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PRECONTACT RELATIONS AND QUASI-MODAL OPERATORS
IN BOOLEAN ALGEBRAS

SERGIO A. CELANI

ABSTRACT. In Boolean algebras the notion of quasi-modal operator is equivalent to the
notion of precontact relation. This equivalence offers a new perspective to study the rep-
resentation of some classes of precontact Boolean algebras. In this article we review some
known results on the representation by means of certain filters, called round filters, of the
class of compingent Boolean algebras introduced by H. de Vries. The research of these
structures using the quasi-modal operators allows the application of algebraic and rela-
tional techniques from modal logic. We will show some new characterizations of the maxi-
mal round filters (called ends), and we will review the representation theorem proved by H.
de Vries for compingent Boolean algebras.

1. INTRODUCTION

This is a survey paper on Boolean algebras endowed with a precontact or subordination
relation, but from the viewpoint of quasi-modal operators. We will show that the Boolean
algebras endowed with a precontact relation is equivalent to the study of quasi-modal al-
gebras. We will review some known results given by H. de Vries [7]] on the representation
of compingent Boolean algebras by means of certain filters, called round filters, but using
the theory of Boolean algebras endowed with a quasi-modal operator. We will also present
some new results on characterization of round filters in some classes of quasi-modal alge-
bras.

In the same way that the Boolean algebra is an abstraction of the powerset of a set, the
Boolean algebras endowed with a precontact relation are an abstraction of the proximity
spaces [13} 14} [19 23]. There exist many classes of Boolean algebras endowed with some
type of precontact relation. As an example, we can mention the Boolean contact alge-
bras defined in [[L1], or the Boolean connection algebras defined in [21]], or the complete
compingent Boolean algebras, also called de Vries algebras, introduced by H. de Vries in
[7]. As it is well known, an alternative axiomatization of precontact Boolean algebras can
be given via a new relation <. This relation is known under various names, such as “well
inside,” “well below,” “interior parthood,” or “deep inclusion.” In [3] the relation < is called
subordination relation.

The famous Stone Duality Theorem [22] establishes that the category of all zero-dimen-
sional compact Hausdorff spaces and all continuous maps between them is dually equivalent
to the category of all Boolean algebras and all Boolean homomorphisms between them. This
duality has been generalized in several directions. In 1962, H. de Vries [[7] introduced the
notion of compingent Boolean algebra and proved that the category of all compact Haus-
dorff spaces and all continuous maps between them is dually equivalent to the category
of de Vries algebras with appropriate morphisms between them. Further refinements of
de Vries duality were obtained by Fedorchuk [[16] and recently by Bezhanishvili [2]] and
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Dimov [10]. In the topological representation of Boolean algebra the points of the dual
Stone space are the ultrafilters of the algebra. However, in the representation given by H.
de Vries, the points of the dual space are a particular kind of filters, called maximal round
filters or ends. It is easy to see that these filters are a particular class of A-filters [4].

It is well known that the variety of modal algebras is the algebraic semantic of classical
normal modal logics [20]. The notions of quasi-modal operator and quasi-modal algebra
were introduced in [4], as a generalization of the notions of modal operator and modal
algebra, respectively. A quasi-modal operator in a Boolean algebra A, is a map A that sends
each element a € A to an ideal Aa of A, and satisfies analogous conditions to the modal
operator [J of modal algebras. A quasi-modal algebra is a pair (A,A) where A is a Boolean
algebra and A is a quasi-modal operator. Any modal operator [ defined in a Boolean algebra
A defines a quasi-modal operator A if we put Ag(a) = I(Ca), for each a € A. This is the
most basic example of quasi-modal operator.

The theory of quasi-modal operators is closely connected with the theory of subordina-
tions, and thus, with the theory of precontact relations. Given a subordination relation <
in a Boolean algebra A, we can prove that the set A (b) = {a € A: b < a} is an ideal of A.
So, we can define a map A~ that sends elements of A to ideals of A. As we shall see, this
map is a quasi-modal operator. Conversely, if we have a quasi-modal operator A defined in
a Boolean algebra A, then the relation < defined by a < b iff a € Ab, is a subordination
relation on A (for the details see Theorem [13). Thus, we have that the notions of subordi-
nation relation and quasi-modal operator are equivalent. This fact has strong consequences,
because it puts into evidence that there exists a connection between subordination relations
and modal operators in Boolean algebras (see Example [3)).

The paper is organized as follows. In Section 2 we shall start recalling some basic defini-
tions and results on quasi-modal operators in Boolean algebras. The majority of the results
of this section are in [4], [5] and [6], except for the characterization given in Lemma [9]
In Section 3 we will recall the definition of precontact or proximity relation defined in a
Boolean algebra [13]] [[14] [[18], and the equivalent notion of subordination relation. In this
section we will see that the subordination relations are interdefinable with the quasi-modal
operators (Theorem [I5)). As a consequence, we have that precontac relations, subordina-
tions and quasi-modal operator are equivalent notions. This fact is very important, because
these equivalences show a connection between modal logic and precontact structures.

In Section 4 we will study a particular class of filters in quasi-modal algebras, called
round filter. The notion of A-filters was introduced in [4], and in [5] it was proven that the
family of all A-filters of a quasi-modal algebra is a lattice dually equivalent to the family
of Boolean congruences that preserves, in a certain sense, the quasi-modal operator. The
A-filters are a generalization of the notion of normal or open filters in modal algebras [20].
Some results of this section are new. For example, in Theorems [28] and [29] we obtain new
characterizations of the ends in certain classes of quasi-modal algebras.

In Section 5 we will discuss the representation theory of normal quasi-monadic alge-
bras in terms of maximal round filters. We note that these algebras are equivalent to the
compingent Boolean algebras defined in [[7]. Most of the results presented in this section
are in [[7]], and are demonstrated by using the notion of subordination relation. Here we use
the notion of quasi-modal operator, and we will give some new proofs. We will conclude
this section proving de Vries’s representation theorem for complete normal quasi-monadic
algebras, also called de Vries algebras.
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2. QUASI-MODAL ALGEBRAS

We assume that the reader is familiar with basic concepts of distributive lattices and
Boolean algebras (see [[1]] and [[17]).

Let A= (A,V,A,—,0,1) be a Boolean algebra. By Ul(A) we shall denote the set of all
ultrafilters (or proper maximal filters) of A. By Id(A) and Fi(A) we shall denote the families
of all ideals and filters of A, respectively. The filter (ideal) generated by a subset Y C A
is denoted by F (Y) (I(Y)). If Y = {a}, then we write F(a) = [a)(I(a) = (a]). The set
complement of a subset ¥ C A will be denoted by Y or A —Y. We recall that Id(A) is a
lattice. We denote the meet and the join in the lattice Id (A) by A and by VY, respectively,

Let X be a topological space. We denote the closure of Y and the interior of Y in X,
by cl(Y) and by int(Y), respectively. We recall that a subset U of X is regular open if
int(cl(U)) = U. Thus, regular open sets are the interiors of closed sets. The definition of
a regular closed set is dual. It is well-known (see, e.g.,[1]]) that the collection RO(X) of
regular open subsets of X forms a complete Boolean algebra where 0 is the bottom element,
X is the top element, and where the operations are defined as follows:

e —U=int(X-0U),

e UNV=UNV,

o ULV =int(cl(UUV)).
The infinite meets and joins in RO(X) are given by A U; = int(N\U;) and \/ U; = int(cl(JU;),
respectively.

A modal algebra is a Boolean algebra A with an operator [J: A — A such that [J1 =1,
and O (a Ab) = Oa ADOb, for all a,b € A. Modal algebras provide models of propositional
normal modal logics in the same way as Boolean algebras are models of classical logic.
In particular, the variety of all modal algebras is the equivalent algebraic semantics of the
modal logic K in the sense of abstract algebraic logic, and the lattice of its subvarieties is
dually isomorphic to the lattice of normal modal logics (for more information on the relation
between modal logic and modal algebras see [[20])

We recall the notion of quasi-modal operator introduced in [4] (see also [15,[6]).

Definition 1. Let A be a Boolean algebra. A quasi-modal operator defined in A is a function
A:A —1d(A) such that it satisfies the following conditions for all a,b € A:

QL. A(aAb) =AanAb,

Q2. Al =A.
A pair (A,A), where A: A — Id (A) is a quasi-modal operator and A is a Boolean algebra, is

called a quasi-modal algebra. We note that a quasi-modal operator A is monotonic, because
ifa<b,thena=aAb,and so Aa=A(aAb) =AaNAb,i.e., Aa C Ab.

Example 2. Let A be a Boolean algebra. The map I4 : A — Id(A) given by I4(a) = (al, for
each a € A, is clearly a quasi-modal operator on A.

Example 3. Let A be a Boolean algebra. A quasi-modal operator A defined in A is called
a principal if Aa is a principal ideal, for each a € A. In other words, for each a € A, there
exists b € A such that Aa = (b]. If A is principal, then we define a function [Jp : A — A as

Oa(a) = b iff Aa=(b].

Then it is easy to see that (A,[J,) is a modal algebra.
Conversely, if (A,[J) is a modal algebra, then the map A : A — Id (A) defined by

Ar(a) =1(Ca),
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for each a € A, is a quasi-modal operator. So (A,An) is a quasi-modal algebra. Thus, the
class of modal algebras can be identified with the class of pairs (A,A) , where A is a Boolean
algebra and A is a principal quasi-modal operator.

Example 4. Let X be a nonempty set and let R be a binary relation on X. The pair (X,R)
is known in modal logic with the name of Kripke frame, or adjacency spaces or precontact
space [8l 23]. Given a Kripke frame (X,R), let us take a class Z of subsets of X which
form a Boolean algebra under the set-theoretic operations of union U, intersection N, and
complement U¢ = X — U, with U € %, and define a map A :  — 1d(%) by

AU)={VeRB:vV_COgU)},
where U € %, and
Or(U)={x€X:R(x) CU}.
Then A is a quasi-modal operator and thus the pair (%, Ag) is a quasi-modal algebra.

Let A be a Boolean algebra. For each A quasi-modal operator defined on A we define the
dual quasi-modal operator
V:A—Fi(A)
by Va = —=A—a, where
—“Ax={-y:y€ Ax}.
It is easy to see that the function V satisfies the following conditions:

Q3. V(aVvb)=VanVb,
Q4. VO —A.

Definition 5. Let (A,A) be a quasi-modal algebra. For each C C A define the following
subsets of A:
(1) AC=1I(U Ac) =V ecAc,

ceC

(2) VC=F(Ueec Ve) = Veec Ve,

(3) A1 (C)={acA:AanC # 0},

4 V1 (C)={acA:VaClC}.

(5) If C = [a), we write A~!(a) instead of A~! ([a)).

In the following lemma we summarize some important properties.

Lemma 6. Let (A,A) be a quasi-modal algebra.

(1) A"V (F) =U,ep A (a) € Fi(A), for each F € Fi(A).

(2) If P € UI(B), then V=1 (P)° € Id (A).

(3) Al =U,e;Aa, for each I € 1d(A).

@ A(I] ﬂ[z) = A(I]) ﬂA([z),fOi‘ all 1,1, € Id(A)
(5) Let P Ul(A) and I € 1d (A). Then

AINP=0«30€Ul(A) [A " (P)CQandINQ =0].
Proof. See [4] and [5]]. O

Theorem 7. Let (A,A) be a quasi-modal algebra. Let a € A and P € U1(A). Then

(1) ae A" (P) & VQeUl(A): A~ (P) C Qthena € Q,
(2 acV ' (P)=30cUI(A):QCV I (P)andac Q.

Proof. See [4]. O
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Let (A,A) be a quasi-modal algebra. We define a relation Ry C Ul(A) x Ul(A) by

(PO)ERy & YacA:AaNP#0thenacQ
s AN(P)CO.

The relation Ry is used in [4] in the representation of quasi-modal algebras. We note that
some of these results are similar to the results given in the context of precontact or contact
algebras (see [13]], [14] and [18]).

Theorem 8. [4] Let (A, A) be a quasi-modal algebra. Then
(1) Aa C1(a) is valid in A iff Ra is reflexive.
(2) Aa C Aais valid in A iff Ra is transitive.
(3) I(a) CN{Ax:x € Va} isvalid in A iff Ra is symmetrical.
(4) A0 = {0} is valid in A iff Ry is serial.

Let (A,A) be a quasi-modal algebra. Following the nomenclature introduced in [4], we
shall say that:
(1) (A,A) is a quasi-transitive algebra if Aa C A’a, for all a € A,
(2) (A,A) is a quasi-topological algebra if Aa C I (a) and Aa C A’a, for all a € A,
(3) (A,A) is a quasi-monadic algebra if it is a quasi-topological algebra such that
I(a) CN{Ax:x € Va}, foralla € A.
So, by Theorem [8] we get that (A,A) is a quasi-topological algebra iff the relation R, is
reflexive and transitive, and (A, A) is a quasi-monadic algebra iff the relation R, is an equiv-
alence.
Now we give another characterization of the property (3) of Theorem [§]

Lemma 9. Let (A,A) be a quasi-modal algebra. Then the following conditions are equiva-
lent:

(1) a € Ab implies —~b € A—a;

(2) I(a) CN{Ax:x € Va}.

Proof. (1) = (2). Let b <a. If b ¢ (,cv,Ax, then there exists x € Va = =A—a such that
b ¢ Ax. We note that x € —A—a iff —x € A—a. Then by assumption ——a = a € A——x = Ax,
i.e., a € Ax, but as A is decreasing, b € Ax, which is a contradiction.

(2) = (1). Suppose that there are elements a,b € A such that a € Ab but —b ¢ A—a.
Then there exists P € Ul(A) such that A—.aNP =0 and —b € P. By Theorem there exists
Q € Ul(A) such that A~ (P) C Q and —a ¢ Q. By Theorem[8| A~!(Q) C P. Asb ¢ P, we
have that AbN Q = 0, but this is a contradiction because a € Q. Thus —b € A—a. O

Remark 10. (1) Let (A,A) be a quasi-modal algebra. It is easy to see that

ac€AAb=A’b iff ccA(ceAbandac Ac). 2.1
(2) If (A, A) is a quasi-topological algebra, then the following equation is valid.
AaY Ab = A(AaY Ab). 2.2)

Indeed, as Aa C AaY Ab, and A is monotonic we get A>a = Aa C A(AaY Ab). Similarly, Ab C
A(Aa N Ab). Thus AaY Ab C A(AaY Ab). Let ¢ € A(AaY Ab) = I(U{Ax:x € AaV Ab}).
Then there exists a finite subset {x1,...,x,} C AaY Ab and y; € Ax;, for 1 <i < n, such that
c<y1V...Vy,. Asy; € Ax; CA(x; V... Vxy), we have that y; V... Vy, EA(x V... VXx,),
and consequently ¢ € A(x; V... Vx,). Letx=x; V... Vx,. Soc € Ax and x € AaY Ab. As
Ax C I(x), we have ¢ < x, and since Aa ¥ Ab is an ideal, we deduce that ¢ € Aa Y Ab. Thus

(2.2)) is valid.
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3. PRECONTACT RELATIONS, SUBORDINATION RELATIONS,
AND QUASI-MODAL OPERATORS

Standard models of non-discrete theories of space are the contact algebras of regular
open subsets of some topological space. In a sense these topological models reflect the
continuous nature of the space ([8]] [13]] [23]]). However, in some applications, where digital
methods of modeling are used, the continuous models of space are not so suitable. This
motivates a search version of the theory of space. One kind of such models are the so called
adjacency spaces, studied by Diintsch and Vakarelov in [13]. A natural class of Boolean
algebras related to adjacency spaces are the precontact algebras, introduced in [13]] and [[14]]
under the name of proximity algebras. Now we recall the definition of these structures (see
also [9]] and [[18])).

Definition 11. Let A be a Boolean algebra. A precontact relation, or proximity relation,
defined in A is a relation 8 C A x A such that:

P1. If adb, then a # 0 and b # 0.
P2. ad(bV c) iff adb or adc.
P3. (aVb)ociff adc or béc.

The pair (A, d) is called a precontact Boolean algebra, or precontact algebra, or Boolean
proximity algebra. These were introduced in [13]] as an abstract version of proximity spaces
[19]). If adb we say that a is in contact with b, or a is connected to b.
Among others, the following axiomatic extensions of precontact algebras have been stud-
ied:
A precontact relation 0 is called a contact relation if it satisfies the conditions:
P4. If adb, then bda.
P5. If anb # 0, then adb.

We will write a(—8)b for (a,b) ¢ 8. A contact relation 6 is called a Efremovic proximity if
it satisfies the condition:

P6. If a(—§8)b, then there exists ¢ € A such that a(—38)c and —¢(—0)b.

If § is a contact relation on a Boolean algebra A, then the pair (A,d) is called a Boolean
contact algebra, or contact algebra. Examples of precontact and contact relations are based
on proximity spaces. We recall the definition of these structures.

Definition 12 ([13]). Let X be a set and & a binary relation on the powerset of X. We call
0 a proximity on X, and the pair (X,d) is a proximity space, if § satisfies the following
axioms:

(1) U8V, then VoU,

(2) UdV,thenU # 0,

(3) UNV #£0,then U8V,

@) US(VUW)iff USV or USW,

(5) forallW € Z(X), USW or VSW, then USV.

Clearly, a proximity space (X,0) produces a Efremovi¢ proximity (Z(X),5). We say
that U is way below V, and write U <5 V, whenever U(—0)V*. It is not hard to see that
the binary relation <5 defined on &?(X) is interdefinable with §, because USV iff U £5 V¢
(for more details see [19]]). So, the theory of proximity spaces can be developed in terms
of either § or <. There are many other notions of proximity, and we invite the reader to
consult the fundamental text by Naimpally and Warrack [[19] or the paper [23] for more
examples. The relation <5 induces the following notion of subordination relation [3]].
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Definition 13. Given a Boolean algebra A a subordination defined on A is a binary relation
<C A x A satisfying the following conditions:

(S1) 0<0and1<1,

(82) a < b,cimpliesa < b Ac,
(83) a,b < cimpliesaVb < c,
(84) a<b<c<dimpliesa < d.

The relation < is also known in the literature under the following names: “well-inside
relation,” “well below,” “interior parthood,” “non- tangential proper part,” or “deep inclu-
sion.” Clearly, the relation <5 defined by a precontact relation § on a set X is an example
of subordination relation.

There exists a bijective correspondence between precontact relations and subordination
relations defined in a Boolean algebra A. If 6 C A X A is a precontact relation, then the
relation < defined by

a<gb iff a(—8)-b,
is a subordination, where —§ is the complement of the relation J.

Conversely, if <C A x A is a subordination defined in a Boolean algebra A, then the

relation 6 C A x A defined by

ad-b iff a A b,
is a precontact relation. The proof of the equivalence of the two definitions is straightfor-
ward and analogous to the corresponding statement for proximity spaces (see Theorems 3.9
and 3.11in [[19])). Moreover, <=<s_ and 6 = 6. Therefore we can establish the following
result.

Theorem 14. In a Boolean algebra A the notions of precontact relation and subordination
relation are equivalent.

By this theorem, a precontact algebra (A, ) can be also defined as a pair (A, <), where
< is a subordination relation defined on A. In this case we can say that the pair (A, <) is a
subordination Boolean algebra.

It is not hard to prove that given a subordination relation < defined in a Boolean algebra
A, the set

< a)={bcA:b=<d}

is an ideal of A, for each a € A. In the next theorem we prove that the map a —=<""! (a)
defines a quasi-modal operator. This easy observation opens the door to study precontact
relations or subordinations relations in terms of quasi-modal operators.

Theorem 15. In a Boolean algebra A the notions of subordination relation and quasi-modal
operator are equivalent.

Proof. Let A be a Boolean algebra. Let <C A X A be a subordination. For each a € A, take
the set
Alla)=<""(a)={bcA:b=<a}.

It is easy to see that A_(a) is an ideal of A. Thus we have a well defined function A- : A —
Id (A). Moreover, it is easy to check that A~ is a quasi-modal operator.

Reciprocally, let A: A — Id(A) be a quasi-modal operator. Define a relation <AC A x A
by

a=<ab iff be Aa.

Then it is easy to see that <, is a subordination defined on A. Moreover, it is easy to see
that A=A, and <=<,_. g



70 SERGIO A. CELANI

Corollary 16. In any Boolean algebra the notions of precontact relation, subordination
relation and quasi-modal operator are equivalent.

As the notions of precontact relations, subordination relations, and quasi-modal operators
are equivalent we can take any of them as primitive notion. Instead of precontact relations
or subordination relations, we will mainly work with quasi-modal operators. To simplify
the notation, we will write < instead of <4, and & instead of 5. Thus, when we refer to a
quasi-modal algebra (or precontact algebra) we will write (A,A), (A,d), or (A, <).

By the previous Corollary [I6] we have that certain properties expressed in terms of sub-
ordination relations can be expressed in terms of quasi-modal operators. In the following
table we will give some known properties, in terms of < and A:

(S5) AaClI(a) a < bimplies a <b
(S6) I(a) CN{Ax:x€Va}  a<bimplies —b < —a
(S7) AaC Aa a < bimplies Ic €A (a < ¢ < b)

(S8) Aa#{0},whena+#0 a # 0 implies 3b # 0 (b < a).

The condition (S7) is called the interpolation axiom, and the condition (S8) is called the
extensional axiom.

Now we introduce some classes of quasi-modal algebras that are fundamental in the
algebraic study of proximity structures. In what follows, we will be interested in precontact
algebras satisfying the additional axiom (S7). As we have said before, these structures were
also called quasi-transitive algebras in [4].

Let (A,A) be a quasi-modal algebra.

e We shall say that (A,A) is a contact algebra if A satisfies conditions (S5) and (S6)
(see [I8] and [[13]]). We recall that these structures are called quasi-topological alge-
bras in [4] and [5].
e We shall say that (A,A) is a normal contact algebra if (A,A) is a contact algebra
satisfying the conditions (S5), (S6), (S7), and (S8).
The notion of normal contact algebra was introduced by Fedorchuk [[16] under the name of
Boolean d-algebra as an equivalent expression of the notion of compingent Boolean algebra
introduced by de Vries in [7]. A de Vries algebra is a complete normal algebra (A, A), i.e.,
is a normal quasi-monadic algebra (A,A) where A is complete [[7].

We give now some examples of precontact and contact algebras. In the following exam-

ples we used the notation < instead of A.

Example 17. Let X be a topological space. The algebra of the regular open subset RO(X)
becomes a contact algebra with respect to the following subordination relation:
U <qV iff cl(U)CV,

for U,V € RO(X). The pair (RO(X), <) is a complete contact algebra, called the standard
contact algebra. We note that A, (U) = {V € RO(X) : V < U} is the quasi-modal opera-
tor assotiated with <. Thus the structure (RO(X),A~ ) is a quasi-modal algebra satisfying
conditions (S5) and (S6). Also, we can define the precontact relation J as:

USV iff cl(U)Ncl(V) #0.

Example 18. Let (X,R) be a Kripke frame. As in Example {4} take a class % of subsets of
X which form a Boolean subalgebra of &?(X). Define a relation <xC & x A as

U =<z V iff Ox(U)CV,

where U,V € %, and (g(U) = {x € X : R(x) CU}. Then <y is a subordination relation
defined on A. Thus (%4, <) is a precontact algebra.
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Example 19 ([4] 12, [13]). Let (X,R) be a Kripke frame. Let <g be the subordination
relation defined over all subsets of X. Then the conditions below hold:

(1) R is reflexive iff < satisfies condition (S5).
(2) R is symmetric iff <y satisfies condition (S6).
(3) R is transitive iff < satisfies condition (S7).

Thus (Z7(X),<g) is a precontact algebra. Moreover, (%7 (X ), <g) is a contact algebra iff
R is reflexive and symmetric. In relation to Example M} the quasi-modal operator associated
with <gis A(U) ={V e #:V COg(U)}.

4. ROUND FILTERS AND END FILTERS

In this section we study the notion of round filters in a quasi-modal algebra. A round filter
is a filter satisfying certain conditions with respect to the quasi-modal operator, and it is a
generalization of the notion of normal or open filters in modal algebras [20]. The maximal
round filters are very importat in the representation theory developed by H. de Vries in [7],
because they are the point of the dual space of a de Vries algebra.

We recall that a filter F in a modal algebra (A, ) is said to be open or normal if Oa € F
when a € F. The importance of open filters is in the fact that they determine the congruences
in modal algebras (see [20]). Since a modal algebra can be considered as a quasi-modal
algebra where the quasi-modal operator is principal, then we can introduce a generalization
of the notion of open filter. In [4] (see also [3]) the following notion was introduced.

Definition 20. Let (A,A) be a quasi-modal algebra. A filter F of A is called a A-filter,
if AaNF # 0, provided a € F, i.e., F C A"'(F). A round filter is a A-filter F such that
A (F)CF.

We note that the round filters of (A,A) are the fixed points of the function A~! : Fi(A) —
Fi(A). In [4] it was proved that the set of all A-filters of a quasi-modal algebra (A,A) is a
lattice. Moreover, the A-filters are in bijective correspondence with Boolean congruences
that preserve in a certain sense the quasi-modal operator A. In the case where the quasi-
modal operator is principal (see Example [3)), these congruences are Boolean congruences
that preserve the modal operator [1y. For more details see [5]].

Let F be a A-filter of A. If A satisfies the condition (S5) Aa C I(a), then A~!(F) = F.
Thus in every quasi-modal algebra satisfying the condition (S5) the notions of round filter
and A-filter coincide.

We denote the set of all round filters as Fia(A). We call maximal proper round filters
ends. We denote the set of all ends as End(A). It is easy to chek (by Zorn’s Lemma) that for
each F € Fip(A) there exists G € End(A) such that F C G.

Lemma 21. Let (A,A) be a quasi-modal algebra. Let F € Fi(A) and P € Ul(A). IfA~1(F) C
P, then there exists Q € UI(A) such that A1 (Q) C Pand F C Q.

Proof. Let F € Fi(A) and P € Ul(A). Suppose that A~!(F) C P. Then F NA(P¢) = 0. So,
by the prime filter theorem, there exists Q € Ul(A) such that F C Q and QNA(P¢) = 0. So
A~ (Q)CPand F C Q. O

In the following result we give a characterization of the quasi-modal algebras satisfying
the condition (S6).

Theorem 22. Let (A,A) be a quasi-modal algebra. Then the following conditions are equiv-
alent:

(1) (A,A) satisfies (S6).
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(2) For all F,G € Fi(A), if A"'(F) C G, then there are P,Q € Ul(A) such that F C P,
GCQ and A"'(Q) CP.

Proof. (1) = (2). Let F,G € Fi(A). Suppose that A" (F) CG. As -G = {-a:a € G} is
an ideal, we get that A(—G) is also an ideal. Moreover, F NA(—G) = 0. So there exists
P € Ul(A) such that F C P and PNA(—G) = 0. We prove that

GNA(-P) = 0.

If there exists g € G such that g € A—p, for some p € P, then as A satisfies the condition
(S6), we have that p € A—g. So p € PNA(—G) = 0, which is impossible. Thus there exists
Q € Ul(A) such that G C Q and QNA(—-P) =0,i.e., A" (Q) CP.

(2) = (1). Let a,b € A such that a € Ab and —b ¢ A—a. So —a ¢ A~'(=b). Then there
exists P € Ul(A) such that A=!(=b) C P and —a ¢ P. So a € P, and there exists Q € Ul(A)
such that =b € Qand A~1(P) C Q. Asa € AbNP, b€ A~'(P) C Q. Thus b, —b € Q, which
is a contradiction. g

Now we give a characterization of the ends in the class of quasi-transitive algebras, but
taking into account the notion of quasi-modal operator instead of the notion of subordina-
tion. We note that the following two results were proved by H. de Vries in [7] for the class
of compingent Boolean algebras.

Lemma 23. Let (A,A) be a quasi-transitive algebra. Then
(1) A~Y(F) € Fia(A), for all F € Fi(A).
(2) If F € End(A), then there exists U € Ul(A) such that F = A~ (U).

Proof. (1) Leta € Asuchthata € A~'(F), i.e., AanNF # 0. We prove that AaN A~ (F) # 0.
As Aa C A%a, by Remark [10] we get that A2aNF # 0 iff AaN A~ (F) #0. So A~'(F) €
Fia(A).

(2) Let F € End(A). We consider the family of filters

H# ={H €Fip(A): FCH and AONH =0}.

As 0 ¢ A™'(F)=F, we have F € 2#. So /# #0. By Zorn’s Lemma, there exists a
maximal element U in . We prove that U is an ultrafilter. Let a € A. Suppose that
a,—a ¢ U. Consider the filters U, = F(UU{a}) and U-, = F(UU{—a}). So U,,U-, ¢ .7,
ie., AONU, # 0 and AONU-, # 0. Then there exists u;,uy € U such that u; Aa € AO and
up AN—a € AO. Since u = uj; Auy € U, and AO is an ideal, (uAa)V (uA—a) =uN(aV
—a) =uAN1=u € AO. But this implies that AONU # 0, which is a contradiction. Thus
U is an ultrafilter such that F C U, F = A~'(F) C A~'(U), and A"'(U) is proper. Since
A~ (U) € Fip(A), and F is an end, we get F = A~ (U). O

Theorem 24. Let (A,A) be a quasi-transitive algebra satisfying the condition A0 = {0}.
Let F € Fi(A). Then the following conditions are equivalent:

(1) F € End(A).

(2) Foralla,b € A, ifa € Ab, then —a€ F orb e F.

Proof. (1) = (2). Let a,b € A such that a € Ab. Suppose that —a ¢ F. Consider the filter
H=F(FU{a}). AsF C H, we have that F = A~!(F) C A~!(H). We note that A~ (H) is
proper, because if 0 € A~'(H), then AONH = {0} NH # 0, i.e., 0 € H. Then there exists
J € F such that f Aa =0, and consequently f < —a. But this implies that —a € F, which
is a contradiction. So A~!(H) is a proper filter, and by Lemma A~'(H) € Fip(A). Since
F is maximal, F = A~'(H). We note that b € A~ (H), because a € AbNH. Thus b € F.
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(2) = (1). Suppose that there exists a round filter H such that F C H. So there exists
he H—F. As H € Fip(A), AhNH # 0, i.e., there exists b € AhN H. By assumption,
—b € ForhecF. Soitmustbe that =b € I C H, and as H is closed under A we get that
—-bAb=0¢€ H. Therefore, H = A, and consequently F is a maximal round filter. ]

Definition 25. Let (A,A) be a quasi-modal algebra. We shall say that a round filter F is
A-prime if for all a,b € A, if (AaYAD)NF #0,thenac Fob € F.

In the following result we see that in the class of quasi-transitive algebras every end is a
A-prime round filter.

Lemma 26. Let (A,A) be a quasi-transitive algebra. Then every end is A-prime.

Proof. Let F € End(A). Let a,b € A such that (AaY Ab) NF # 0. By Lemma[23] there exists
P € Ul(A) such that F = A~!(P). Taking into account the identity Aa VY Ab = A(Aa ¥ Ab),
we get the following equivalences:
(AaYAD)NF #0 iff (AaYAb)NA~'(P)#0

iff A(AaYAb)NP #0

iff (AaYAD)NP#0

iff AaNP#£0or AbNP#0

iff acF=A"'P)orbcF=A"'(P).

[l

Now we introduce a class of quasi-modal algebras where the notions of end and A-prime
round filter coincide.

Definition 27. A quasi-modal algebra (A, A) is called a quasi-pseudo monadic algebra if it
satisfies the following conditions:

(1) A0 = {0},

(2) AaY Ab = A(I(a) Y Ab), for all a,b € A.

We note that if (A,A) is a quasi-pseudo monadic algebra, then Aa = AAq, for all a € A,
because
Aa=AaY A0 =A(I(0) Y Aa) = AAa.
So A is a quasi-transitive algebra. In the next result we characterize the ends in the class of
quasi-pseudo monadic algebras.

Theorem 28. Let (A,A) be a quasi-pseudo monadic algebra. Then a round filter F is an
end iff it is A-prime.

Proof. Let F be a round filter. As A is quasi-transitive, by Lemma [26] if F is an end then it
is A-prime.
Assume that F' is A-prime. Let a € Ab. Then I(a) C Ab. So
A=1I(—a)VYI(a) CI(—a)VY Ab,

and thus A(I(—a) YAb) = AA=A. So A(I(—a) YAb)NF # 0. As A(I(—a) Y Ab) = A—a Y Ab,
we have that A—aYAbNF # 0. Then ~a € Forb e F. O

By Lemma [23| for each round filter F of a quasi-transitive algebra (A,A) satisfying the
condition AQ = {0} there exists an ultrafilter P of A such that F = A~!(P). On the other
hand, a filter of the form A~!(P), with P € Ul(A), is a round filter but it is not necessarily
an end. Now we prove that A~!(P) is an end when (A, A) satisfies the conditions (S5) and
(S6).
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Theorem 29. Let (A,A) be a quasi-transitive algebra satisfying condition (S5). Then the
following conditions are equivalent:

(1) A=Y(P) € End(A), for each P € Ul(A).
(2) (A,A) satisfies condition (S6).

Proof. (1) = (2). Let us assume that there exist a,b € A such that a € Ab, but —b ¢ A—a.
Then there exists P € UI(A) such that —b € P and A~aNP = 0. So —~a ¢ A~!(P) € End(A).
As a € Ab, and A~'(P) € End(A), we have that b € A~!(P). Since (A,A) satisfies (S5), we
have A~!(P) C P. Then we deduce that b € P, which is impossible, because —b € P.

(2) = (1). Let P € Ul(A). We apply Theorem Let a,b € A such that a € Ab. As
Ab = A%b, by Remark (10| there exists ¢ € A such that @ € Ac and ¢ € Ab. If ¢ € P, then
AbNP # 0, and consequently b € A~ (P). If ¢ ¢ P, then —c € P. As a € Ac, we deduce that
—c € A—a. So A—aNP #0,i.e., ~ac A~ (P). Therefore, A"!(P) € End(A). O

For quasi-monadic algebras we have a useful characterization of the ends.

Theorem 30. Let (A,A) be a quasi-monadic algebra. Let F € Fi(A). Then F € End(A) iff
there exists P € Ul(A) such that F = A~'(P). If P € Ul(A), then it contains a unique end,
namely A~'(P).

Proof. By Lemma [23| and Theorem 29| we get that F € End(A) iff there exists P € Ul(A)
such that F = A~!(P).

We prove that A~!(P) is the unique end such that A~!(P) C P. Suppose that H € End(A)
and H C P. Then H = A~!'(H) C A~!(P). Suppose that H C A~!(P). Then there exists
ac A~ (P)—H. SoAanA~'(P) #0, i.e., there exists b € AaNA~!(P). As H is maximal, by
Theorem[24, ~b € H ora € H. Soitmustbe -b € H C P. Then ~b € P. Ash€ A~!(P) C P,
we get that b A —b = 0 € P, which is impossible. Thus H = A~!(P). O

We finish this section giving a characterization of the condition (S8) in quasi-monadic
algebras.

Lemma 31. Let (A,A) be a quasi-monadic algebra. Then the following conditions are
equivalent:

(1) For each a € A—{0} there exists F € End(A) such that a € F,
(2) Aa # {0}, when a # 0.

Proof. (1) = (2). Leta # 0. Then there exists F € End(A) such thata € F. So AaNF # 0,
i.e., there exists b € A — {0} such that b € Aa. Then Aa # {0}.

(2) = (1). If Aa # {0}, when a # 0, then there exists b € A — {0} such that b € Aa.
As b # 0 there exists P € Ul(A) such that b € P. As (A,A) is a quasi-monadic algebra, by
Theoremwe have that A"!(P) is an end. So b € AaNP,ie.,a € A~ (P). O

5. REPRESENTATION

In [7, Thm. 1.4.5] de Vries showed that given a compact Hausdorff space X, the algebra
(RO(X),=c1) is a de Vries algebra (called complete compingent Boolean algebras in [7]], or
complete normal quasi-monadic algebras according to our nomenclature). Also, de Vries
proved that for each de Vries algebra (B, <) there is a unique, up to homeomorphism,
compact Hausdorff space X such that (B, <) is isomorphic to (RO(X),<). As de Vries
has shown, this correspondence between compact Hausdorff spaces and de Vries algebras
extends to a dual equivalence between the corresponding categories.
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Definition 32. We say that a quasi-modal algebra (A, A) is representable if there is a topo-
logical space X and a Boolean embedding g : A — RO(X) such that a <, b iff cl(g(a)) C
g(b), for all a,b € A, where a <5 b iff a € Ab.

Let (A,A) be a quasi-modal algebra. For each a € A, let
e(a)={F €End(A):acF}.

Then we have a Stone-like map e : A — Z(End(A)).

We denote by QTB4E the class of quasi-monadic algebras satisfying the condition (S8).
We note that the structures of QTB4E are called compingent Boolean algebras in [7]].

The next task is to prove that {e(a) : a € A} is a basis for a topology on End(A) when
(A,A) € QTB4E.

Proposition 33. Ler (A, A) be a quasi-modal algebra. For all a,b € A,

(1) e(1) = End(A);
(2) e(andb) =e(a)Ne(b);
(3) e(a)Ue(b) Ce(aVb);
@) if (A,A) € QTBAE, then:
(@) e(a) =0iffa=0;
(b) a<biffe(a) Ce(b), thus e is injective.

Proof. We prove only (4).

(a). If a =0 it is clear that e(a) = 0. Assume that e(a) = 0. If a # 0, by Lemma[31] there
exists F € End(A) such that @ € F. So F € e(a), which is a contradiction. Thus a = 0.

(b). As e is meet-preserving, we have that e(a) C e(b), when a < b. Assume that a £ b.
Then a A—b # 0. So, by (S8), A(a A —b) # {0}. Thus there exists ¢ € A(a A —b) with ¢ # 0.
Consider the filter A~!(F(c)). As A is a quasi-monadic algebra, we have by Lemma [23|that
A~Y(F(c)) € Fip(A). Moreover a A—=b € A~'(F(c)). Then there exists F € End(A) such
thataA—b €A (F(c)) CF.As—b€F,b¢ F. Thenac F and b ¢ F. Thus F € e(a) and

F ¢ e(b),ie. e(a) L e(b). O

Lemma 34. Ler (A,A) € QTB4E. Then {e(a):a € A} is a basis for a topology T on
End(A).

Proof. By Lemma 31} for each a # 0 there exists F € End(A) such that a € F. Thus
End(A U{e ta € A}. Moreover, since e(a Ab) = e(a) Ne(b), for all a,b € A, we
get that {e(a) : a € A} is a basis for a topology .7z on End(A). O

Let (A,A) € QTB4E. We shall say that the topological space (End(A), Z) is the dual
space of (A,A).

Proposition 35. Let (A,A) € QTB4E and let X = (End(A), Jk) be its dual space. Then

(1) e(ma) = cl(e(a));
(2) e(a) =int(cl(e(a)), .
(3) a€ ABiffcl(e(a)) C
lar, a € Ab iff cl(e(a
(@) int(cl(e(a) Ue(b)) =

e( ) € RO(X);
by)U---Ue(by), for some {by,...,by} CB CA; in particu-

e(b);

(aVb), forall a,b € A.

SN—
m\-/mm
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Proof. (1). As 0 =¢(0) = e(aN—a) = e(a) Ne(—a), we get that e(a) C e(—a)°. Since
e(—a)“ is closed, cl(e(a)) C ( ) We note that as {e(a) : a € A} is a basis, we have that
=[e(e)  e(a) Ce(e)}
= ﬂ{e(c)c te(a)Ne(c) =0}
= ﬂ{e(c)c ce(anc) =0}
= ﬂ{e(c)c taNc=0}.

Assume that F ¢ cl(e(a)). Then there is ¢ € A such that a Ac =0 and ¢ € F. So, since
¢ < —a, we have that ~a € F, i.e., F € e(—a).

(2). By (1) we get

e(a) =e(——a) =cl(e(—a))° = int(e(—a)‘) = int(cl(e(a))).

(3). Let BC A. Assume thata € AB. Let F € cl(e(a)), i.e., ~a ¢ F. As a € AB, it is easy
to see that there exists ¢ € A and by,...,b, € B such that a € Ac and c € Ab; V ---V Ab,,.
By Theorem cEF.SoAb V- ---VAb,NF #0. As F = A~!(P), for some P € Ul(A),
Ab{V ---V Ab, N A~ (P) # 0, and this implies that

A(Aby V-V Ab,)) NP =AbyV -+ Ab, NP # 0,
and thus Ab; NP # 0, for some 1 <i<n, ie, b; € F =A"'(P), for some 1 <i<n. So

F e Ue(b)

beB
Conversely, let us assume that cl(e(a)) C U e(b). By (1), ﬂ e(b)c Ccl(e(a))’ =e(—a).
beB beB
Suppose that a ¢ AB. Then there exists P € UI(A) such that a € P and ABNP = 0. So

b ¢ A~'(P), for every b € B. Since A"!(P) is an end, A~ (P) € ()e(b) C e(—a). Then
beB
—a € A~'(P), and since A~!(P) C P, we get —a € P. Therefore, a A —a = 0 € P, which is a
contradiction. Thus a € AB.
(4). Leta,b € A. Since e(a) Ue(b) C e(aV b), we have that

);
e(a)Ue(b) = int(cl(e(a) Ue(b))) C int(cl(e(a VD)) = e(a VD).
1(e(a) Ue(b)). We note that
int(cl(e(a =|J{e(c) - e(c) Ccl(e(a) Ue(b))} -
Now, if there exists ¢ € A such thate( Ccl(e(a)Ue(d)), as
cl(e(a) Ue(b)) = cl(e(a)) Ucl(e(b)) = e(—a)  Ue(=b)*
= (e(—a)Ne(=b))* = e(-an—b)*
=e(=(aVb))",
we get that the inclusion e(c) C e(—(a Vv b)) implies that
e(c)Ne(—(avb))=e(cA—(aVb))=0=¢(0

)-
As e is injective, c A—=(aVb) =0, ie., c < aVb. Thus, if e(c) C cl(e(a) Ue(b)), then
c<aVb.So

We prove the inclusion e(a Y b) C 1nt(

int(cl(e(a =[J{e(c) s e(c) Ccl(e(a) Ue(b))}
QU{e c :cga\/b}:e(a\/b). O
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Recall that a topological space X is said to be weakly regular (see [12]) if X has an
open base consisting of regular open sets and for each non-empty open set U there exists a
non-empty open set V such that cl(V) C U.

The following fundamental theorem was first proved by H. de Vries in [7]. Here we give
a proof using the theory of quasi-modal operators.

Theorem 36. Let (A,A) € QTB4E. Then (End(A), 7%) is a weakly regular, T2, and com-
pact space.

Proof. First we will show that (End(A), 7%) is T2. If F,H € End(A) and F # H, then there
exists a such that a € F and a ¢ H. So AaNF # 0, i.e., there exists b € AaNF. As H
is an end and a ¢ H, by Theorem 24| we have that =b € H. So F € e(b), H € e¢(—b), and
e(b)Ne(—b) =e(bN—-b) =¢(0) =0. Thus (End(A), Tg) is T2.

As each e(a) is a regular open set, we have that (End(A), 7) is semiregular. Let U be
a non-empty open subset of End(A). So there exists F € U, and as {e(a) : a € A} is a basis
for the topology 7, there exists a # 0 such that F € e(a) C U. By the condition (S8), we
get that there exists b # 0 such that b € Aa. By Proposition [33] cl(e(b)) C e(a) C U. Thus
(End(A), ) is weakly regular.

We prove that End(A) is compact. Let B C A be such that

End(A) = J{e(b) : b€ B}.

Consider the ideal A[B]. We note that A[B] = A[I(B)]. If A[B] is proper, 1 ¢ A[B]. So
there exists P € Ul(A) such that A[B]NP = 0. Then I(B)NA~!(P) =0, i.e.,b ¢ A~ (P), for
all b € B. As A~'(P) € End(A), we have that A= (P) ¢ U{e(b) : b € B}, which is impos-
sible. Thus A[B] is not proper, i.e., 1 € A[B]. Then there exists a finite family {b1,...,b,}
of B and there are elements x; € Ab;, for each 1 <i <mn, such that 1 =x;V---Vx,. So
l=x1V---Vx, € Ab; Y---VY Ab,. We note that

A=Al =I(1)=AbV---VAb,.

Let F € End(A). Then there exists P € Ul(A) such that F = A"!(P). So we have the
following equivalences:

AINA~Y(P)#0 (Aby Y-V Ab,) NP #0
Ab;NP#Q, forsome 1 <i<n
Azb,ﬂP;&@, forsome 1 <i<n
Ab;NA~Y(P) #0, forsome 1 <i<n

F=AYP)ce(b))U---Ue(b,).
So End(A) = e(b;)U---Ue(by), and consequently the space (End(A), 7) is compact. [J

teeoe

Theorem 37. Let (A,A) € QTB4E. Then (A,A) is representable by means of the topologi-
cal space (End(A), ).

Proof. Let (A,A) € QTB4E. Let X = (End(A), 7). By Proposition [33| and Theorem
we have that the map e : A — RO(X) is well defined, is a Boolean embedding, and a < b
iff cl(e(a)) C e(b), for all a,b € A. Thus (A, A) is representable. O

An isomorphism between two de Vries algebras (A,A4) and (B, Ag) is a Boolean isomor-
phism f : A — B such that
a € Ayb iff f(a) € Apf(b),
for all a,b € A. We will finish this section proving that if (A, A) is a de Vries algebra, then
the map e is an isomorphism between (A, A) and (RO(X), <1).
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Theorem 38. [7]] If (A,A) is a de Vries algebra and X its dual space, then for each U €
RO(X) there exists a € A such that U = e(a). So (A, A) is isomorphic to (RO(X), <q).

Proof. Let U € RO(X). As U is open, there exists B C A such that U = |J{e(b) : b € B}.
As A is complete, there exists the join a = \/{b € B}. It s clear that e(b) C e(a), for all
b € B. Consequently, U = J{e(b) : b € B} C e(a).

Now we consider the open set cl(U)“. So we can write

A(U) =|J{e(e) s ceCy,
for some C C A. So foreach b € Band ¢ € C, we get that e(b) C U and e(c) C cl(U)°. Thus
e(b)Ne(c)=e(bAc) CUNCI(U)" =0=¢(0),

and since e is injective, b Ac =0, i.e., b < —c¢. Since this holds for all b € B and a =
V {b € B}, we have that a < —¢, for all c € C. SoaAc =0, for all ¢ € C, and as e is
meet-preserving, e(a Ac) = e(a) Ne(c) =0, for all ¢ € C. Then

e(a) C ﬂ{e(c)c iceCl= (U {e(c)":ceC}) =cl(U).
Therefore
e(a) =int(cl(e(a))) Cint(cl(cl(V))) = int(cl(U)) = U,

i.e., e(a) CU. Thus U = e(a). Thus e is an isomorphism between (A,A) and (RO(X), <c1).
O
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