ANALYTIC COHOMOLOGY IN CHARACTERISTIC p > 0: PROGRESS REPORT

GUILLERMO CORTIÑAS

1. Introduction

This is a report on ongoing joint work with Joachim Cuntz and Ralf Meyer. Let k be a field of characteristic p>0, V=W(k) the ring of Witt vectors. Thus V is a Noetherian, local domain with principal maximal ideal $\mathfrak{m}=\pi V$ and residue field $V/\pi V=k$, complete in the \mathfrak{m} -adic topology. We write K for the field of fractions of V. Our goal is to construct a functor

$$H^{an}$$
: k-algebras $\rightarrow ((\mathbb{Z}/2\text{-graded complexes of }K\text{-modules}))$

with the following properties:

- (1) Polynomial homotopy invariance: $H^{an}(A) \to H^{an}(A[t])$ is a quasi-isomorphism.
- (2) Excision: applying H^{an} to any extension of k-algebras

$$0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$$

gives rise to a homotopy fibration sequence of $\mathbb{Z}/2$ -graded complexes

$$H^{an}(A) \rightarrow H^{an}(B) \rightarrow H^{an}(C)$$
.

- (3) Matrix invariance: $H^{an}(A) \to H^{an}(M_{\infty}A)$ is a quasi-isomorphism.
- (4) Agreement with Bertherlot's rigid cohomology [3] in the commutative case: if $k \rightarrow A$ is a commutative unital algebra of finite type, then

$$H_n^{an}(A) = \prod_i H_{rig}^{2j-n}(A, K).$$

To explain why having such a theory could be useful, assume for a moment that a functor with the properties above exists, and write

$$H_{*}^{an}(A,B) = H_{*}(HOM(H^{an}(A),H^{an}(B))).$$

By the universal property of algebraic bivariant K-theory [1] and the assumed properties of H^{an} , it follows that there is a Chern character

$$kk_*(A,B) \to H_*^{an}(A,B)$$
,

compatible with composition. In particular, setting A = k, we get a Chern character

$$KH_*(B) = kk_*(k,B) \to H_*^{an}(B) := H_*^{an}(k,B)$$

from Weibel's homotopy algebraic K-theory [7] (and thus also from Quillen's K-theory, using the natural transformation $K \to KH$). Specializing to B commutative of finite type, yields maps $ch_{j,n}: KH_n(B) \to H^{2j-n}_{rig}(B)$.

Supported by CONICET, and partially supported by grants MTM2012-36917-C03-02, UBACyT 20020100100386 and PIP 11220110100800.

Recall from [4] that a *bornology* on a *K*-vector space M is an exhaustive filtration by normed subspaces, and that the completion of M with respect to a given bornology is the colimit of the diagram of Banach K-spaces that results from completing each of the normed subspaces in the filtration. The basic idea for constructing H^{an} is to write A = TL/I as a quotient of the tensor algebra of a free V-module L, use the ideal I to produce a bornology on $TL_K := TL \otimes_V K$ and then take the periodic cyclic complex of the completion $H^{an}(A) = HP(\widehat{TL_K})$. The highly non-trivial technical point is what bornology to take.

2. RIGID COHOMOLOGY (SMOOTH AFFINE CASE)

Let $V \to R = V[x_1, ..., x_m]$ be a commutative algebra of finite type. The *weak completion* R^{\dagger} [5] is the following V-subalgebra of the π -adic completion

$$\lim_{n} R/\pi^{n}R \supset R^{\dagger} = \left\{ \sum_{n} \pi^{n} f_{n}(x_{1}, \dots, x_{m}) : (\exists N) \operatorname{deg}(f_{n}) \leq N(n+1) \right\}.$$

Remark 2.1. Assume $V \to R$ is flat. Let $\mathscr{F}_n R \subset R = V[x_1, \dots, x_m]/I$ be the submodule generated by the images of the monomials x^{α} with $|\alpha| \le n$. Then $R^{\dagger} \otimes_V K$ is the bornological completion of $R \otimes_V K$ with respect to the bornology defined by the V-submodules

$$S_{N,C} = \sum_{n} \pi^{-C+[n]} \mathscr{F}_{N(n+1)} R.$$

Theorem 2.2 (Elkik, [2]). Let $i: k \to A$ be a smooth homomorphism of commutative k-algebras. Then there is a smooth homomorphism $\hat{i}: V \to R$ such that $i = \hat{i} \otimes_V k$.

If $k \to A$ is smooth and R is as in Elkik's theorem, the rigid cohomology of A is defined to be (see [6])

$$H^*_{rig}(A,K) = H^*((\Omega_{R/V} \otimes_R R^{\dagger}) \otimes_V K).$$

The first result we have relates the rigid cohomology of A to the periodic cyclic homology of the bornological algebra $R^{\dagger} \otimes_V K$.

Theorem 2.3. Let $k \to A$ be smooth and let R be as in Elkik's theorem. Then

$$HP_n(R^{\dagger} \otimes_V K) = \prod_j H^{2j-n}_{rig}(A,K).$$

3. TENTATIVE DEFINITION OF H^{an}

Let $k \to A$ be a (not necessarily commutative) unital algebra. Assume A is of finite type, i.e., assume it is a quotient

$$A = k\{x_1, \dots, x_m\}/I \tag{3.1}$$

of a polynomial ring in finitely many non-commuting variables. Filter A by the image $\{\mathscr{F}_n(A)\}$ of the degree filtration of $k\{x_1,\ldots,x_m\}$. Let L be the free V-module on the set A/k equipped with the filtration $\{\mathscr{F}_n(F_V(A))\}$ induced by the chosen filtration of A. Write $I = \ker(F_V(A) \to A)$ for the kernel of the canonical surjection, and set $\mathscr{F}_n I = I \cap \mathscr{F}_n(F_V(A))$. On $F_K(A) := F_V(A) \otimes_V K$ consider the bornology defined by the V-submodules

$$S_{\alpha,N,C} = \sum_{n} \pi^{-C - [\alpha n]} \mathscr{F}_{N(n+1)} I^{n}, \quad 0 < \alpha < 1, N, C \in \mathbb{Z}_{\geq 1}.$$
 (3.2)

Let $\widehat{F_V(A)}$ be the bornological completion. Define

$$H^{an}(A) = HP(\widehat{F_V(A)}).$$

The following theorem subsumes the properties we have been able to prove so far for this tentative model of H^{an} .

Theorem 3.1.

- i) $H^{an}(A)$ is independent of the choice of presentation (3.1).
- ii) H^{an} is polynomially homotopy invariant.
- iii) Let $A = L/\pi L$ be a presentation as a quotient of a unital filtered V-algebra L, such that L is a free V-module. Equip $L_K := L \otimes_V K$ with the bornology (3.2), and let \widehat{L}_K be the bornological completion. Assume that $\mathscr{F}_0 L = V$, that $\mathscr{F}_{n+1} L/\mathscr{F}_n L$ is a free V-module $(n \ge 0)$, and that there exists n > 0 such that $\Omega^n_V L$ is a projective bimodule. Further assume that p > 2, and let $A = L/\pi L$. Then $H^{an}_*(A) = HP_*(\widehat{L}_K)$.

Corollary 3.2. Let $k \to A$ be smooth commutative and let $V \to R$ as in Elkik's theorem. Assume that there exists L as in the theorem above such that $\widehat{L_K} \cong R^{\dagger} \otimes_V K$. Then

$$H_n^{an}(A) = \prod_j H_{rig}^{2j-n}(A, K).$$

Example 3.3. Let $A = k[x_1, ..., x_m]/f$ be a smooth hypersurface and let $\partial_i f$ be the partial derivative. Choose $g_i \in A$ such that $\sum g_i \partial_i f = 1$ and let $\hat{f}, \hat{g}_i \in V[x_1, ..., x_m]$ be any lifts of f and g_i whose coefficients are invertible in V. Then $L = V[x_1, ..., x_m]/\hat{f}$ and $R = L[1/(1 - \sum_i \hat{g}_i \hat{f}_i)]$ satisfy the hypothesis of the corollary above.

REFERENCES

- [1] G. Cortiñas, A. Thom, *Bivariant algebraic K-theory*, J. Reine Angew. Math. 610 (2007), 71–123. MR 2359851.
- [2] R. Elkik, Solutions d'équations à coefficients dans un anneau hensélien, Ann. Sci. École Norm. Sup. (4) **6** (1973), 553–603. MR 0345966.
- [3] B. Le Stum, Rigid cohomology. Cambridge Tracts in Mathematics, 172. Cambridge University Press, Cambridge, 2007. MR 2358812.
- [4] R. Meyer, Local and analytic cyclic homology. EMS Tracts in Mathematics, 3. European Mathematical Society (EMS), Zürich, 2007. MR 2337277.
- [5] P. Monsky, G. Washnitzer, Formal cohomology. I, Ann. of Math. (2) 88 (1968), 181–217. MR 0248141.
- [6] M. van der Put, The cohomology of Monsky and Washnitzer, Mém. Soc. Math. France (N.S.) 23 (1986), 33–59. MR 0865811.
- [7] C. Weibel, *Homotopy algebraic K-theory*, Algebraic K-theory and algebraic number theory (Honolulu, 1987), 461–488, Contemp. Math., 83, Amer. Math. Soc., Providence, 1989. MR 0991991.

DEPARTAMENTO DE MATEMÁTICA-IMAS, FCEYN-UBA, CIUDAD UNIVERSITARIA, PABELLÓN 1, 1428 BUENOS AIRES. ARGENTINA

E-mail: gcorti@dm.uba.ar

URL: http://mate.dm.uba.ar/~gcorti/