 0

For the reader’s convenience, we present several definitions of fractional integrals, some
of them very recent (with 0 < a; < T < ay < o). One of the first operators that can be called
fractional is the Riemann-Liouville fractional derivative of order a € C, with Re(o) > 0,
defined as follows (see [12]).
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172 JUAN E. NAPOLES VALDES AND FLORENCIA RABOSSI

Definition 1.1. Let a; < ap and f € L'((a;,a);R). The right- and left-sided Riemann—
Liouville fractional integrals of order ¢, with Re(ct) > 0, are defined, respectively, by

S0 = Fg (=0 () ds

and

RLJCZ, (1) = 1“(104)/,a2 (s—1)* " £(s)ds,

with ¢t € (al,az).
The following are other definitions of fractional integral operators.

Definition 1.2 ([15]). Leta; <a; and f € L'((a;,a,);R). The right- and left-sided Hadamard
fractional integrals of order o, with Re(a) > 0, are defined, respectively, by

N W L

and

HE 10 = 00 | (10g2) " g,

with ¢ € (aj,ay).

New fractional integral operators, called the Katugampola fractional integrals, were in-
troduced in [17]:

Definition 1.3. Let 0 < a; <ay. Let f: [a1,a2] — R be an integrable function. Let & € (0, 1)
and p > 0 be two fixed real numbers. The right- and left-sided Katugampola fractional
integrals of order & are defined, respectively, by

ap _ plftx t Spfl
kal+f(t) - F(a) /a1 (ZP _Sp)l—af(s)ds’

and

ap _pl—a a tp—l
2= | oyl s

with ¢ € (al,ag).
The left- and right-sided Riemann-Liouville k-fractional integrals are given in [22].

Definition 1.4. Let f € Li[a;,az]. Then the Riemann-Liouville k-fractional integrals of
order a € C, with Re(a) > 0 and k > 0, are given by the expressions

U0 = G L =T e wsan

_ 1
k()

I flw) [f a0t @, u<a

A more general definition of the Riemann-Liouville fractional integrals is given in [18].
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Definition 1.5. Let f : [a;,a;] — R be an integrable function. Let g be an increasing and
positive function on (a;,az] with a continuous derivative g’ on (a;,az). The left- and right-
sided fractional integrals of f with respect to g on [a;,a;] of order o € C, with Re(a) > 0,
are expressed by

00 = gy | (600 - ¢(0)* ¥ @ @an s

Jaj

el flu) = F(la) / " (s(7) —gw)* ¢ (D) f(2)dr, u<ar

The following is a k-fractional analogue of Definition 1.5 (see [3, 20, 29]):

Definition 1.6. Let f : [a;,az] — R be an integrable function. Let g be an increasing and
positive function on (ay,a;] with a continuous derivative g’ on (a,a;). The left- and right-
sided k-fractional integrals of f with respect to g on [a;,a;] of order o € C, with Re(or) > 0
and k > 0, are expressed by

") = kl“kl(a) / (s(w) ~ ¢(0) "' (D) f(v)dT, u>ay,

U0 = g ) 60 —e)

An interesting definition is that of the generalized proportional fractional (GPF) integral
(see [30]).

-1

=R

g(t)f(r)dr, u<ap.

Definition 1.7. Let U € Xl‘II,(O, +00), 0 < aj < ay, there is an increasing, positive monotone
function ¥ defined on [0, +o0) having continuous derivative ¥ on [0, +o0) with ¥(0) = 0.
Then the left- and right-sided GPF integral operator of a function U in the sense of another
function ¥ of order 1 are given by

L sexp |5 (R(e) - w(©))]
(n)/ (

Yr1,6 9
P9 = g W(g)—W(E)

U(‘:)\P/(é)dév V1 <6,

and

l—|

S (w(E) - 2(9))] W e
BTG et

where the proportionality index g € (0,1], n € C,Re(n) > 0, and I is the gamma function.

exp
¥rlcU(g) = gnrl(n)/g w

The functional space on which we develop our work is the following.

Definition 1.8. Let 2 € L; [0, +<) and let F be a continuous and positive function on [0, +eo)
with F(0) = 0. The space X/ (0,+o0) (1 < g < 4o0) consists of those real-valued Lebesgue
measurable functions 4 on [0, +eo) for which

ap q
il = ([ NP 0)as) < e, 1< 4
a

and, for the case g = oo,
[}z = esssup[F (s)h(s)].

0<s<o0

We are now in a position to define the generalized integral operators that we will use in
our work (see [23]).
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Definition 1.9. Let 1 € X/(0,+c) and let F be a continuous, positive function on [0, +co)
with F(0) = 0. The right- and left-sided generalized k-proportional fractional integral op-
erators with general kernel of order 7y of & are defined, respectively, by

i on L FGEL(s). MF)hG)
JFv“'*h(X)_Mka(Y) /al (Fy (x,9)' 1 ‘ v
and
LA _ 1 “ G(F_(5,2), M)F(s)h(s) |
JF7a2_h(x) - )Lykrk(y)/x (F_(s7%))1_% d 9 (2)

where the proportionality index A € (0,1), y € C, Re(y) > 0, x € (a1,a2), F1(x,s) =
JEF(r)dr,F_(s,x) = [, F(r)dr,and G(F{(x,s5),1) = G(F_(x,s),1) = 1.

Of course there are other integral fractional operators; variations of the previous ones can
be considered, but we will omit them.

Remark 1.10. Next, we will show that many integral operators are particular cases of (1)
and (2).
(1) If in Definition 1.9 we make k =1, F = 1, and A = 1, we obtain the Riemann—
Liouville operators of Definition 1.1.
(2) Under the above conditions, if k # 1 then, from Definition 1.9, the k-fractional
operators of [22] are obtained.
(3) If F(s) = %, A =1, and k = 1, then the Hadamard fractional operator is reproduced;
see Definition 1.2 and [15, 31].
4) IfF(s) = sip, A =1, and k = 1, then we obtain the Katugampola fractional operator
of Definition 1.3; see [17].
(5) Choosing A =1, F(s) = g'(s), and k = 1, we get the integral operator of [18].
(6) Taking F(s) =1, k# 1, and G(F(x,s),4) = exp {% (ln%)] we obtain the in-
tegral operator of [27].
(7) We can obtain an integral operator with a non-singular nucleus, of the Riemann—
Liouville type, by putting v =k =1, F(t) = 1, and G(Fyi(x,s),a) =
exp [—1=%(x —s)]; this is a slight modification of the operator of [2].

(8) Choosing A # 1, F(s) = ¢/(s). k=1, and G(F (.5). A) = exp | 471 (g() — 8(s)) .
we obtain the integral operator of [30], called GPF, presented in Definition 1.7.
Theorem 1.11. Under the conditions a; < ¢ < ap, 8 >0, 6 > 0, and ¥ > 0, suppose that

o is a continuous positive non-decreasing function on |ay,a;) and h : |ay,a3] — R™ is also
a continuous positive function. Then the following inequality is valid:

T 6= a)®h(e)o (VL h(e) > Ii (g —an) h(QEE  [h(g)w® ().

2. RESULTS

One of the best known integral inequalities is Chebishev’s inequality (see [7]), which
establishes a relationship between the integral of the product of two functions and the prod-
uct of their integrals. This inequality was stated in the framework of the classical Riemann

integral:
o [Crweanz (G [rwa) (5 [awa). o
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where f and g are two integrable and synchronous functions on [a,b], a < b, a,b € R.
Inequality (3) has many applications in diverse research subjects such as numerical quad-
rature, transform theory, probability, existence of solutions of differential equations and
statistical problems. Many authors have investigated generalizations of the Chebyshev in-
equality (3); these are called Chebyshev-type inequalities (see e.g. [1, 5, 8, 10, 16, 21, 25,
33, 34, 35]). This inequality will be generalized in the present work, using the generalized
operator of Definition 1.9; many of the inequalities reported in the literature will be obtained
as particular cases.

Definition 2.1. Two functions f and g are said to be synchronous (resp., asynchronous) on
[a,b] if

((f(u) = f(v))(g(u) = g(v))) = 0 (resp., < 0)
for all u,v € [0, +o0).

In Chebyshev’s work cited above, the following functional is presented which has been
the subject of attention in many investigations:

:8) =5 a/f dx_(b a/f dx) <b1/hg(x)dx>’

where f and g are two integrable functions which are synchronous on [a, b].
We will consider the following generalization of the functional 7'(f,g):

Zk Z)L
y 72 JEn FOOIE 8(x)
C(f.8) =Jtn  (fe)(x) — | Dot mmrat :

J}al+(1)(%)
with
72 o X G(F. (o, u), A)F (u)(1) du
JFalJr(l)(X)_AYkl—wk(,y)/a (F+(%7 ))1 %

Our first result is the following.

Theorem 2.2. Let f and g be two synchronous funcnons on |0, ) Then forall y > a; > 0,
o >0, A €(0,1), and y € C with Re(y) > 0, we have Clk (f,g) >

Proof. As f and g are synchronous on [0, o), it follows that, for all u,v > 0, we have

(f () = f(v))(g(u) —g(v)) = 0.

Therefore,
f(u)g(u)+ ( )8(v) = f(u)g(v) + f(v)g(u). ©)
Multiplying both sides of (4) by Mkrk(y) G(ZF ((x ”)))]_FZ(”) and then integrating the result with
xu))'

respect to u over (ay, ), we obtain

1 /" G(EF (. u). MF () f(w)g(u)du  [(v)g(v) /" G(Fy (x,u), A)F(u)du
ATKEL(Y) Ja (F (o) AKE) Jar (B () F

8(v) /" GE, (o, u), M) fWFu)du  f(v) /" G(Fy (x,u), A)g(u)F (u)du

ATE() (F (o))" ATKTL(7) (Fy (o)

expression that we can write as
ra

Fa1+(fg)( )+ )8 rg, (1) (2) = 8(v )J£a1+(f)( )+ f(v) pa1+( )(x)- )
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G(F: () A)F ( )

V)
inequality with respect to v over (ay, X ), we obtain

Multiplying both sides of (5) by Mkll_k i and then integrating the resulting

T QIR ()0 + I (F) O (D () o

> I QOIEL (D) I (DT (@) (),

that is,

J£a1+(1)( )Fal+(fg)( )= Falﬁ(g)(x)h’fm(f)(x)-

Reordering and taking into account the definition of C f (f,g), the desired inequality is ob-
tained. This completes the proof. 0

Remark 2.3. If in Theorem 2.2 we consider k = 1, a; = 1, and F(s) = {, we have the
Hadamard integral and the above result covers Theorem 3.1 of [8].

Theorem 2.4. Let f and g be two synchronous functions on [0,o). Then forall x >a; >0,
A €(0,1), and y,6 € C, with Re(y) > 0 and Re(d) > 0, we have C"”‘ (f,g) >0, where

1 e (r) Fal+<fg><>
W I ow)

) Jffi.+<g><x>fiit+<f><x>+J§;?+<f><x>f,§;’t+<g><x>
It Wk )

is the generalization of the functional T (f,g) for y and 6.

Proof. Multiplying both sides of (5) by 75 kl£k G OF. x ’v)’ll)b;(v) and then integrating the re-
(Fe(xv)
sulting inequality with respect to v over (aj, ), we obtain

IR I e+t Ik () ()
> I @Ik (D) I (N IEr @ ().

Dividing both sides of this inequality by JFa1+(1)(x>JI];a1+(1)(%>’ we get

T 00 I U0 _ s 0G0y (D00 + T, (D (9)0)
Ta W00 Il me T DGO (D)

»\m

Y
Reordering and taking into account the definition of C;'* (f, g), the desired inequality is
obtained. This completes the proof. O

Remark 2.5. Note that

(1) Applying Theorem 2.4 for ¥ = 3, we obtain Theorem 2.2.
Y
k

(2) If in Theorem 2.4 we consider k = 1 and y= 6 = 1, then C;}*

o

(f:8)isT(f.8).
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Theorem 2.6. Let (fi),_; , ., be positive increasing functions on [0,0). Then for all ¥ >
a; >0,1€(0,1), and}/E C wzth Re(y) > 0, we have

T (Hf) @ = [ ow)] T R w.

i=1

Proof. We will use induction. Crearly, for n = 1,

I e =1 (@)

forally >a; >0, >0,4 €(0,1), and y € C with Re(y) > 0.
For n = 2, applying equation (6), we obtain

A G = [ @] B Ik .

Suppose that by induction hyphotesis

_pn—1

(m) > [k o] [Tk ()00

forall y >a; >0, >0,4 €(0,1), and y € C with Re(y) > 0.

Now, since (f;)_; .., are positive and increasing on [0, ), we have that ([T, LA ()
is also positive and 1ncreasing on [0,00). Therefore we can apply Theorem 2.2 to the func-
tions g = H?;ll fi and f = f;; we thus obtain

Fa1+ (Hft> Fa1+ (Hflfn> Fa1+ (8f)(x)

1—1

> [ )] IR @I (W)

> [k @] A, (H>< VL ()
S — nn—1

> [k ] [« ><x>}2 T4 (0 00IE ) )
ql—-n_n

> o] TR ()
This completes the proof. O

The previous results can be extended if we consider a certain positive “weight” func-
tion A.

Theorem 2.7. Let f and g be two synchronous functions on [0,0), h > 0. Then for all
x>a >0, A>0,andy e CwithRe(y) > 0, we have the following inequality:

J§a1+(1)(x) Fa1+(fgh)( )>sz~’al+(g)( )J£;1+(fh)( )+ J£;1+(f)(%)1£’al+(gh)(%)
J£;1+(fg)( )J£;1+(h)(%)-

Proof. Since h > 0 and the functions f and g are synchronous on [0, ), we have that

(f () = f(v)(8(u) = 8(v)) (h(u) +h(v)) = 0
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for all u,v > 0. Then,
F)g(u)h(u) + f(v)g()h(v) > f(u)g(v)h(u) + f(v)g(u)h(u) — f(v)g(v)h(u)
— f(w)g(w)h(v) + f(u)g(v)h(v) + f(v)g(u)h(v).

G(&(x’“)’ll)Fy(“) and then integrating the resulting
(Fi(xu) *

inequality with respect to u over (aj, ), we obtain

1 /”‘ G(F(2,u), MF () f()g(wh(u)du _ f(v)g(v hV) X G(E(x,u), F(M)
(7)

(7

Multiplying both sides of (7) by Mk%k(y)

YKLk (y (F. (g, u) ¢ AYKL(y) (Fy(x,u))'
g(v) /X G(F (%, u), A)F (u)f (u)h(u)d . fo) /"‘ G(F+(X,M)J) (M)g(u)h(“)d”
= ATKEL(Y) Jay (Fy (ou)) ' ~F ATKEL(Y) Jay (F ()" F

AGO) /" G(Fy (x,u), A)F (wh(u)du — h(v) /" G(Fy (2,u), A)F (u) f () g(ut) du

AKTL(Y) Jay (Fy (x,u)) ' F ATKL(Y) Ja (Fa (o)1
N g(v)h(v) /" G(F4(x,u), A)F (u) f(u)du . JW)h(v) /" G(F(x,u), A)F (u)g(u)du
ATIT(Y) Ja (Fy(x,u)) ATKT(Y) Ja, (Fy(x,u)) ’

expression that we can write as

Fal+(fgh)( )+ f(v)g(v)h ()J£a1+(1)(x)
>g(v) Fa1+(fh)( )+ f() Fa1+(gh)(X)

— W) WIEL )G — I (f9) ()
+ RIS (N0 + FORGIEE () (x)-

GEL (X)) AF ()

7
_ _ _ (F ()
inequality with respect to v over (ay, ), we obtain

®)

and then integrating the resulting

Multiplying both sides of (8) by M’kllk(}/)
A
Jp’fal+(1)(%) Fa1+(fgh) )+J£al+(fgh)( M+ (1))

(x
>J;al+< )(x) W( )
( %

+J§~al+(f) ml+ gh)(x) - Fa1+(fg)(%)1§al+(h)(x)
Fa1+<h>< VEL (P )+ (e 0T L () ()
IR (fm) (x >JF,;ﬁ+<g><x>,

that is,
12 9 1) Ia 1A £
Tt anr (DO, 4 (f8) () = Jpa1+( )(X)Jpa1+(fh)(X) T (F) )T, 1 (8h) (X)

T R (W) ().
O

Remark 2.8. Applying Theorem 2.7 for h = 1, we obtain Theorem 2.2.

Theorem 2.9. Let f and g be two synchronous functions on [0,00) and h > 0. Then for
all y >a; >0, A € (0,1), y € CwithRe(y) >0, and 6 € C with Re(8) > 0, we have the
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following inequality:

TR W OOTEE  (Fe) ) + IR (feh) (x )J§ﬁ+(h)(x)

= J£;1+(gh)(x)1§,ﬁ+(fh)( ) +J";l+(fh)( )Jp’i;l+(gh)(x)-

Proof. Multiplying both sides of (8) by 75 kllk ) GlE:(x ’”)”f)";(”) and then integrating the re-
(Fr(xv)
sulting inequality with respect to v over (ay, X ), we obtain

e Fal+<fgh>< VIR (FeOIEL L (D)

>J£;]+( )(%)Jﬁ,;]+(fh)( )+Jk;]+(f)(x)féﬁ+(gh)(x)
Jﬁ;l+(fg)( )J§;1+(h)(x) Jﬁ;l+(h)( )Fa1+(fg)( )
+J£;1+(gh)(x)fﬁ;l+(f)(x) J£;1+(fh)( VI (8)(0).

Remark 2.10. Applying Theorem 2.9 for & = 1, we obtain Theorem 2.4.

More precise results can be obtained if we impose additional conditions on the function &
in the previous Theorem.

Theorem 2.11. Let f, g and h be three monotonic functions defined on [0, ) satisfying the
inequality

(f () = f(v))(8(u) = g (v)) (h(u) — h(v)) = 0
forallu,v € [a1,x]. Then, forall x >a; >0, 2 € (0,1), ye CwithRe(y) >0, and 6 € C
with Re(d) > 0, we have

Jljjiq—&-(l)(X)J]jéﬁ-i-(fgh)( )+Jz§f+(fgh)( )Jf’f;]+(1)(%)

J,éa1+<g>< )\ £a1+(fh)(x)+J§ﬁ+(f)(x)fﬁgl+(gh)(x)

!

Fa1+(fg)( )Fal+(h)(%) J£a+(h)( )Fa1+(fg)( )
+J£;1+(gh)(x)ff~,;l+(f )(x) +J£;1+(fh)(% )Jﬁ,;.+(g)(% )-

Proof. As in the proof of Theorem 2.9, if we multiply both sides of (8) by Wk(& X
MW and then integrate the resulting inequality with respect to v over (ap, %),
(Fy(xv) *

we obtain the desired inequality. Il

An inequality involving the square of the functions f and g can be stated as follows.

Theorem 2.12. Let f and g be defined on [0,°). Then for all x > a; >0, A € (0,1), and
y € C with Re(y) > 0, we have:

TEA U P+ 2G0) = 20EE r 0 ) ©
and
T POOIER 200 = UL )0, (10)
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Proof. Since (f(u) —g(v))* > 0, we have
P2 () +82(v) = 2f (w)g(v). (1)
Olvi : 1 G(F(x.u).A)F (u) : : :
Multiplying both sides of (11) by TR (5 gL and then integrating the resulting
inequality with respect to u and v over (ay, X ), we obtain (9).

On the other hand, since (f(u)g(v) — f(v)g(u))? > 0, the same arguments as before let
us obtain (10). ]

Theorem 2.13. Let f and g be defined on [0,00). Then for all ¥ >a; >0, L € (0,1), ye C
with Re(y) > 0, and § € C with Re(d) > 0, we have the following integral inequalities:

YA Q,)L YA éﬂ;L A é,l
T P07 (1) + 75 +(1>Jk +g2(x) >2J} J(x)f;,afg(x), (12)
I S A S
I POIEE 0+ POIEE00 > 0 It ). a3)
Proof. Like before, since (f(u) — g(v))? > 0, we have
F2u)+g2(0v) 2 2£ (w)g(v). (14)
v : 1 G(Fy(g,u),A)F (1) 1 GEL (V) A)F ()
Multiplying both sides of (14) by TR (5 gL and 250 (1F+(x,v))"% , and

then integrating the resulting inequality with respect to u and v over (aj, X ), respectively,
we obtain (12).

On the other hand, since (f(u)g(v) — f(v)g(u))? > 0, using the same arguments as before
we obtain (13). O

Remark 2.14. If we consider y = §, we obtain Theorem 2.12.
The following is a result in a different direction.

Theorem 2.15. Let f : R — R with f(u) = [; F(z,5)f(z)dz, u>a; >0, A € (0,1), and
y € C with Re(y) > 0. Then, for y > k > 0, we have
ek 5

F*f( ) 7JFa1f(X)

Proof. Here

Y2 -
J;,affOC) =

ﬁ

| /waw, W, MF@)f(w)
ML) Jor (B (7, >>1

— 1 /XG(IEh%7 A (u /Fzs 7)dzdu.
AYRL(Y) Jay (Fi(x,u) 71

Then, by Dirichlet’s formula, we see that the last expression becomes
it | @@ [ GO () A F ) (- () e
AYEL (1Y) Jay z
! /% G(F (2, u), A)F () f(u)

Ytk

(F-‘r(%vu)) o

T ATy k) Jan

= kJ +f ( )
This completes the proof. g
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3. CONCLUSIONS

In this work we introduce a generalized formulation of the Riemann—Liouville fractional
integral, which contains, as particular cases, many of the integral operators reported in the
literature. In this context, we present a number of integral inequalities that generalize several
known inequalities.

We want to highlight the strength of Definition 1.9: if we consider the kernel F(),s) =
x'7* and G = 1, we obtain a variant of the (k,s)-Riemann—Liouville fractional integral
of [32]:

=R

s 0 _ (2_S)]_
a i f(u) = k()

This opens up wide possibilities of obtaining new integral inequalities.
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