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ON THE COMPOSITION OF IRREDUCIBLE MORPHISMS

CLAUDIA CHAIO

ABSTRACT. We study the relationship between compositions of irreducible morphisms
and the powers of the radical of their module category, taking into account the degrees of
such morphisms.

1. INTRODUCTION

These are the notes of the lecture given by the author at the XIII “Dr. Antonio Monteiro”
Congress in Bahía Blanca, Argentina, concerning compositions of irreducible morphisms
and the powers of the radical of their module categories.

We consider A to be a finite dimensional k-algebra over an algebraically closed field k,
and modA the category of finitely generated left A-modules.

The Jacobian radical of modA, denoted by ℜ(modA), is the ideal in modA generated by
all non-isomorphisms between indecomposable A-modules. The powers of the radical are
defined inductively. By ℜ∞(modA) we denote the intersection of all powers ℜi(modA),
with i≥ 1, of ℜ(modA).

Irreducible morphisms (subsection 2.2) play an important role in the representation the-
ory of artin algebras. In [3], R. Bautista showed an important relation between an irreducible
morphism and the powers of the radical of their module category. More precisely, the au-
thor proved that if f : X → Y is a morphism between indecomposable modules, then f is
irreducible if and only if f ∈ ℜ(X ,Y )\ℜ2(X ,Y ). Hence, the composition of n irreducible
morphisms between indecomposable A-modules belongs to ℜn(modA).

We are interested in the problem of deciding when the composition of n irreducible mor-
phisms between indecomposable A-modules belongs to ℜn+1(modA). In order to give an
answer to this problem, S. Liu defined the concept of left and right degree of an irreducible
morphism (Definition 2.1). Lately, this concept has shown to be a very useful tool to solve
many problems in the representation theory of artin algebras. In particular, for a finite di-
mensional algebra A over an algebraically closed field, it allows to determine if an algebra is
of finite representation type knowing the degrees of some particular irreducible morphisms,
see Theorem 2.9. In addition, if A is of finite representation type then this notion also allows
to find the minimal vanishing power of the radical of a module category, see Theorem 2.11.
Many other problems have been solved using degrees, see for example [7, 5, 9, 16, 17].

In [13], the authors gave an answer to the problem of when the non-zero composi-
tion of n irreducible morphisms fi : Xi → Xi+1 with Xi ∈ indA for i = 1, . . . ,n belongs to
ℜn+1(X1,Xn+1). More precisely, for such a solution they assume that dimk Irr(Xi,Xi+1) = 1
for i = 1, . . . ,n. To achieve the result they used covering techniques, see [13, Proposition
5.1]. Recently, in [14] the same authors proved that such mentioned result still holds when-
ever we consider A to be a finite dimensional k-algebra over a perfect field, without any
assumptions on the dimension of the set of irreducible morphisms, see Theorem 2.6.
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The aim of these notes is to present a new approach to the problem of deciding when the
composition of n irreducible morphisms between indecomposable A-modules belongs to
ℜn+1(modA), taking into account the right and left degrees of such irreducible morphisms
and without any assumptions on the compositions. These results and their proofs can be
found in [10].

2. NOTATIONS AND PRELIMINARY RESULTS

Throughout these notes, by an algebra we mean a finite dimensional basic k-algebra over
an algebraically closed field k.

2.1. Quivers and algebras. A quiver Q is given by a set of vertices Q0 and a set of arrows
Q1, together with two maps s,e : Q1→ Q0, where for an arrow α ∈ Q1, s(α) is the starting
vertex of α and e(α) is the ending vertex of α .

P. Gabriel proved that if A is an algebra then there exists a quiver QA, called the ordinary
quiver of A, such that A is the quotient of the path algebra kQA by an admissible ideal.

Let A be an algebra. We denote by modA the category of finitely generated left A-
modules and by indA the full subcategory of modA which consists of one representative of
each isomorphism class of indecomposable A-modules.

We say that an algebra A is of finite representation type or that A is a representation-
finite algebra if there exists a finite number of isomorphism classes of indecomposable
A-modules. Otherwise, we say that A is an algebra of infinite representation type.

For basic background on the representation theory of artin algebras we refer the reader
to [1, 2].

2.2. Irreducible morphisms and the radical of a module category. A morphism f : X→
Y with X ,Y ∈ modA is called irreducible provided it does not split and whenever f = gh,
then either h is a split monomorphism or g is a split epimorphism.

Given M ∈ indA then End(M) is a local ring. Moreover, it is known that the radical of the
endomorphisms of M, which we denote by ℜ(End(M)), is of the set of non-isomorphisms.

For X and Y in modA the above concept can be generalized as follows: ℜ(X ,Y ) is the
set of all the morphisms f : X → Y such that, for each M ∈ indA, each h : M→ X and each
h′ : Y →M the composition h′ f h ∈ℜ(End(M)).

The powers of ℜ(X ,Y ) are defined inductively. More precisely, f ∈ℜn(X ,Y ) if and only
if there exists Mi ∈modA such that f = Σr

i=1higi with gi ∈ℜ(X ,Mi) and hi ∈ℜn−1(Mi,Y ).
By ℜ∞(X ,Y ) we denote the intersection of all powers ℜi(X ,Y ) of ℜ(X ,Y ), with i≥ 1.

In particular, when X and Y are indecomposable A-modules, ℜ(X ,Y ) is the set of non-
isomorphisms from X to Y .

It is not hard to see that if f : X → Y is an irreducible morphism with X or Y indecom-
posable A-modules then f ∈ ℜ(X ,Y ) \ℜ2(X ,Y ). Moreover, ℜ∞(X ,Y ) is an ideal of the
module category modA.

For X ,Y indecomposable A-modules, we denote by Irr(X ,Y ) the quotient group ℜ(X ,Y )/
ℜ2(X ,Y ) and by kX the division ring End(X)/ℜ(X ,X). It is known that Irr(X ,Y ) is a kY −
kop

X
-bimodule. Moreover, if k is an algebraically closed field then End(X)/ℜ(X ,X)' k.
Finally, we observe that for X ,Y ∈modA the descending chain

Hom(X ,Y )⊃ℜ(X ,Y )⊃ℜ
2(X ,Y )⊃ℜ

2(X ,Y )⊃ ·· · ⊃ℜ
n(X ,Y )

becomes stable. Hence, there exists a positive integer m such that ℜm(X ,Y ) = ℜ∞(X ,Y ).
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2.3. The Auslander–Reiten quiver. For an algebra A, the Auslander–Reiten quiver of
modA is a valued oriented graph denoted by ΓA and defined as follows.

(a) For each indecomposable module M we associate a vertex [M], and two vertices [M]
and [M′] are the same if and only if M 'M′.

(b) There is an arrow between the vertices [M] and [N] if there is an irreducible mor-
phism modA from M to N. The arrow [M]→ [N] has valuation (a,b) if there is a
right minimal almost split morphism aM⊕X → N, where M is not isomorphic to a
summand of X , and a left minimal almost split morphism M→ bN⊕Y , where N is
not isomorphic to a summand of Y .

We observe that if A is a finite dimensional k-algebra over an algebraically closed field
then the valuations of the arrows are (a,b) with a = b. Moreover, if in addition A is a
representation-finite algebra then a = b = 1.

The vertices corresponding to the projective A-modules are called projective vertices and
the ones corresponding to the injective A-modules are called injective vertices.

Recall that if X is a module and P1
f→ P0 → X → 0 its minimal projective presentation

in modA, then the transpose TrX of X is the cokernel of Hom( f ,A). This allows to define
τ = DTr, called the Auslander–Reiten translation of ΓA, where D is the duality functor.
The functor DTr induces a correspondence between the non-projective vertices and the
non-injective ones. We denote by τ−1 its inverse.

We do not distinguish between an indecomposable module in modA and the correspond-
ing vertex [X ] in ΓA.

The Auslander–Reiten quiver is the union of their connected components.
A component Γ of ΓA is said to be generalized standard if ℜ∞(X ,Y ) = 0 for all X ,Y ∈

Γ. Generalized standard Auslander–Reiten components have been defined by Skowroński
in [24].

For a detailed account of this theory, we refer the reader to [1, 2, 23, 24].

A sequence of non-zero morphisms X1
f1→ X2 → ··· → Xn

fn→ Xn+1 with Xi ∈ indA for
i = 1, . . . ,n is said to be a path in modA if all the morphisms fi are not isomorphisms and
it is called a path in Γ if all the morphisms fi are irreducible. A path in Γ is said to be of
length n if the sequence has exactly n irreducible morphisms.

We distinguish now two important paths in ΓA. The first one was defined by R. Bautista
in [3] and the second one by S. Liu in [21].

• A path Y0 → Y1 → ··· → Yn in ΓA is sectional provided τ−1Yi 6' Yi+2, for i =
0, . . . ,n−2.
• A path Y0 → Y1 → ··· → Yn in ΓA is said to be pre-sectional if for each i,1 ≤ i ≤

n− 1, such that Yi−1 ' τYi+1, there is an irreducible morphism Yi−1⊕ τYi+1 → Yi;
or, equivalently, if τ−1Yi−1 'Yi+1, there is an irreducible morphism Yi→ τ−1Yi−1⊕
Yi+1. Every sectional path is a pre-sectional path.

A partial solution to the problem of when the composition of n irreducible morphisms
belongs to the (n+1)-power of the radical of their module category was given by K. Igusa
and G. Todorov in [20, Theorem 13.3]. They proved that if

X0
f1−−−→ X1

f2−−−→ ·· · fn−1−−−→ Xn−1
fn−−−→ Xn

is a sectional path of length n then their composition fn . . . f2 f1 ∈ℜn(X0,Xn)\ℜn+1(X0,Xn).
Later in 1992, S. Liu generalized such a result for pre-sectional paths proving that if

X0
f1−−−→ X1

f2−−−→ ·· · fn−1−−−→ Xn−1
fn−−−→ Xn
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is a pre-sectional path of length n then there exist irreducible morphisms hi : Xi→ Xi+1 for
i = 0, . . . ,n−1 such that their composition hn . . .h2h1 ∈ℜn(X0,Xn)\ℜn+1(X0,Xn).

2.4. Degrees of irreducible morphisms. In [21] S. Liu introduced the useful notion of left
and right degree of an irreducible morphism. Next, we state the definition of left degree.

Definition 2.1. Let f : X → Y be an irreducible morphism in modA, with X or Y inde-
composable. The left degree dl( f ) of f is infinite, if for each integer n ≥ 1, each mod-
ule Z ∈ indA and each morphism g : Z → X with g ∈ ℜn(Z,X)\ℜn+1(Z,X) we have that
f g /∈ ℜn+2(Z,Y ). Otherwise, the left degree of f is the least natural m such that there
is an A-module Z and a morphism g : Z → X with g ∈ ℜn(Z,X)\ℜn+1(Z,X) such that
f g ∈ℜm+2(Z,Y ).

The right degree dr( f ) of an irreducible morphism f is dually defined.
In [13, Theorem A], the authors characterized this notion whenever we deal with a finite

dimensional k-algebra over an algebraically closed field. They reduced the study of the
degree of an irreducible morphism to the study of the degree in a suitable covering that they
called the generic covering. This characterization allows us to compute degrees in a more
handy way than using Liu’s definition. Next, we state these results.

Theorem 2.2 (C., Le Meur, Trepode). If f : X →Y is an irreducible morphism with X or Y
indecomposable then dl( f ) is finite if and only if there exist n≥ 1, Z ∈ indA and a morphism
g ∈ℜn(Z,X)\ℜn+1(Z,X) such that f g = 0.

Proposition 2.3 (C., Le Meur, Trepode). Let A be a finite dimensional k-algebra over an
algebraically closed field k. Let f : X → Y be an irreducible morphism in modA with X
indecomposable. Let n≥ 1 be an integer. The following conditions are equivalent:

(a) dl( f ) = n;
(b) the morphism i : Ker( f ) ↪→ X lies in ℜn(Ker( f ),X)\ℜn+1(Ker( f ),X), where i is

the inclusion morphism.

Dual results hold for the right degree.
The above results were first proven in [18] for generalized standard Auslander–Reiten

components with length (when paths in ΓA having the same starting vertex and the same
ending vertex have the same length) over an artin algebra and later in [6] for standard com-
ponents and standard algebras.

As an immediate consequence of the above results we get the following corollary which
shall be useful for our further purposes.

Corollary 2.4 (C., Le Meur, Trepode). Let A be an algebra and f : X → Y an irreducible
morphism with X or Y indecomposable. Then

(1) If f is an irreducible epimorphism then dr( f ) = ∞.
(2) If f is an irreducible monomorphism then dl( f ) = ∞.

Next, we compute the left and right degrees of some irreducible morphisms.

Example 2.5. Let A be the representation-finite algebra given by the quiver

3

1
α // 2 //

&&

β
88

4

5

with βα = 0.
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The Auslander–Reiten quiver ΓA of A has the following shape:

S5

��

τ−1S5

$$

τ−2S5

$$

I4

��
S4

// P2

<<

""

// τ−1S4
// τ−1P2

::

$$

// τ−2S4
// τ−2P2

<<

""

// I5
// I2

""
S3

@@

τ−1S3

$$

::

τ−2S3

$$

::

S2

@@

S1 = I1

P1

::

I3

<<

We compute the left degree of the irreducible epimorphisms fi : radPi→ Pi for i = 1,2
and the right degree of the irreducible monomorphisms gi : Ii → Ii/Soc Ii for i = 2, . . . ,5.
Since ΓA is a generalized component with length then to compute the left degree of any
irreducible epimorphism f : X → Y it is enough to consider the length of any path from
Ker fi to X , see [18].

We observe that a dual result holds for the right degree.
Then, dr( fi) = 5 for i = 1,2 and dl(g2) = 1, dl(g3) = 5 and dl(gi) = 6 for i = 4,5.

For a detailed account on degree theory we refer the reader to [7, 5, 13, 18, 21, 22].

2.5. On non-zero compositions of irreducible morphisms. In 2011, the authors of [13]
gave an answer to the problem of when the non zero composition of n irreducible morphisms
between indecomposable A-modules belongs to the (n+1)-th power of the radical of their
module category, in case A is a finite dimensional k-algebra over an algebraically closed
field, and in 2014 for a finite dimensional k-algebra over a perfect field (see [14]). In
both cases, the characterizations obtained were the same. More precisely, they proved the
following theorem.

Theorem 2.6 (C., Le Meur, Trepode). Let A be a finite dimensional k-algebra over a perfect
field. Let Γ be a component of ΓA, n ≥ 1, and X1, . . . ,Xn+1 ∈ Γ. The following conditions
are equivalent:

(1) There exist irreducible morphisms hi : Xi→ Xi+1 for each i such that 0 6= hn . . .h1 ∈
ℜn+1(X1,Xn+1).

(2) There exist irreducible morphisms fi : Xi→ Xi+1 and morphisms εi : Xi→ Xi+1 such
that fn . . . f1 = 0, εn . . .ε1 6= 0, and εi = fi or εi ∈ℜ2(Xi,Xi+1) for each i.

The aim of these notes is to present a new approach to the problem, considering degrees
of irreducible morphisms.

2.6. On degrees and representation-finite algebras. The result given in Theorem 2.2
allows to solve many problems such as to determine when an algebra is representation-
finite. The next characterization of a representation-finite algebra has been established in
[13, Theorem A].

Theorem 2.7 (C., Le Meur, Trepode). Let A be a finite dimensional k-algebra over an
algebraically closed field. The following conditions are equivalent:

(a) A is finite representation type.
(b) For every non-simple indecomposable injective A-module I, the irreducible mor-

phism I→ I/soc I has finite left degree.
(c) For every non-simple indecomposable projective A-module P, the irreducible mor-

phism radP→ P has finite right degree.
(d) For every irreducible epimorphism f : X → Y with X or Y indecomposable, the left

degree of f is finite.



32 CLAUDIA CHAIO

(e) For every irreducible monomorphism f : X → Y with X or Y indecomposable, the
right degree of f is finite.

An interesting question is to know if for a representation-finite algebra we can determine
the irreducible morphism which has the greatest left (right) degree.

In [8], the author gave the following answer to such a problem that we state below.

Proposition 2.8. Let A be a finite dimensional k-algebra over an algebraically closed field
of finite representation type. Then

(1) There exist a simple module S and an irreducible epimorphism θS : IS → IS/S such
that for any other irreducible epimorphism f : X → Y with X or Y indecomposable
we have that dl( f )≤ dl(θS), where IS is the injective envelope of S.

(2) There exists a simple module S′ and an irreducible monomorphism ι
S′ : radP

S′ → P
S′

such that for any other irreducible monomorphism f : X→Y with X or Y indecom-
posable we have that dr( f )≤ dr(ιS′ ), where P

S′ is the projective cover of S′.

Note that the greatest left degree and the greatest right degree may not coincide, see
Example 2.5.

As an immediate consequence of Proposition 2.8, we get the next characterization.

Theorem 2.9. Let A be a finite dimensional k-algebra over an algebraically closed field.
The following conditions are equivalent:

(a) A is finite representation type.
(b) There exists an irreducible epimorphism θ : I→ I/soc(I) of finite left degree with I

a non-simple indecomposable injective, such that for any other irreducible epimor-
phism f : X → Y with X or Y indecomposable we have that dl( f )≤ dl(θ).

(c) There exists an irreducible monomorphism ι : radP→ P of finite right degree with
P a non-simple indecomposable projective, such that for any other irreducible
monomorphism f : X→Y with X or Y indecomposable we have that dr( f )≤ dr(ι).

2.7. On the minimal vanishing power of the radical. We start this subsection recalling
this important characterization due to Auslander.

Theorem 2.10 (Auslander). Let A be an artin algebra. Then A is of finite representation
type if and only if there is a positive integer n such that ℜn(X ,Y ) = 0 for all X ,Y ∈modA.

Our next question is the following: Is it possible to find a minimal lower bound m ≥ 1,
which does not depend on the maximal length of all indecomposable modules, such that the
m-th power of the radical of modA vanishes?

In [4] we gave a positive answer to the above question whenever A is a finite dimensional
algebra over an algebraically closed field of finite representation type. We found a bound
depending on the left and right degrees of certain irreducible morphisms. Furthermore,
in [15] the authors got an answer for any representation-finite artin algebra.

Now, we explain briefly how we find such a bound for a A ' kQ/I a finite dimensional
k-algebra over an algebraically closed field of finite representation type.

Let a∈Q0. If either Pa = Sa or Ia = Sa then we write na = 0 and ma = 0, respectively. Oth-
erwise, we consider the irreducible morphisms ιa : rad(Pa) ↪→ Pa and ga : Ia → Ia/soc(Ia)
and we write na = dr(ιa) and ma = dl(ga).

Theorem 2.11. Let A' kQA/IA be a finite dimensional algebra over an algebraically closed
field and assume that A is of finite representation type. Consider m = max{na +ma}a∈Q0 .
Then ℜm(modA) 6= 0 and ℜm+1(modA) = 0.
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We end this section with the following example.

Example 2.12. Consider the algebra A given in Example 2.5. Applying the above result we
get that ℜ7(modA) = 0.

3. ON DEGREES AND CHAINS OF IRREDUCIBLE MORPHISMS

We are interested in studying the relationship between compositions of irreducible mor-
phisms between indecomposable modules and the powers of the radical of their module
category depending on the degrees of such irreducible morphisms. All these results were
obtained in [10]. We refer the reader to that article for a detailed account of their proofs.

By definition of degree of an irreducible morphism it is immediate that if all morphisms
f1, . . . , fn have infinite left and right degree then fn . . . f1 ∈ ℜn\ℜn+1. Then, we are in-
terested in studying chains where at least one irreducible morphism has finite left or right
degree.

First, we recall the following useful result from [21, p. 41].

Lemma 3.1 (Liu). If fn . . . f1 ∈ℜn+1 then there is an irreducible morphism fi and an irre-
ducible morphism f j, with i, j = 1, . . . ,n, such that dl( fi)< ∞ and dr( f j)< ∞.

As an immediate consequence we get the following result.

Lemma 3.2. Let A be an algebra and fi : Mi−1 → Mi be irreducible morphisms between
indecomposable A-modules, for i = 1, . . . ,s. Then the following conditions hold:

(1) If fi are all irreducible epimorphisms (n monomorphisms) for i = 1, . . . ,s then
fs · · · f1 /∈ℜs+1(M0,Ms).

(2) If fs · · · f1 ∈ ℜs+1(M0,Ms) and f1 is an irreducible epimorphism ( fs is an irre-
ducible monomorphism) then fs · · · f2 ∈ℜs(M1,Ms) ( fs−1 · · · f1 ∈ℜs(M0,Ms−1), re-
spectively).

Proof. (i). It is an immediate consequence of Lemma 3.1 and Corollary 2.4.
(ii). Assume that fs · · · f2 ∈ ℜs−1(M1,Ms)\ℜs(M1,Ms). By Corollary 2.4 (1), since

dr( f1) = ∞ then fs · · · f1 ∈ ℜs(M0,Ms)\ℜs+1(M0,Ms), getting a contradiction to our as-
sumption. �

By the above lemmas, to decide if a composition of n irreducible morphisms belongs
to ℜn+1(modA) it is enough to consider chains of irreducible morphisms starting in a
monomorphism, ending at an epimorphism, and such that at least there is an irreducible
monomorphism and an irreducible epimorphism with finite right and left degree, respec-
tively.

Proposition 3.3. Let A be an algebra. Let M0
f1→M1

f2→M2→ ··· →Ms−1
fs→Ms be a chain

of irreducible morphisms with Mi ∈ indA, for i = 0, . . . ,s, where f1 is a monomorphism and
fs is an epimorphism. Then the following conditions hold:

(a) If for each i such that fi : Mi−1→Mi is an epimorphism we have that dl( fi)> i−1,
then fs · · · f1 ∈ℜs(M0,Ms)\ℜs+1(M0,Ms).

(b) If for each i such that fi : Mi−1→Mi is a monomorphism we have that dr( fi)> s− i,
then fs · · · f1 ∈ℜs(M0,Ms)\ℜs+1(M0,Ms).

The following example illustrates the above proposition.

Example 3.4. Let A be the representation-finite algebra given by the quiver

2
β

&&
1

α
88

// 3 // 4
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with βα = 0. The Auslander–Reiten quiver ΓA of A is

P2
$$

S3
&&

I2

!!
P4

==

  
τ−1P4

88

&&
τ−2P4

$$

::

I1

P3

::

$$
τ−1P3

88

&&
I3

>>

P1

88

&&
I4

::

$$
S2

::

τ−1S2

88

S2

where the two copies of S2 are identified.
Consider the chain of irreducible morphisms:

P1
f1→ τ
−1P3

f2→ τ
−2P4

f3→ I3.

Observe that f1 is a monomorphism and f2, f3 are epimorphisms. By Proposition 3.3 (a),
we claim that f3 f2 f1 ∈ℜ3(P1, I3)\ℜ4(P1, I3). In fact, dl( f2) = 2 and dl( f3) = 3. Hence we
have the result.

We also observe that Proposition 3.3 (b) does not give information to decide about this
composition since dr( f1) = 2.

Now, we consider the cases where in a given chain there are irreducible epimorphisms
(monomorphisms) fi : Mi−1→Mi such that dl( fi) ≤ i−1 (dr( fi) ≤ s− i, respectively), for
i = 1, . . . ,s.

First, we recall [12, Lemma 3.4], that will be useful for our considerations.

Proposition 3.5 (C., Coelho, Trepode). Assume that dimk Irr(Xi,Xi+1) = 1 for i = 1, . . . ,n
with Xi ∈ indA for i = 1, . . . ,n+1. Then the following conditions are equivalent:

(1) There are irreducible morphisms fi : Xi→ Xi+1 in modA for i = 1, . . . ,n such that
fn . . . f1 ∈ℜn(X1,Xn+1)\ℜn+1(X1,Xn+1).

(2) Given irreducible morphisms hi : Xi→ Xi+1 in modA for i = 1, . . . ,n, then one has
that hn . . .h1 ∈ℜn(X1,Xn+1)\ℜn+1(X1,Xn+1).

By a path we mean a sequence of irreducible morphisms in modA between indecompos-
able A-modules and by a path from X to Y of length zero we mean that the path is not in
ℜ(modA). As a consequence we have that X ' Y .

The next result holds for algebras such that the irreducible morphisms f : X → Y in the
chain are such that dimk(Irr(X ,Y )) = 1.

Proposition 3.6. Let A be an algebra and M0
f1→M1

f2→M2→ ··· →Ms−1
fs→Ms be a chain

of irreducible morphisms between indecomposable A-modules Mi, for i = 0, . . . ,s, where f1
is a monomorphism and fs is an epimorphism. Assume that dimk(Irr(Mi,Mi+1)) = 1 for
i = 0, . . . ,s−1. Then the following conditions hold:

(a) If for each i such that fi : Mi−1→Mi is an epimorphism with dl( fi) = mi ≤ i−1 and
if either there is not a path from M0 to Ker fi of length (i−1)−mi or all paths from
M0 to Ker fi of length (i−1)−mi are zero, then fs · · · f1 ∈ℜs(M0,Ms)\ℜs+1(M0,Ms).

(b) If for each i such that fi : Mi−1→Mi is a monomorphism with dr( fi) = ni≤ s− i and
if either there is not a path from Coker fi to Ms of length (s− i)−ni or all paths from
Coker fi to Ms of length (s−i)−ni are zero, then fs · · · f1 ∈ℜs(M0,Ms)\ℜs+1(M0,Ms).

Next, we present an example having a chain of irreducible morphisms where we can
apply the above result and also to give a solution when we consider the monomorphisms in
Example 3.4.



ON THE COMPOSITION OF IRREDUCIBLE MORPHISMS 35

Example 3.7. (a). Let A be the representation-finite algebra given by the quiver

4

3

88

1
α // 2 //

&&

β
88

5

6

with βα = 0.
The Auslander–Reiten quiver ΓA of A is

S6

��

τ−1S6

$$

τ−2S6

$$

τ−3S6

$$

I6

��
S5

// P2

<<

""

// τ−1S5
// τ−1P2

::

$$

// τ−2S5
// τ−2P2

::

$$

// τ−3S5
// τ−3P2

<<

""

// I5
// I2

��
P3

@@

��

τ−1P3

$$

::

τ−2P3

$$

::

τ−3P3

$$

::

S2

@@

I1

S4

??

S3

<<

τ−1S3

$$

::

τ−2S3

$$

::

τ−2S3

<<

P1

::

τ−1P1

::

Consider the following chain of irreducible morphisms:

S5
f1→ P2

f2→ τ
−1P3

f3→ τ
−1P2

f4→ τ
−2P3

f5→ τ
−2P2.

The irreducible epimorphisms f2, f4 and f5 are such that dl( f2) = 2, dl( f4) = 2 and dl( f5) =
5. By Proposition 3.3 (a), we only need to analyze f4. Since Ker f4 ' S3 and there is not an
irreducible morphism from S5 to S3 then f5 f4 f3 f2 f1 ∈ℜ5(S5,τ

−2P2)\ℜ6(S5,τ
−2P2).

(b). By Proposition 3.6 we can give an answer to the fact that f3 f2 f1 ∈ℜ3\ℜ4 in Exam-
ple 3.4, taking into account the irreducible monomorphism f1 with dr( f1) = 2.

Finally, it is left to consider the following case.

Proposition 3.8. Let A be an algebra and M0
f1→M1

f2→M2→ ··· →Ms−1
fs→Ms be a chain

of irreducible morphisms between indecomposable A-modules Mi, for i = 0, . . . ,s, where f1
is a monomorphism and fs is an epimorphism. Then the following conditions hold:

(i) Assume there is an irreducible epimorphism fi : Mi−1→Mi with dl( fi) = mi ≤ i−1
and a non-zero path of irreducible morphisms from M0 to Ker fi in modA of length
i−1−mi. Let i ∈ {1, . . . ,s} be the maximal integer satisfying the mentioned condi-
tions.
(a) If all paths of irreducible morphisms M0→M1→ ··· →Mi−1→Mi are non-

zero then fs · · · f1 ∈ℜs(M0,Ms)\ℜs+1(M0,Ms).
(b) If there is a zero path of irreducible morphisms M0→M1→ ··· →Mi−1→Mi

and dimk(Irr(Mi,Mi+1)) = 1 for i = 0, . . . ,s−1 then fs · · · f1 ∈ℜs+1(M0,Ms).
(ii) Assume there is an irreducible monomorphism fi : Mi−1 → Mi with dr( fi) = ni ≤

s− i and a non-zero path of irreducible morphisms from Coker fi to Ms in modA of
length s− i−ni. Let i ∈ {1, . . . ,s} be the minimal integer satisfying the mentioned
conditions.
(a) If all paths of irreducible morphisms Mi→Mi+1→ ···→Ms−1→Ms are non-

zero then fs · · · f1 ∈ℜs(M0,Ms)\ℜs+1(M0,Ms).
(b) If there is a zero path of irreducible morphisms Mi→Mi+1→···→Ms−1→Ms

and dimk(Irr(M j,M j+1)) = 1 for j = i, . . . ,s−1 then fs · · · f1 ∈ℜs+1(M0,Ms).
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Example 3.9. Consider the algebra given by the quiver

2
β // 3 γ

##
1

α ;;

δ
##

6

4
λ

// 5 µ

;;

with γβα = 0 = µλδ .
The Auslander–Reiten quiver ΓA of A is

P4

&&
S3

$$
S2

$$
I5

$$
P5

$$

::

τ−1P5
f1

$$

::

τ−2P5

$$

::

τ−3P5
f5
&&

88

I4

!!
P6

""

<<

τ−1P6

&&

88

I6
f2
$$

::

P1

$$

f4 ::

τ−1P1

$$

::

I1

P3

$$

::

τ−1P3

$$

f ′1
::

τ−2P3

$$

f3
::

τ−3P3

&&

88

I2

==

P2

88

S5

::

S4

::

I3

::

Consider the chain of irreducible morphisms

τ−1P5
f1 // I6

f2// τ−2P3
f3 // P1

f4 // τ−3P5
f5 // τ−1P1.

Note that dl( f4) = 2 and there is an irreducible morphism from τ−1P5 to Ker( f4) ' S3.
Since all irreducible paths of the form τ−1P5 → I6 → τ−2P3 → P1 → τ−3P5 are not zero,
then dp( f5 f4 f3 f2 f1) = 5.

Summarizing all the above information we state the following theorem.

Theorem 3.10. Let A be an algebra and M0
f1→M1

f2→M2→ ·· ·→Ms−1
fs→Ms be a chain of

irreducible morphisms between indecomposable A-modules Mi with dimk(Irr(Mi,Mi+1)) =
1 for i = 0, . . . ,s−1. Then,

(1) fs · · · f1 ∈ℜs+1(M0,Ms) if and only if there is an irreducible morphism fi : Mi−1→
Mi for some i = 0, . . . ,s with dl( fi) = mi ≤ i− 1, a non-zero path of irreducible
morphisms from M0 to Ker fi in modA of length i− 1−mi, and a zero path of
irreducible morphisms M0→M1→ ·· · →Mi−1→Mi.

(2) fs · · · f1 ∈ℜs+1(M0,Ms) if and only if there is an irreducible morphism fi : Mi−1→
Mi for some i = 0, . . . ,s with dr( fi) = ni ≤ s− i, a non-zero path of irreducible
morphisms from Coker fi to Ms in modA of length s− i− ni and a zero path of
irreducible morphisms Mi→Mi+1→ ··· →Ms−1→Ms.

We end up this section showing some particular cases where it is easy to decide if the
composition of n irreducible morphisms is in ℜn+1(modA), that is, the cases when in a
given chain we have irreducible morphisms of left or right degree one or two. Moreover,
we do not consider any assumptions on the dimension of the irreducible morphisms.

We observe that these results are a consequence of [11, Theorem 2.2] and [7, Propo-
sition 5.1] where the authors studied when the composition of two and three irreducible
morphisms are in a greater power of the radical, greater than 3 and 4, respectively.

Proposition 3.11. Let A be an algebra and

M0
f1→M1

f2→M2→ ·· · →Ms−1
fs→Ms
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be a chain of irreducible morphisms between indecomposable A-modules Mi, for i= 0, . . . ,s,
where f1 is a monomorphism and fs is an epimorphism. Then the following conditions hold:

(a) If there is an irreducible epimorphism fi : Mi−1→Mi with dl( fi) = 1 and Ker fi '
Mi−2 or dl( fi) = 2 and Ker fi 'Mi−3 then fs · · · f1 ∈ℜs+1(M0,Ms).

(b) If there is an irreducible monomorphism fi : Mi−1→Mi with dr( fi)= 1 and Coker fi'
Mi+1 or dr( fi) = 2 and Coker fi 'Mi+2 then fs · · · f1 ∈ℜs+1(M0,Ms).

We recall that a component Γ of ΓA is said to satisfy the condition α(Γ)≤ 2 if α(X)≤ 2
for every X in Γ. By α(X) we mean the number of indecomposable direct summands of the
middle term of an almost split sequence ending at a non-projective module X .

In addition, if the modules belong to an Auslander–Reiten component Γ with α(Γ)≤ 2,
we get the following result which is a consequence of Theorem 3.10 and [7, Proposi-
tion 6.3].

Proposition 3.12. Let A be an algebra and Γ a component of ΓA with α(Γ)≤ 2. Let

M0
f1→M1

f2→M2→ ·· · →Ms−1
fs→Ms

be a chain of irreducible morphisms between indecomposable A-modules Mi, for i= 0, . . . ,s,
where f1 is a monomorphism and fs is an epimorphism. Then the following conditions hold:

(a) If there is an irreducible epimorphism fi : Mi−1→Mi with dl( fi) = mi ≤ i−1 such
that Ker fi 'Mi−1−mi then fs · · · f1 ∈ℜs+1(M0,Ms).

(b) If there is an irreducible monomorphism fi : Mi−1→Mi with dr( fi) = ni≤ s− i such
that Coker fi 'Ms−i+ni then fs · · · f1 ∈ℜs+1(M0,Ms).
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